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Problem Statement

Prover

R( ) = 1

Verifier
goal: “I know > nf elements with R(·) = 1”

np (np > nf)

W ( ) ∈ N

general goal: “I know with
∑

W (·) > nf ”
how: send some with special properties

∑
W (·) = np

∑
W (·) = np

79 59 8 29

19 55 10 50

93 50 26 27

72 77 99 7
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Larger ratio np/nf enables more efficient schemes.

“Approximate Lower Bound Argument” (ALBA)
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Example: Consensus
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History

1985 ”Approximate lower bound” term appears first in László Babai’s work
1983 Sipser and Gács use an ALBA protocol to prove BPP ⊆ RPNP

1986 Goldwasser and Sipser use an ALBA protocol to prove IP[Q] ⊆ AM[Q + 2]

Above implementations of ALBA have interaction and large proofs.

Our goal – ALBA for real world applications:
I minimize proof size
I non-interactive
I fast prover & verifier
I minimize communication in decentralized setting
I extractability (proof of knowledge)
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Defining ALBA

I Non-interactive proof system in either
I random oracle (RO) model:

prover and verifier have oracle access to random H : {0, 1}∗ → {0, 1}k

I common reference string (CRS) model:
prover and verifier are given crs← GenCRS()

I Prover and verifier have oracle access to weight function W
I Completeness: if prover has elements Sp of total weight np =⇒ prob. 1− negl

I π ← ProveH,W (Sp)
I VerifyH,W (π) = 1

I Soundness: if A makes valid proof =⇒ extract elements of total weight > nf;
negligible knowledge error
I Sf ← ExtractH,W ,A()
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Applications

I Weighted Multisignatures
I Prove that sufficiently many parties signed a message
I Proof-of-stake blockchains: prove that parties with

sufficient total stake attested to blockchain state
I Straight-Line Witness Extraction for SNARKs

I Straight-line extraction (no rewinding) useful for
composability

I Details to follow signatures
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Why not use SNARK to implement ALBA?

I Not possible when the weight function
cannot be represented by a single
program

I Too costly when number of elements
is large

I Instead, use ALBA + SNARK
I Our scheme works in CRS model =⇒

avoid instantiating random oracle
inside a circuit

SNARK

“know elements x1, ..., xk
of total weight > nf”

(witness x1, ..., xk)

SNARK

“know ALBA π s.t.
ALBA.Verify(π) = 1”

(witness π)
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Our Results

Completeness and soundness error 2−λ, np = 2 · nf:

proof size (elements) prover runtime verifier runtime
λ+ logλ+ 6 expected O(n + λ2) O(λ)

Table: Upper bound

proof size (elements)
> λ− 3

Table: Lower bound
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Our Results

Completeness and soundness error 2−λ, np = 2 · nf:

proof size (elements) prover runtime verifier runtime
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expected O(n + λ2) O(λ)

Table: Upper bound
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For simplicity...

I Most constructions unweighted
I assume honest prover has np elements

I Simple soundness
I no proof of knowledge
I assume malicious prover has nf fixed elements =⇒

succeeds with negligible probability
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Coming next...

�3 Definitions
• Unweighted case

� Prover-inefficient construction
� Telescope construction
� Improving prover running time
� Decentralized setting

� Adding weights
� Applications
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Warmup: Prover-inefficient Construction

I Let proof size be u elements
(u to be chosen later)

I Consider all u-sequences of elements
I Honest prover has np

u sequences
I Malicious prover has nf

u sequences
I Notice exponential gap

(
np
nf

)u

I A valid proof will be a sequence chosen with
probability ε using RO

Valid proof: (s1, ..., su) s.t.
I H(s1, ..., su) = 1;

(Pr[H(·) = 1] = ε)
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Warmup: Prover-inefficient Construction

I Soundness error bounded using union bound:
“number” · “probability” = nf

u · ε
I Completeness error bounded by

(1− ε)npu ≤ e−εnpu

I Setting completeness and soundness errors
≤ 2−λ and calibrating ε, we find u = λ+logλ

log(np/nf)

suffices (lower bound: u > λ−3
log(np/nf)

)
I Exponential prover running time

Valid proof: (s1, ..., su) s.t.
I H(s1, ..., su) = 1;
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Efficient Construction: Telescope

I Exploit the gap
(

np
nf

)u
in an efficient way

I Grow sequences of increasing length but keep the number small
(“Telescope” method)
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Telescope Construction (cont.)
Let x1, ..., xn be honest prover’s elements. (n = np)

1

2

d

## dd

(select w. prob.
1/n using H1(·))

x1

x2

xn

x1

xn

x4

x9

≈ d≈ d

x1

xn

x1

xn

x1

xn≈ d≈ d

x2

x4

x9

x5

x9

x2

(repeat u times)

≈ d≈ d

(select w. prob.
q using H2(·))
(select w. prob.
q using H2(·))

Valid proof: (t, s1, ..., su) s.t.
I 1 ≤ t ≤ d ;
I ∀1 ≤ i ≤ u, H1(t, s1, ..., si) = 1;

I H2(t, s1, ..., su) = 1;

(Pr[H1(·) = 1] = 1/n )
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Figure: Telescope simulation: d = 6300, np = 1000, nf = 500
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Efficient Construction: Telescope (cont.)

I Represent as d trees
I Prover runs DFS (instead of BFS)
I Union bound to analyze soundness:

I soundness error
“number” · “probability” = d · nu

f ·
(

1
np

)u
· q

I Recursive formula to analyze completeness:
I f (0) = 1− q
I f (k + 1) =

(
(1− 1

np
) + 1

np
· f (k)

)np

I completeness error
(
f (u)

)d

I Setting errors ≤ 2−λ, achieve proof size u = λ+logλ+2
log(np/nf)

(lower bound: u > λ−3
log(np/nf)

)

1

d

x1

x2

xn

x1

xn
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Efficient Construction: Telescope (cont.)

I To analyze prover running time:
I u reachable vertices in a tree in expectation

(by linearity of expectation)
I a tree succeeds with probability Ω(1/λ)
I =⇒ expected running time O(u · λ · np) = O(λ2 · np)
I also O(λ3 · np) w.h.p.

1

d

x1

x2

xn

x1

xn

15 / 36



Efficient Construction: Telescope (cont.)

I To analyze prover running time:
I u reachable vertices in a tree in expectation

(by linearity of expectation)
I a tree succeeds with probability Ω(1/λ)
I =⇒ expected running time O(u · λ · np) = O(λ2 · np)
I also O(λ3 · np) w.h.p.

1

d

x1

x2

xn

x1

xn

15 / 36



Efficient Construction: Telescope (cont.)

I To analyze prover running time:
I u reachable vertices in a tree in expectation

(by linearity of expectation)
I a tree succeeds with probability Ω(1/λ)
I =⇒ expected running time O(u · λ · np) = O(λ2 · np)
I also O(λ3 · np) w.h.p.

1

d

x1

x2

xn

x1

xn

15 / 36



Efficient Construction: Telescope (cont.)

I To analyze prover running time:
I u reachable vertices in a tree in expectation

(by linearity of expectation)
I a tree succeeds with probability Ω(1/λ)
I =⇒ expected running time O(u · λ · np) = O(λ2 · np)
I also O(λ3 · np) w.h.p.

1

d

x1

x2

xn

x1

xn

15 / 36



Efficient Construction: Telescope (cont.)

I To analyze prover running time:
I u reachable vertices in a tree in expectation

(by linearity of expectation)
I a tree succeeds with probability Ω(1/λ)
I =⇒ expected running time O(u · λ · np) = O(λ2 · np)
I also O(λ3 · np) w.h.p.

1

d

x1

x2

xn

x1

xn

15 / 36



Coming next...

�3 Definitions
• Unweighted case

�3 Prover-inefficient construction
�3 Telescope construction
� Improving prover running time
� Decentralized setting

� Adding weights
� Applications
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Improving Prover Runtime: Telescope with Prehashing
I Basic Telescope has running time O(λ2 · n )1

I Optimization inspired by balls-and-bins
I Hash x1, ..., xn into n bins using

G0(·) ∼ Unif([n])
I (t, s1, ..., sj) has valid extensions in bin

G1( t, s1, ..., sj ) ∼ Unif([n])

Valid proof: (t, s1, ..., su) s.t.
I 1 ≤ t ≤ d ;
I ∀1 ≤ i ≤ u, H1(t, s1, ..., si) = 1;
I ∀1 ≤ i ≤ u, G1(t, s1, ..., si−1) = G0(si);
I G2(t, s1, ..., su) = 1;

(G0(·),G1(·) ∼ Unif([n]), G2(·) ∼ Bernoulli(q))

1

d
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1n = np
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Improving Prover Runtime: Telescope with Prehashing (cont.)
I Soundness analysis remains the same

(union bound)
I Completeness analysis is tricky
I Need a “good” condition on “balls” distribution
I Use Poisson approximation + one of the following:

I Markov’s inequality approach (when np ≤ Θ(λ2)):
I guarantees “good” condition with moderate prob.
I get a scheme with completeness 1/2; amplify
I expected running time O(np + λ2)

I Chernoff inequality approach (when np ≥ Θ(λ3)):
I “good” condition w.h.p. by Chernoff-like analysis
I running time O(np + Z) where E[Z ] = λ2

I Chernoff + amplify (when Θ(λ2) ≤ np ≤ Θ(λ3))
I Proof size u = λ+logλ+4

log(np/nf)

(lower bound: u > λ−3
log(np/nf)

)

Valid proof: (t, s1, ..., su) s.t.
I 1 ≤ t ≤ d ;
I ∀1 ≤ i ≤ u,

G1(t, s1, ..., si−1) = G0(si);
I G2(t, s1, ..., su) = 1;

(G0(·),G1(·) ∼ Unif([n]),
G2(·) ∼ Bernoulli(q))

G1(t, s1, ..., sj)

vs.

G1(t, s1, ..., sj)
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Coming next...

�3 Definitions
• Unweighted case

�3 Prover-inefficient construction
�3 Telescope construction
�3 Improving prover running time
� Decentralized setting

� Adding weights
� Applications
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Decentralized ALBA

prover

prover

prover

prover

aggregatoraggregator
(Telescope prover)

msg

msg

msg

msg

msg

msg

(select w. prob.
µ/np using
Lottery(·))

verifier
verifier

(Telescope verifier)
π

goal: few provers communicate

Valid proof: (t, s1, ..., su) s.t.
I ∀1 ≤ i ≤ u, Lottery(si) = 1;
I ALBA.Verify(t, s1, ..., su) = 1;

(Pr[Lottery(·) = 1] = µ/np)

comm.
complexity

proof size
(elements)

aggregator runtime verifier
runtime

O(λ2) λ+O(
√
λ)

log(np/nf)
expected O(λ2) O(λ)
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Coming next...

�3 Definitions
• Unweighted case

�3 Prover-inefficient construction
�3 Telescope construction
�3 Improving prover running time
�3 Decentralized setting

� Adding weights
� Applications
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Adding Weights

I Back to centralized setting
I Naive approach

I turn weight-w element x into elements (x , 1), ..., (x ,w)
I inefficient (think of w as ∼ 264)

I Lottery based approach
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Adding Weights (cont.)

“prover”

“prover”

“prover”

“prover”

Telescope prover Telescope verifierπ

Weighted Prover

w ′ ∼ Binom(w , µ/np);
(x , 1), ..., (x ,w ′)

Valid proof: (t, (s1, v1), ..., (su, vu)) s.t.
I ∀1 ≤ i ≤ u, 1 ≤ vi ≤ Lottery(si);
I ALBA.Verify(t, (s1, v1), ..., (su, vu)) = 1;

(Lottery(x) ∼ Binom(W (x), µ/np))

proof size
(elements)

prover runtime verifier
runtime

λ+logλ+6
log(np/nf)

expected O(n + λ2) O(λ)
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�3 Prover-inefficient construction
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Application 1: Weighted Multisignatures

I Prove that sufficiently many parties
signed a message

I Proof-of-stake blockchains: prove that
parties with sufficient total stake
(money) attested to blockchain state
I assume 80% honest stake, 20%

malicious stake =⇒ np/nf = 4
I sign blockchain state
I signature weight = node’s stake
I aggregate signatures using

(decentralized) ALBA

signatures

node 0
(89 coins)

node 1
(68 coins)

node 2
(72 coins)

node 3
(17 coins)

node 4
(55 coins)

node 5
(23 coins)

node 6
(16 coins)

node 7
(60 coins)

node 8
(14 coins)
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Application 1: Weighted Multisignatures (cont.)

small proof + small communication complexity

node 0

node 1

node 2

node k

aggregator verifier
proof size: 104

communication:
1987 sent
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Application 1: Weighted Multisignatures (cont.)

small proof + small communication complexity, 128-bit security:

node 0

node 1

node 2

node k

aggregator verifier
proof size: 104

communication:
1987 sent
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Application 2: Straight-Line Witness Extraction for SNARKs

I [GKOPTT23] addresses Universal Composability (UC) for SNARKs
I UC requires witness-extraction without rewinding
I Since |π| � |w |, how to extract w without rewinding? Possible in RO model
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Application 2: Straight-Line Witness Extraction for SNARKs
I [GKOPTT23]:

I Represent the witness as degree d polynomial
I Commit using polynomial commitment scheme
I Prove that RO was queried on d + 1 valid points by querying λd points;

I Observation: An application of ALBA
I Result: prover queries 2d points instead (λ times faster prover);

more modular construction
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Outline

�3 Definitions
• Unweighted case

�3 Prover-inefficient construction
�3 Telescope construction
�3 Improving prover running time
�3 Decentralized setting

�3 Adding weights
�3 Applications

Additional slides:
I Lower bounds
I Table of all results
I Knowledge extraction (RO, straight-line)
I ALBA in CRS model
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[GKOPTT23] Chaya Ganesh, Yashvanth Kondi, Claudio Orlandi, Mahak Pancholi,
Akira Takahashi, and Daniel Tschudi. “Witness-Succinct
Universally-Composable SNARKs”. In: EUROCRYPT 2023, Part II.
Ed. by Carmit Hazay and Martijn Stam. Vol. 14005. LNCS. Springer,
Heidelberg, Apr. 2023, pp. 315–346. doi:
10.1007/978-3-031-30617-4_11.
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Lower Bounds

Theorem
Any ALBA scheme with completeness &
soundness errors ≤ 2−λ must have Ω(λ)
proof size.
Proof outline
I (random variable) π ← ProveH(Sp)

I suppose |π| is small
I take random Sf ⊆ Sp with |Sf| = nf
I PrH,Sf [π ⊆ Sf] is big
I by averaging argument ∃S ′

f s.t.
PrH [π ⊆ S ′

f ] is big
I PrH [π ⊆ S ′

f ] is small by soundness
I contradiction

|Sp| = np

π

random Sf

S ′
f
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Lower Bounds (cont.)

scheme proof size (elements) comm. rounds comm. complexity

ALBA > λ−3
log(np/nf)

decentralized ALBA1 > λ+Ω(
√
λ)

log(np/nf)
1 O(λ2)

1in a simplified model
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All Results
setting lower bound Telescope

ALBA > λ−3
log(np/nf)

λ+logλ+6
log(np/nf)

decentralized ALBA;
communication O(λ2)

> λ+Ω(
√
λ)

log(np/nf)
λ+O(

√
λ)

log(np/nf)

Table: Proof size

scheme average worst case
Telescope prover O(n + λ2) O(n + λ3)

decentralized Telescope aggregator;
communication O(λ2)

O(λ2) O(λ3)

Telescope verifier O(λ) O(λ)

Table: Running time
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Knowledge Extraction (RO, straight-line)

I AH,W produces valid proof with probability
2−λ + ε

I goal: extract > nf weight-1 elements with
probability ε

Theorem
ExtractH,W ,A extracts > nf elements with
probability ε

Proof.
2−λ + ε =
Pr[A succeeds] ≤
Pr[A queries ≤ nf elements and succeeds]+
Pr[A queries > nf elements]

Algorithm ExtractH,W ,A

run π ← AH,W () and
VerifyH,W (π) and observe
their RO transcript τ ;
Sf := ∅;
for x queried to H1 or H2 in τ
do

if W (x) = 1 then
add x to Sf ;

return Sf ;
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Knowledge Extraction (RO, straight-line) (cont.)
Lemma
Pr[A queries ≤ nf elements and succeeds] ≤ 2−λ

Issue: adaptive adversary =⇒ union bound doesn’t work

Proof.
I think about indices as inputs to H1,H2

I union bound applies

We achieved:
I information-theoretic security

when weight function is fixed in advance
I can get security assuming a bound on the number of RO queries

when weight function can depend on RO
34 / 36



Knowledge Extraction (RO, straight-line) (cont.)
Lemma
Pr[A queries ≤ nf elements and succeeds] ≤ 2−λ

Issue: adaptive adversary =⇒ union bound doesn’t work

Proof.
I think about indices as inputs to H1,H2

I union bound applies

We achieved:
I information-theoretic security

when weight function is fixed in advance
I can get security assuming a bound on the number of RO queries

when weight function can depend on RO
34 / 36



Knowledge Extraction (RO, straight-line) (cont.)
Lemma
Pr[A queries ≤ nf elements and succeeds] ≤ 2−λ

Issue: adaptive adversary =⇒ union bound doesn’t work

Proof.
I think about indices as inputs to H1,H2

I union bound applies

We achieved:
I information-theoretic security

when weight function is fixed in advance
I can get security assuming a bound on the number of RO queries

when weight function can depend on RO
34 / 36



Telescope in CRS3 model

I Replace RO with PRF2

I CRS = PRF key
I PRF key need not be secret

2Pseudorandom Function
3Common Reference String
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Knowledge Extraction in CRS model

I Knowledge extraction via rewinding:
I suppose AW (crs) succeeds with

probability 2−λ + ε =⇒
extract with probability ε

I while |Sf| ≤ nf, AW (crs) outputs weight-1
elements outside of Sf with probability ε

I We achieve:
I security when weight function is fixed in

advance
I can get security when weight function is

not fixed in advance if PRF key is chosen
by RO

Algorithm ExtractW (A)
Sf := ∅;
while |Sf| ≤ nf do

crs← GenCRS() ;
π ← AW (crs) ;
. Pr[π ∩W \ Sf ≥ 1] ≥ ε

Sf := Sf ∪ (π ∩W ) ;
return Sf ;
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