Approximate Lower Bound Arguments (ALBA)

Pyrros Chaidos^{1,4} Aggelos Kiayias^{2,4} Leo Reyzin³ Tolik Zinovyev³

¹National & Kapodistrian University of Athens

²University of Edinburgh

³Boston University

⁴IOG

Prover

goal: "I know
$$> n_{\rm f}$$
 elements \square with $R(\cdot) = 1$ "

$$R(\bigcirc) = 1$$

goal: "I know
$$> n_{\rm f}$$
 elements \square with $R(\cdot) = 1$ "

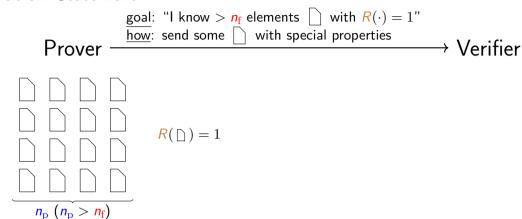
 $R(\square) = 1$

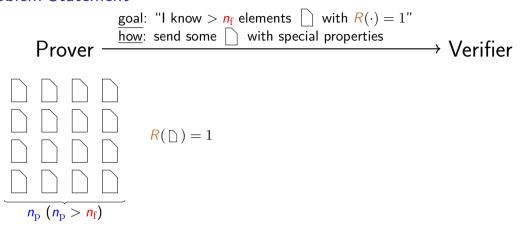
Prover -

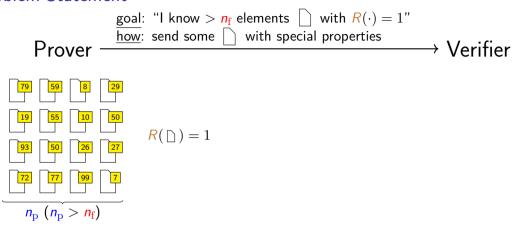
$$\frac{n_{\rm p} (n_{\rm p} > n_{\rm f})}{n_{\rm p} (n_{\rm p} > n_{\rm f})}$$

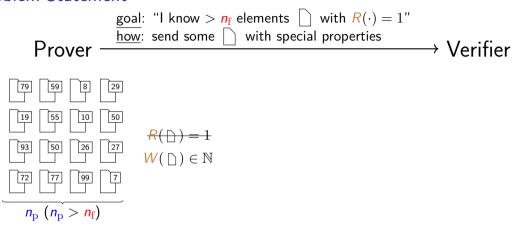
$$n_{\rm p} \ (n_{\rm p} > n_{\rm f})$$

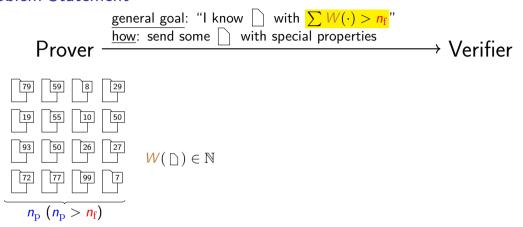
→ Verifier



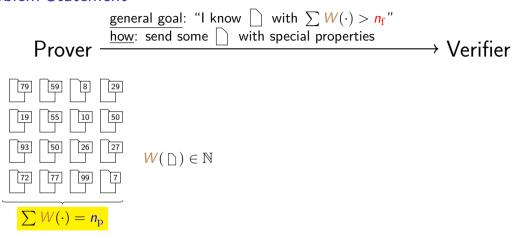


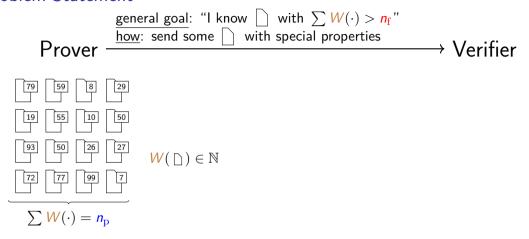






Larger ratio n_p/n_f enables more efficient schemes.

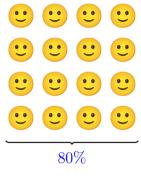




Larger ratio n_p/n_f enables more efficient schemes.

"Approximate Lower Bound Argument" (ALBA)

Example: Consensus



Example: Consensus

$$n_{
m p}/n_{
m f}=4$$

History

- 1985 "Approximate lower bound" term appears first in László Babai's work
- 1983 Sipser and Gács use an ALBA protocol to prove $\mathrm{BPP} \subseteq \mathrm{RP}^\mathrm{NP}$
- 1986 Goldwasser and Sipser use an ALBA protocol to prove $IP[Q] \subseteq AM[Q+2]$

Above implementations of ALBA have interaction and large proofs.

Our goal – ALBA for real world applications:

- minimize proof size
- non-interactive
- ► fast prover & verifier
- minimize communication in decentralized setting
- extractability (proof of knowledge)

History

1985 "Approximate lower bound" term appears first in László Babai's work 1983 Sipser and Gács use an ALBA protocol to prove $BPP \subseteq RP^{NP}$ 1986 Goldwasser and Sipser use an ALBA protocol to prove $IP[Q] \subseteq AM[Q+2]$ Above implementations of ALBA have interaction and large proofs.

Our goal - ALBA for real world applications:

- minimize proof size
- non-interactive
- ► fast prover & verifier
- minimize communication in decentralized setting
- extractability (proof of knowledge)

History

- 1985 "Approximate lower bound" term appears first in László Babai's work
- 1983 Sipser and Gács use an ALBA protocol to prove $BPP \subseteq RP^{NP}$
- 1986 Goldwasser and Sipser use an ALBA protocol to prove $IP[Q] \subseteq AM[Q+2]$ Above implementations of ALBA have interaction and large proofs.

Our goal – ALBA for real world applications:

- minimize proof size
- non-interactive
- ► fast prover & verifier
- minimize communication in decentralized setting
- extractability (proof of knowledge)

- ► Non-interactive proof system in either
 - random oracle (RO) model: prover and verifier have oracle access to random $H: \{0,1\}^* \to \{0,1\}^k$
 - Common reference string (CRS) model: prover and verifier are given crs ← GenCRS()
- lacktriangle Prover and verifier have oracle access to weight function W
- ightharpoonup Completeness: if prover has elements $S_{\rm p}$ of total weight $n_{\rm p} \Longrightarrow {\rm prob.}\ 1-{\rm negl}$
 - $\pi \leftarrow \mathsf{Prove}^{H,W}(S_{\mathsf{p}})$
 - $\qquad \text{Verify}^{H,W}(\pi) = 1$
- Soundness: if \mathcal{A} makes valid proof \Longrightarrow extract elements of total weight $> n_{\mathrm{f}}$; negligible knowledge error
 - $ightharpoonup S_{
 m f} \leftarrow {\sf Extract}^{H,W,\mathcal{A}}()$

- Non-interactive proof system in either
 - random oracle (RO) model: prover and verifier have oracle access to random $H: \{0,1\}^* \to \{0,1\}^k$
 - Common reference string (CRS) model: prover and verifier are given crs ← GenCRS()
- Prover and verifier have oracle access to weight function W
- ightharpoonup Completeness: if prover has elements $S_{\rm p}$ of total weight $n_{\rm p} \Longrightarrow {\rm prob.}\ 1-{\rm negl}$
 - $\pi \leftarrow \mathsf{Prove}^{H,W}(S_{\mathsf{p}})$
 - $\qquad \qquad \mathsf{Verify}^{H,W}(\pi) = 1$
- Soundness: if \mathcal{A} makes valid proof \Longrightarrow extract elements of total weight $> n_{\mathrm{f}}$; negligible knowledge error
 - $ightharpoonup S_{
 m f} \leftarrow {\sf Extract}^{H,W,\mathcal{A}}()$

- Non-interactive proof system in either
 - random oracle (RO) model: prover and verifier have oracle access to random $H: \{0,1\}^* \to \{0,1\}^k$
 - ▶ common reference string (CRS) model: prover and verifier are given $crs \leftarrow GenCRS()$
- Prover and verifier have oracle access to weight function W
- ightharpoonup Completeness: if prover has elements $S_{\rm p}$ of total weight $n_{\rm p}\Longrightarrow$ prob. $1-{
 m negl}$
 - $\pi \leftarrow \mathsf{Prove}^{H,W}(S_{\mathsf{p}})$
 - $\qquad \mathsf{Verify}^{H,W}(\pi) = 1$
- Soundness: if \mathcal{A} makes valid proof \Longrightarrow extract elements of total weight $> n_{\mathrm{f}}$; negligible knowledge error
 - $ightharpoonup S_{
 m f} \leftarrow {\sf Extract}^{H,W,\mathcal{A}}()$

- Non-interactive proof system in either
 - random oracle (RO) model: prover and verifier have oracle access to random $H: \{0,1\}^* \to \{0,1\}^k$
 - Common reference string (CRS) model: prover and verifier are given crs ← GenCRS()
- Prover and verifier have oracle access to weight function W
- ightharpoonup Completeness: if prover has elements S_p of total weight $n_p \Longrightarrow \text{prob. } 1 \text{negl}$
 - $\pi \leftarrow \mathsf{Prove}^{H,W}(S_{\mathsf{p}})$
- Soundness: if \mathcal{A} makes valid proof \Longrightarrow extract elements of total weight $> n_{\mathrm{f}}$; negligible knowledge error
 - $ightharpoonup S_{
 m f} \leftarrow {\sf Extract}^{H,W,\mathcal{A}}()$

- Non-interactive proof system in either
 - random oracle (RO) model: prover and verifier have oracle access to random $H: \{0,1\}^* \to \{0,1\}^k$
 - Common reference string (CRS) model: prover and verifier are given crs ← GenCRS()
- Prover and verifier have oracle access to weight function W
- lacktriangle Completeness: if prover has elements $S_{
 m p}$ of total weight $n_{
 m p}\Longrightarrow$ prob. $1-{
 m negl}$
 - $\rightarrow \pi \leftarrow \mathsf{Prove}^{W}(\mathsf{crs}, \mathcal{S}_{\mathsf{p}})$
 - ightharpoonup Verify $^{W}(\operatorname{crs},\pi)=1$
- Soundness: if \mathcal{A} makes valid proof \Longrightarrow extract elements of total weight $> n_{\mathrm{f}}$; negligible knowledge error
 - $\blacktriangleright \ \textit{S}_{f} \leftarrow \mathsf{Extract}^{\textit{W}}(\mathcal{A})$

Applications

- Weighted Multisignatures
 - Prove that sufficiently many parties signed a message
 - Proof-of-stake blockchains: prove that parties with sufficient total stake attested to blockchain state
- ► Straight-Line Witness Extraction for SNARKs
 - Straight-line extraction (no rewinding) useful for composability
- Details to follow

Applications

- Weighted Multisignatures
 - Prove that sufficiently many parties signed a message
 - Proof-of-stake blockchains: prove that parties with sufficient total stake attested to blockchain state
- Straight-Line Witness Extraction for SNARKs
 - Straight-line extraction (no rewinding) useful for composability
- Details to follow

Applications

- Weighted Multisignatures
 - Prove that sufficiently many parties signed a message
 - Proof-of-stake blockchains: prove that parties with sufficient total stake attested to blockchain state
- ► Straight-Line Witness Extraction for SNARKs
 - Straight-line extraction (no rewinding) useful for composability
- Details to follow

- Not possible when the weight function cannot be represented by a single program
- Too costly when number of elements is large
- ► Instead, use ALBA + SNARK
- Our scheme works in CRS model avoid instantiating random oracle inside a circuit

SNARK

"know elements $x_1, ..., x_k$ of total weight $> n_f$ " (witness $x_1, ..., x_k$)

- Not possible when the weight function cannot be represented by a single program
- Too costly when number of elements is large
- ► Instead, use ALBA + SNARK
- Our scheme works in CRS model avoid instantiating random oracle inside a circuit

SNARK

"know elements $x_1, ..., x_k$ of total weight $> n_f$ " (witness $x_1, ..., x_k$)

- Not possible when the weight function cannot be represented by a single program
- Too costly when number of elements is large
- ► Instead, use ALBA + SNARK
- Our scheme works in CRS model avoid instantiating random oracle inside a circuit

SNARK

"know elements $x_1, ..., x_k$ of total weight $> n_f$ " (witness $x_1, ..., x_k$)

- Not possible when the weight function cannot be represented by a single program
- Too costly when number of elements is large
- ► Instead, use ALBA + SNARK
- ➤ Our scheme works in CRS model ⇒ avoid instantiating random oracle inside a circuit

SNARK

"know elements $x_1, ..., x_k$ of total weight $> n_f$ " (witness $x_1, ..., x_k$)

SNARK

 $\begin{array}{l} \text{"know ALBA } \pi \text{ s.t.} \\ \text{ALBA.Verify}(\pi) = 1 \text{"} \\ \text{(witness } \pi) \end{array}$

- Not possible when the weight function cannot be represented by a single program
- Too costly when number of elements is large
- ► Instead, use ALBA + SNARK
- ➤ Our scheme works in CRS model ⇒ avoid instantiating random oracle inside a circuit

SNARK

"know elements $x_1, ..., x_k$ of total weight $> n_f$ " (witness $x_1, ..., x_k$)

SNARK

 $\begin{array}{l} \text{"know ALBA } \pi \text{ s.t.} \\ \text{ALBA.Verify}(\pi) = 1 \text{"} \\ \text{(witness } \pi) \end{array}$

Completeness and soundness error $2^{-\lambda}$, $n_p = 2 \cdot n_f$:

proof size (elements)	prover runtime	verifier runtime
$\lambda + \log \lambda + 6$	expected $O(n + \lambda^2)$	$O(\lambda)$

Table: Upper bound

Completeness and soundness error $2^{-\lambda}$, $\textit{n}_{\rm p} = 2 \cdot \textit{n}_{\rm f}$:

proof size (elements)	prover runtime	verifier runtime
$\begin{array}{ c c c c c c } \hline \textbf{141} \ \text{for} \ \lambda = 128 \\ \hline \end{array}$	expected $O(n+\lambda^2)$	$O(\lambda)$

Table: Upper bound

Completeness and soundness error $2^{-\lambda}$, $n_p = 2 \cdot n_f$:

proof size (elements)	prover runtime	verifier runtime
$\lambda + \log \lambda + 6$	expected $O(n + \lambda^2)$	$O(\lambda)$

Table: Upper bound

Completeness and soundness error $2^{-\lambda},~\textit{n}_{p}=2\cdot\textit{n}_{f}$:

proof size (elements)	prover runtime	verifier runtime
$\lambda + \log \lambda + 6$	expected $O(n + \lambda^2)$	$O(\lambda)$

Table: Upper bound

$$\begin{array}{c} \text{proof size (elements)} \\ > \lambda - 3 \end{array}$$

Table: Lower bound

Completeness and soundness error $2^{-\lambda}$, $n_p = 2 \cdot n_f$:

proof size (elements)	prover runtime	verifier runtime
$\frac{\lambda + \log \lambda + 6}{\log(n_{\rm p}/n_{\rm f})}$	expected $O(n + \lambda^2)$	$O(\lambda)$

Table: Upper bound

proof size (elements)
$$> \frac{\lambda - 3}{\log(n_{\rm p}/n_{\rm f})}$$

Table: Lower bound

For simplicity...

- Most constructions unweighted
 - ightharpoonup assume honest prover has n_p elements
- Simple soundness
 - no proof of knowledge
 - ightharpoonup assume malicious prover has $n_{\rm f}$ fixed elements \Longrightarrow succeeds with negligible probability

Coming next...

- Definitions
- Unweighted case
 - □ Prover-inefficient construction
 - □ Telescope construction
 - ☐ Improving prover running time
 - Decentralized setting
- Adding weights
- \square Applications

- Let proof size be u elements (u to be chosen later)
- ► Consider all *u*-sequences of elements
- \triangleright Honest prover has n_p^u sequences
- ightharpoonup Malicious prover has $n_{\rm f}^{\ u}$ sequences
- Notice exponential gap $\left(\frac{n_p}{n_f}\right)^u$
- A valid proof will be a sequence chosen with probability ε using RO

```
Valid proof: (s_1, ..., s_u) s.t.

\blacktriangleright H(s_1, ..., s_u) = 1;

(\Pr[H(\cdot) = 1] = \varepsilon)
```

- Let proof size be *u* elements (*u* to be chosen later)
- ► Consider all *u*-sequences of elements
- ► Honest prover has n_p^u sequences
- Malicious prover has n_f^u sequences
- Notice exponential gap $\left(\frac{n_p}{n_f}\right)^u$
- A valid proof will be a sequence chosen with probability ε using RO

```
Valid proof: (s_1, ..., s_u) s.t.

\blacktriangleright H(s_1, ..., s_u) = 1;

(\Pr[H(\cdot) = 1] = \varepsilon)
```

- Let proof size be *u* elements (*u* to be chosen later)
- ► Consider all *u*-sequences of elements
- ► Honest prover has n_p^u sequences
- Malicious prover has n_f^u sequences
- Notice exponential gap $\left(\frac{n_p}{n_f}\right)^u$
- A valid proof will be a sequence chosen with probability ε using RO

```
Valid proof: (s_1, ..., s_u) s.t.

\blacktriangleright H(s_1, ..., s_u) = 1;

(\Pr[H(\cdot) = 1] = \varepsilon)
```

- Let proof size be u elements (*u* to be chosen later)
- Consider all u-sequences of elements
- \triangleright Honest prover has $n_{\rm p}^{\ u}$ sequences
- Malicious prover has $n_{\rm f}^{u}$ sequences
- Notice exponential gap $\left(\frac{n_p}{n_f}\right)^u$
- A valid proof will be a sequence chosen with probability ε using RO

Valid proof:
$$(s_1, ..., s_u)$$
 s.t.
 $\blacktriangleright H(s_1, ..., s_u) = 1;$
 $(\Pr[H(\cdot) = 1] = \varepsilon)$

- Soundness error bounded using union bound: "number" · "probability" = $n_f^u \cdot \varepsilon$
- ► Completeness error bounded by $(1 \varepsilon)^{n_p{}^u} < e^{-\varepsilon n_p{}^u}$
- Setting completeness and soundness errors $\leq 2^{-\lambda}$ and calibrating ε , we find $u = \frac{\lambda + \log \lambda}{\log(n_{\rm p}/n_{\rm f})}$ suffices (lower bound: $u > \frac{\lambda 3}{\log(n_{\rm p}/n_{\rm f})}$)
- Exponential prover running time

Valid proof: $(s_1,...,s_u)$ s.t. $H(s_1,...,s_u) = 1;$ $(\Pr[H(\cdot) = 1] = \varepsilon)$

- Soundness error bounded using union bound: "number" · "probability" = $n_f^u \cdot \varepsilon$
- Completeness error bounded by $(1 \varepsilon)^{n_p{}^u} < e^{-\varepsilon n_p{}^u}$
- Setting completeness and soundness errors $\leq 2^{-\lambda}$ and calibrating ε , we find $u = \frac{\lambda + \log \lambda}{\log(n_{\rm p}/n_{\rm f})}$ suffices (lower bound: $u > \frac{\lambda 3}{\log(n_{\rm p}/n_{\rm f})}$)
- Exponential prover running time

Valid proof: $(s_1,...,s_u)$ s.t. $H(s_1,...,s_u) = 1;$ $(\Pr[H(\cdot) = 1] = \varepsilon)$

- Soundness error bounded using union bound: "number" · "probability" = $n_f^u \cdot \varepsilon$
- ► Completeness error bounded by $(1 \varepsilon)^{n_p{}^u} \le e^{-\varepsilon n_p{}^u}$
- Setting completeness and soundness errors $\leq 2^{-\lambda}$ and calibrating ε , we find $u = \frac{\lambda + \log \lambda}{\log(n_{\rm p}/n_{\rm f})}$ suffices (lower bound: $u > \frac{\lambda 3}{\log(n_{\rm p}/n_{\rm f})}$)
- Exponential prover running time

Valid proof: $(s_1,...,s_u)$ s.t. $H(s_1,...,s_u) = 1;$ $(\Pr[H(\cdot) = 1] = \varepsilon)$

Coming next...

- Definitions
- Unweighted case
 - ✓ Prover-inefficient construction
 - □ Telescope construction
 - ☐ Improving prover running time
 - Decentralized setting
- Adding weights
- \square Applications

Efficient Construction: Telescope

- Exploit the gap $\left(\frac{n_p}{n_f}\right)^u$ in an efficient way
- Grow sequences of increasing length but keep the number small ("Telescope" method)

Efficient Construction: Telescope

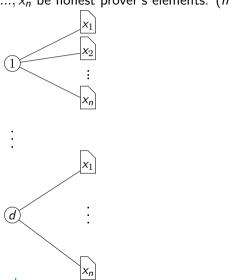
- Exploit the gap $\left(\frac{n_p}{n_f}\right)^u$ in an efficient way
- Grow sequences of increasing length but keep the number small ("Telescope" method)

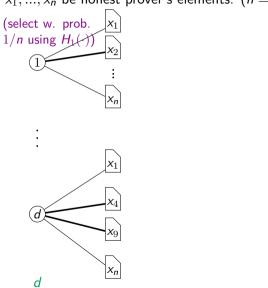
Let $x_1,...,x_n$ be honest prover's elements. $(n=n_{\rm p})$

- 1
- (2)

:

(d)

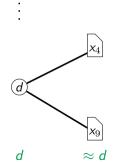


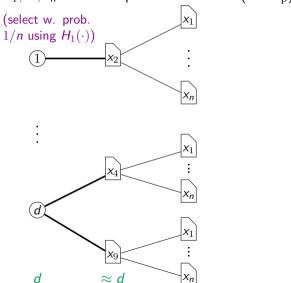


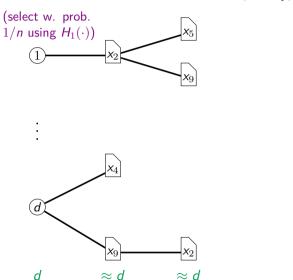
Let $x_1, ..., x_n$ be honest prover's elements. $(n = n_D)$

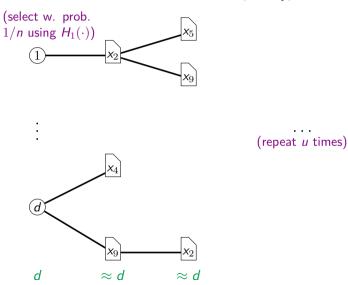
(select w. prob.

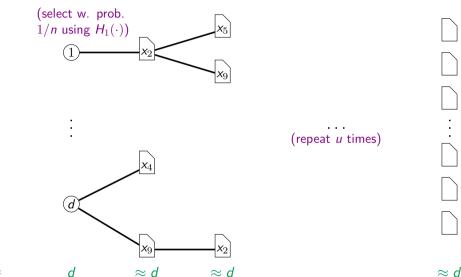
1/n using $H_1(\cdot)$

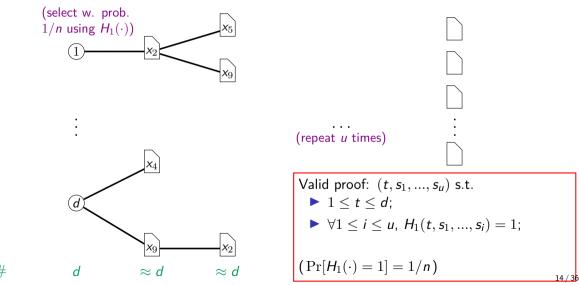


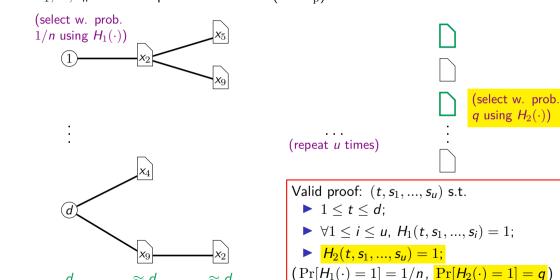




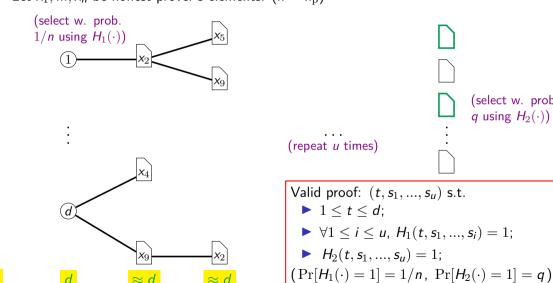


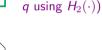






Let $x_1, ..., x_n$ be honest prover's elements. $(n = n_p)$



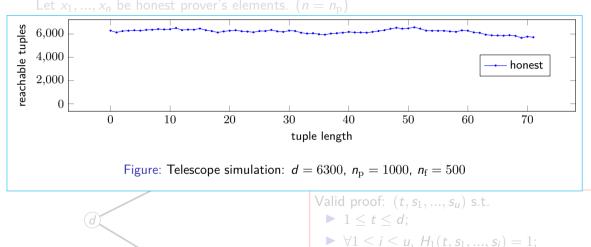


$$) = 1;$$

$$=1;$$

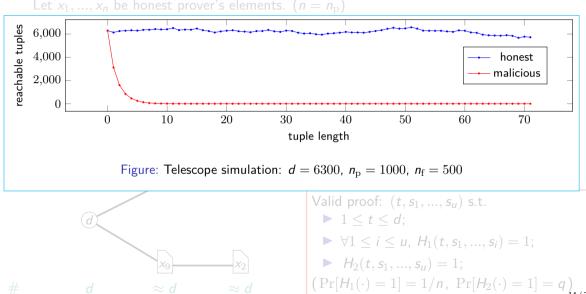
(select w. prob.

$$(s_i) = 1;$$



$$H_2(t, s_1, ..., s_n) = 1;$$

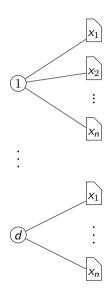
 $\big(\Pr[H_1(\cdot)=1]=1/\textit{n}\,,\,\Pr[H_2(\cdot)=1]=\textit{q}\,\big)$



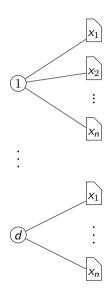
- Represent as *d* trees
- ► Prover runs DFS (instead of BFS)
- ▶ Union bound to analyze soundness:
 - soundness error

"number"
$$\cdot$$
 "probability" $= d \cdot n_{\rm f}^u \cdot \left(\frac{1}{n_{\rm p}}\right)^u \cdot q$

- ► Recursive formula to analyze completeness:
 - f(0) = 1 q
 - $f(k+1) = \left((1 \frac{1}{n_p}) + \frac{1}{n_p} \cdot f(k) \right)^{n_p}$
 - ightharpoonup completeness error $(f(u))^d$
- Setting errors $\leq 2^{-\lambda}$, achieve proof size $u = \frac{\lambda + \log \lambda + 2}{\log(n_{\rm p}/n_{\rm f})}$ (lower bound: $u > \frac{\lambda 3}{\log(n_{\rm p}/n_{\rm f})}$)



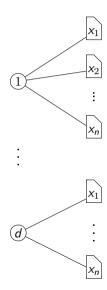
- Represent as *d* trees
- Prover runs DFS (instead of BFS)
- ▶ Union bound to analyze soundness:
 - soundness error "number" · "probability" = $d \cdot n_f^u \cdot \left(\frac{1}{n_p}\right)^u \cdot q$
- ► Recursive formula to analyze completeness:
 - f(0) = 1 q
 - $f(k+1) = ((1-\frac{1}{n_p}) + \frac{1}{n_p} \cdot f(k))^{n_p}$
 - ightharpoonup completeness error $(f(u))^d$
- Setting errors $\leq 2^{-\lambda}$, achieve proof size $u = \frac{\lambda + \log \lambda + 2}{\log(n_{\rm p}/n_{\rm f})}$ (lower bound: $u > \frac{\lambda 3}{\log(n_{\rm p}/n_{\rm f})}$)



- Represent as d trees
- ► Prover runs DFS (instead of BFS)
- Union bound to analyze soundness:
 - soundness error

"number"
$$\cdot$$
 "probability" = $d \cdot n_{\rm f}^u \cdot \left(\frac{1}{n_{\rm p}}\right)^u \cdot q$

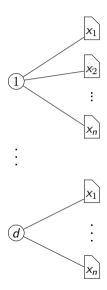
- ► Recursive formula to analyze completeness:
 - f(0) = 1 q
 - $f(k+1) = ((1-\frac{1}{n_p}) + \frac{1}{n_p} \cdot f(k))^{n_p}$
 - ightharpoonup completeness error $(f(u))^d$
- Setting errors $\leq 2^{-\lambda}$, achieve proof size $u = \frac{\lambda + \log \lambda + 2}{\log(n_{\rm p}/n_{\rm f})}$ (lower bound: $u > \frac{\lambda 3}{\log(n_{\rm p}/n_{\rm f})}$)



- Represent as d trees
- ► Prover runs DFS (instead of BFS)
- Union bound to analyze soundness:
 - soundness error

"number"
$$\cdot$$
 "probability" = $d \cdot n_{\rm f}^u \cdot \left(\frac{1}{n_{\rm p}}\right)^u \cdot q$

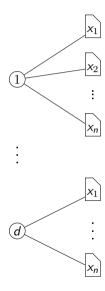
- ► Recursive formula to analyze completeness:
 - f(0) = 1 q
 - $f(k+1) = ((1-\frac{1}{n_p}) + \frac{1}{n_p} \cdot f(k))^{n_p}$
 - ightharpoonup completeness error $(f(u))^d$
- Setting errors $\leq 2^{-\lambda}$, achieve proof size $u = \frac{\lambda + \log \lambda + 2}{\log(n_{\rm p}/n_{\rm f})}$ (lower bound: $u > \frac{\lambda 3}{\log(n_{\rm p}/n_{\rm f})}$)



- Represent as d trees
- ► Prover runs DFS (instead of BFS)
- Union bound to analyze soundness:
 - soundness error

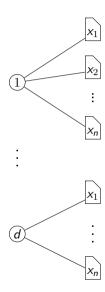
"number" · "probability" =
$$d \cdot n_{\rm f}^u \cdot \left(\frac{1}{n_{\rm p}}\right)^u \cdot q$$

- Recursive formula to analyze completeness:
 - f(0) = 1 q
 - $f(k+1) = ((1-\frac{1}{n_p}) + \frac{1}{n_p} \cdot f(k))^{n_p}$
 - ightharpoonup completeness error $(f(u))^d$
- Setting errors $\leq 2^{-\lambda}$, achieve proof size $u = \frac{\lambda + \log \lambda + 2}{\log(n_{\rm p}/n_{\rm f})}$ (lower bound: $u > \frac{\lambda 3}{\log(n_{\rm p}/n_{\rm f})}$)

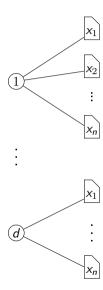


► To analyze prover running time:

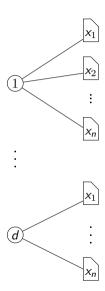
- u reachable vertices in a tree in expectation (by linearity of expectation)
- ightharpoonup a tree succeeds with probability $\Omega(1/\lambda)$
- ightharpoonup expected running time $O(u \cdot \lambda \cdot n_{\rm p}) = O(\lambda^2 \cdot n_{\rm p})$
- ▶ also $O(\lambda^3 \cdot n_p)$ w.h.p.



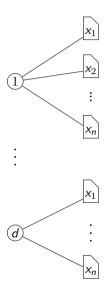
- To analyze prover running time:
 - u reachable vertices in a tree in expectation (by linearity of expectation)
 - ightharpoonup a tree succeeds with probability $\Omega(1/\lambda)$
 - ightharpoonup expected running time $O(u \cdot \lambda \cdot n_{\rm p}) = O(\lambda^2 \cdot n_{\rm p})$
 - ▶ also $O(\lambda^3 \cdot n_p)$ w.h.p.



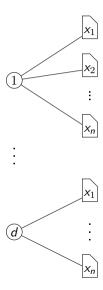
- To analyze prover running time:
 - u reachable vertices in a tree in expectation (by linearity of expectation)
 - ightharpoonup a tree succeeds with probability $\Omega(1/\lambda)$
 - ightharpoonup expected running time $O(u \cdot \lambda \cdot n_{\rm p}) = O(\lambda^2 \cdot n_{\rm p})$
 - ▶ also $O(\lambda^3 \cdot n_p)$ w.h.p.



- ► To analyze prover running time:
 - u reachable vertices in a tree in expectation (by linearity of expectation)
 - ightharpoonup a tree succeeds with probability $\Omega(1/\lambda)$
 - ightharpoonup expected running time $O(u \cdot \lambda \cdot n_{\rm p}) = O(\lambda^2 \cdot n_{\rm p})$
 - ▶ also $O(\lambda^3 \cdot n_p)$ w.h.p.



- ► To analyze prover running time:
 - u reachable vertices in a tree in expectation (by linearity of expectation)
 - ightharpoonup a tree succeeds with probability $\Omega(1/\lambda)$
 - ightharpoonup expected running time $O(u \cdot \lambda \cdot n_{\rm p}) = O(\lambda^2 \cdot n_{\rm p})$
 - ▶ also $O(\lambda^3 \cdot n_p)$ w.h.p.

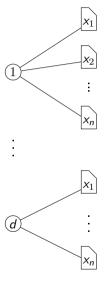


Coming next...

- Definitions
- Unweighted case
 - ✓ Prover-inefficient construction
 - ✓ Telescope construction
 - ☐ Improving prover running time
 - Decentralized setting
- Adding weights
- \square Applications

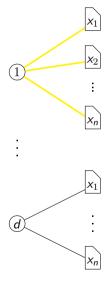
Improving Prover Runtime: Telescope with Prehashing

- ▶ Basic Telescope has running time $O(\lambda^2 \cdot n)^1$
- ▶ Optimization inspired by balls-and-bins
- ► Hash $x_1, ..., x_n$ into n bins using $G_0(\cdot) \sim \text{Unif}([n])$
- $lackbox{}(t,s_1,...,s_j)$ has valid extensions in bin $G_1(t,s_1,...,s_j) \sim \mathrm{Unif}([n])$



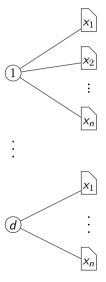
 $^{^{1}}n = n_{\rm p}$

- Basic Telescope has running time $O(\lambda^2 \cdot \mathbf{n})^1$
- ▶ Optimization inspired by balls-and-bins
- ► Hash $x_1, ..., x_n$ into n bins using $G_0(\cdot) \sim \text{Unif}([n])$
- $lackbox{}(t,s_1,...,s_j)$ has valid extensions in bin $G_1(t,s_1,...,s_j) \sim \mathrm{Unif}([n])$



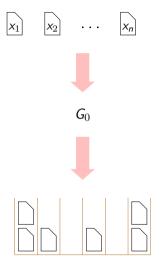
 $^{^{1}}n = n_{\rm p}$

- ▶ Basic Telescope has running time $O(\lambda^2 \cdot n)^1$
- ▶ Optimization inspired by balls-and-bins
- ► Hash $x_1, ..., x_n$ into n bins using $G_0(\cdot) \sim \text{Unif}([n])$
- $lackbox{}(t,s_1,...,s_j)$ has valid extensions in bin $G_1(t,s_1,...,s_j) \sim \mathrm{Unif}([n])$



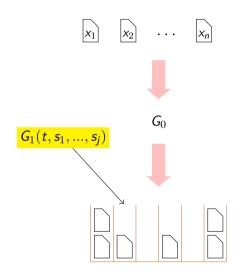
 $^{^{1}}$ $n = n_{\rm p}$

- ▶ Basic Telescope has running time $O(\lambda^2 \cdot n)^1$
- ▶ Optimization inspired by balls-and-bins
- ► Hash $x_1, ..., x_n$ into n bins using $G_0(\cdot) \sim \text{Unif}([n])$
- $(t, s_1, ..., s_j)$ has valid extensions in bin $G_1(t, s_1, ..., s_j) \sim \mathrm{Unif}([n])$



 $^{^{1}}n = n_{D}$

- ▶ Basic Telescope has running time $O(\lambda^2 \cdot n)^1$
- Optimization inspired by balls-and-bins
- ► Hash $x_1, ..., x_n$ into n bins using $G_0(\cdot) \sim \text{Unif}([n])$
- $(t, s_1, ..., s_j)$ has valid extensions in bin $G_1(t, s_1, ..., s_j) \sim \text{Unif}([n])$



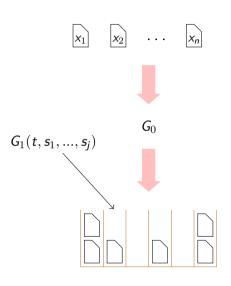
 $^{^{1}}n = n_{D}$

- ▶ Basic Telescope has running time $O(\lambda^2 \cdot n)^1$
- ► Optimization inspired by balls-and-bins
- ► Hash $x_1, ..., x_n$ into n bins using $G_0(\cdot) \sim \text{Unif}([n])$
- $(t, s_1, ..., s_j)$ has valid extensions in bin $G_1(t, s_1, ..., s_j) \sim \text{Unif}([n])$

Valid proof: $(t, s_1, ..., s_u)$ s.t.

- ▶ 1 < t < d:
- ▶ $\forall 1 \le i \le u, H_1(t, s_1, ..., s_i) = 1;$
- ▶ $\forall 1 \leq i \leq u$, $G_1(t, s_1, ..., s_{i-1}) = G_0(s_i)$;
- $ightharpoonup G_2(t, s_1, ..., s_u) = 1;$

 $\big(\textit{G}_{0}(\cdot),\textit{G}_{1}(\cdot) \sim \mathrm{Unif}([\textit{n}]),\;\textit{G}_{2}(\cdot) \sim \mathrm{Bernoulli}(\textit{q})\big)$



 $^{^{1}}$ $n = n_{\rm p}$

- Soundness analysis remains the same (union bound)
- ► Completeness analysis is tricky
- ▶ Need a "good" condition on "balls" distribution
- Use Poisson approximation + one of the followin Markov's inequality approach (when $n_p \leq \Theta(\lambda^2)$
 - get a scheme with completeness 1/2; amplify expected running time $O(n_n + \lambda^2)$
 - Chernoff inequality approach (when $n_p \ge \Theta(\lambda^3)$):

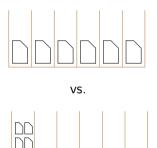
 "good" condition w.h.p. by Chernoff-like analysis

 "good" $0 \le n \le 2$ where $\frac{n^2}{2} \ge 1$
 - lacktriangle Chernoff + amplify (when $\Theta(\lambda^2) \leq n_{
 m p} \leq \Theta(\lambda^3))$
- Proof size $u = \frac{\lambda + \log \lambda + 4}{\log(n_{\rm p}/n_{\rm f})}$ (lower bound: $u > \frac{\lambda 3}{\log(n_{\rm p}/n_{\rm f})}$)

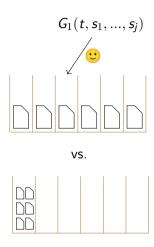
Valid proof: $(t, s_1, ..., s_u)$ s.t.

- $ightharpoonup 1 \le t \le d;$
- $\forall 1 \leq i \leq u,$ $G_1(t, s_1, ..., s_{i-1}) = G_0(s_i);$
- $\begin{array}{l} \blacktriangleright \ G_2(t,s_1,...,s_u) = 1; \\ (G_0(\cdot),G_1(\cdot) \sim \ \mathrm{Unif}([n]), \end{array}$
- $G_2(\cdot) \sim \mathrm{Bernoulli}(q)$

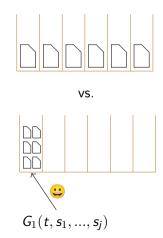
- Soundness analysis remains the same (union bound)
- ► Completeness analysis is tricky
- ▶ Need a "good" condition on "balls" distribution
- ▶ Use Poisson approximation + one of the following:
 - ightharpoonup Markov's inequality approach (when $n_{
 m p} \leq \Theta(\lambda)$
 - guarantees "good" condition with moderate prob
 - ightharpoonup get a scheme with completeness 1/2; amplify
 - ho expected running time $O(n_{\rm p} + \lambda^2)$
 - ightharpoonup Chernoff inequality approach (when $n_{\rm p} \geq \Theta(\lambda^3)$)
 - "good" condition w.h.p. by Chernoff-like analysis
 - running time $O(n_p + Z)$ where $\mathbb{E}[Z] = \lambda^2$
 - ightharpoonup Chernoff + amplify (when $\Theta(\lambda^2) \leq n_{\rm p} \leq \Theta(\lambda^3)$)
- Proof size $u = \frac{\lambda + \log \lambda + 4}{\log(n_p/n_f)}$ (lower bound: $u > \frac{\lambda 3}{\log(n_p/n_f)}$)



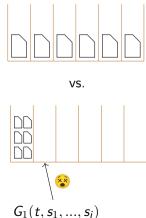
- Soundness analysis remains the same (union bound)
- Completeness analysis is tricky
- ▶ Need a "good" condition on "balls" distribution
- ▶ Use Poisson approximation + one of the following:
 - Markov's inequality approach (when $n_p \leq \Theta(\lambda)$
 - guarantees "good" condition with moderate prol
 - ightharpoonup get a scheme with completeness 1/2; amplify
 - \triangleright expected running time $O(n_p + \lambda^2)$
 - ightharpoonup Chernoff inequality approach (when $n_{\rm p} \geq \Theta(\lambda^3)$):
 - "good" condition w.h.p. by Chernoff-like analysis
 - running time $O(n_p + Z)$ where $\mathbb{E}[Z] = \lambda^*$
 - $hildsymbol{ riangle}$ Chernoff + amplify (when $\Theta(\lambda^2) \leq n_{
 m p} \leq \Theta(\lambda^3))$
- Proof size $u = \frac{\lambda + \log \lambda + 4}{\log(n_{\rm p}/n_{\rm f})}$ (lower bound: $u > \frac{\lambda 3}{\log(n_{\rm p}/n_{\rm f})}$)



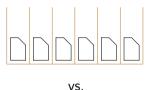
- Soundness analysis remains the same (union bound)
- ► Completeness analysis is tricky
- ▶ Need a "good" condition on "balls" distribution
- ▶ Use Poisson approximation + one of the following:
 - Markov's inequality approach (when $n_p \leq \Theta(\lambda)$
 - guarantees "good" condition with moderate prob.
 - ightharpoonup get a scheme with completeness 1/2; amplify
 - ho expected running time $O(n_p + \lambda^2)$
 - ho Chernoff inequality approach (when $n_p \geq \Theta(\lambda^3)$):
 - "good" condition w.h.p. by Chernoff-like analysis
 - running time $O(n_p + Z)$ where $\mathbb{E}[Z] = \lambda^2$
 - $hildsymbol{ riangle}$ Chernoff + amplify (when $\Theta(\lambda^2) \leq n_{
 m p} \leq \Theta(\lambda^3))$
- Proof size $u = \frac{\lambda + \log \lambda + 4}{\log(n_{\rm p}/n_{\rm f})}$ (lower bound: $u > \frac{\lambda 3}{\log(n_{\rm p}/n_{\rm f})}$)



- Soundness analysis remains the same (union bound)
- Completeness analysis is tricky
- Need a "good" condition on "balls" distribution
- ▶ Use Poisson approximation + one of the following:
- Proof size $u = \frac{\lambda + \log \lambda + 4}{\log (n_-/n_c)}$

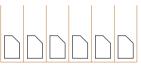


- Soundness analysis remains the same (union bound)
- ► Completeness analysis is tricky
- ▶ Need a "good" condition on "balls" distribution
- ▶ Use Poisson approximation + one of the following:
 - Markov's inequality approach (when $n_p \leq \Theta(\lambda^2)$):
 - guarantees "good" condition with moderate prob.
 - ightharpoonup get a scheme with completeness 1/2; amplify
 - expected running time $O(n_p + \lambda^2)$
 - ► Chernoff inequality approach (when $n_p \ge \Theta(\lambda^3)$):
 - "good" condition w.h.p. by Chernoff-like analysis
 - running time $O(n_p + Z)$ where $\mathbb{E}[Z] = \lambda^2$
 - ► Chernoff + amplify (when $\Theta(\lambda^2) \le n_p \le \Theta(\lambda^3)$)
- Proof size $u = \frac{\lambda + \log \lambda + 4}{\log(n_{\rm p}/n_{\rm f})}$ (lower bound: $u > \frac{\lambda 3}{\log(n_{\rm p}/n_{\rm f})}$)

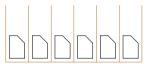


- Soundness analysis remains the same (union bound)
- ► Completeness analysis is tricky
- ▶ Need a "good" condition on "balls" distribution
- ▶ Use Poisson approximation + one of the following:
 - ▶ Markov's inequality approach (when $n_p \leq \Theta(\lambda^2)$):
 - guarantees "good" condition with moderate prob.
 - ightharpoonup get a scheme with completeness 1/2; amplify
 - expected running time $O(n_p + \lambda^2)$
 - ► Chernoff inequality approach (when $n_p \ge \Theta(\lambda^3)$):
 - ightharpoonup "good" condition w.h.p. by Chernoff-like analysis
 - running time $O(n_p + Z)$ where $\mathbb{E}[Z] = \lambda^2$
 - ► Chernoff + amplify (when $\Theta(\lambda^2) \le n_p \le \Theta(\lambda^3)$)
- Proof size $u = \frac{\lambda + \log \lambda + 4}{\log(n_{\rm p}/n_{\rm f})}$ (lower bound: $u > \frac{\lambda 3}{\log(n_{\rm p}/n_{\rm f})}$)

- Soundness analysis remains the same (union bound)
- ► Completeness analysis is tricky
- ▶ Need a "good" condition on "balls" distribution
- ▶ Use Poisson approximation + one of the following:
 - ► Markov's inequality approach (when $n_p \leq \Theta(\lambda^2)$):
 - guarantees "good" condition with moderate prob.
 - ightharpoonup get a scheme with completeness 1/2; amplify
 - expected running time $O(n_p + \lambda^2)$
 - Chernoff inequality approach (when $n_p \ge \Theta(\lambda^3)$):
 - "good" condition w.h.p. by Chernoff-like analysis
 - running time $O(n_p + Z)$ where $\mathbb{E}[Z] = \lambda^2$
 - ► Chernoff + amplify (when $\Theta(\lambda^2) \le n_p \le \Theta(\lambda^3)$)
- Proof size $u = \frac{\lambda + \log \lambda + 4}{\log(n_{\rm p}/n_{\rm f})}$ (lower bound: $u > \frac{\lambda 3}{\log(n_{\rm p}/n_{\rm f})}$)



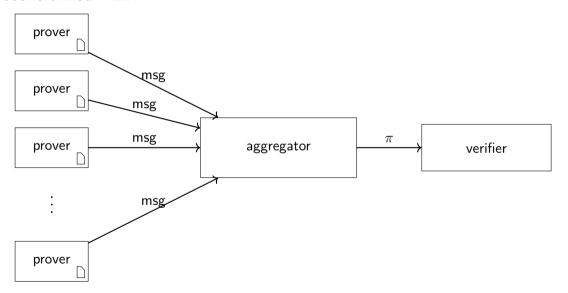
- Soundness analysis remains the same (union bound)
- ► Completeness analysis is tricky
- ▶ Need a "good" condition on "balls" distribution
- ▶ Use Poisson approximation + one of the following:
 - ► Markov's inequality approach (when $n_p \leq \Theta(\lambda^2)$):
 - guarantees "good" condition with moderate prob.
 - ightharpoonup get a scheme with completeness 1/2; amplify
 - expected running time $O(n_p + \lambda^2)$
 - Chernoff inequality approach (when $n_p \ge \Theta(\lambda^3)$):
 - ightharpoonup "good" condition w.h.p. by Chernoff-like analysis
 - running time $O(n_p + Z)$ where $\mathbb{E}[Z] = \lambda^2$
 - ▶ Chernoff + amplify (when $\Theta(\lambda^2) \le n_p \le \Theta(\lambda^3)$)
- Proof size $u = \frac{\lambda + \log \lambda + 4}{\log(n_{\rm p}/n_{\rm f})}$ (lower bound: $u > \frac{\lambda 3}{\log(n_{\rm p}/n_{\rm f})}$)

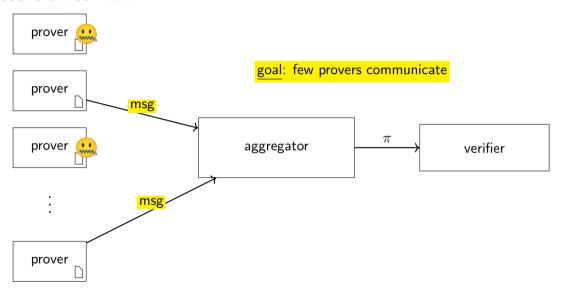


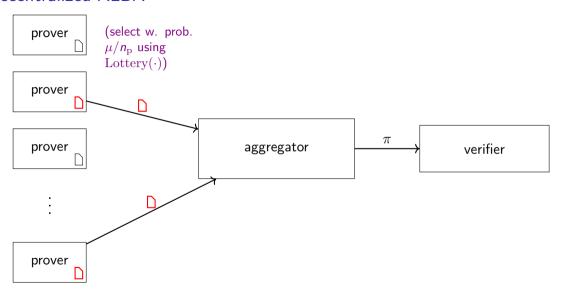
- Soundness analysis remains the same (union bound)
- ► Completeness analysis is tricky
- ▶ Need a "good" condition on "balls" distribution
- ▶ Use Poisson approximation + one of the following:
 - ▶ Markov's inequality approach (when $n_p \le \Theta(\lambda^2)$):
 - guarantees "good" condition with moderate prob.
 - ightharpoonup get a scheme with completeness 1/2; amplify
 - expected running time $O(n_p + \lambda^2)$
 - Chernoff inequality approach (when $n_p \ge \Theta(\lambda^3)$):
 - "good" condition w.h.p. by Chernoff-like analysis
 - running time $O(n_p + Z)$ where $\mathbb{E}[Z] = \lambda^2$
 - ► Chernoff + amplify (when $\Theta(\lambda^2) \le n_p \le \Theta(\lambda^3)$)
- Proof size $u = \frac{\lambda + \log \lambda + 4}{\log(n_{\rm p}/n_{\rm f})}$ (lower bound: $u > \frac{\lambda 3}{\log(n_{\rm p}/n_{\rm f})}$)

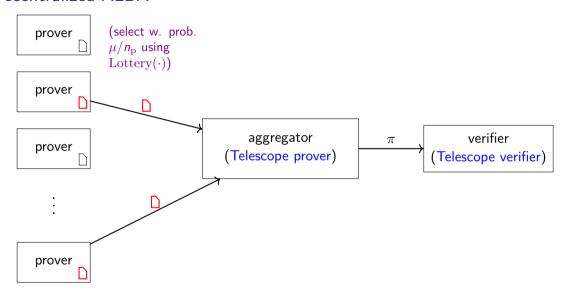
Coming next...

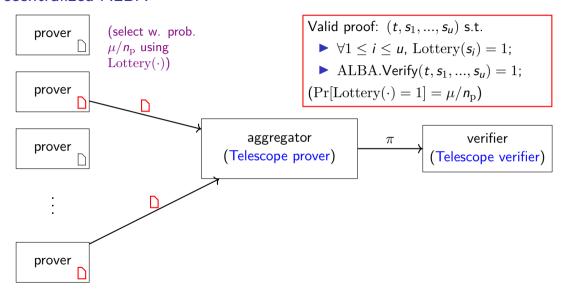
- Definitions
- Unweighted case
 - ✓ Prover-inefficient construction
 - ✓ Telescope construction
 - ✓ Improving prover running time
 - □ Decentralized setting
- ☐ Adding weights
- □ Applications

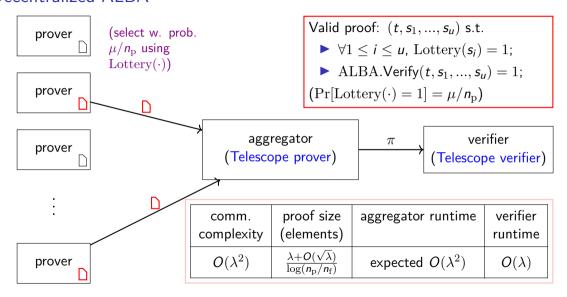












Coming next...

- Definitions
- Unweighted case
 - ✓ Prover-inefficient construction
 - ✓ Telescope construction
 - ✓ Improving prover running time
 - ✓ Decentralized setting
- Adding weights
- Applications

Adding Weights

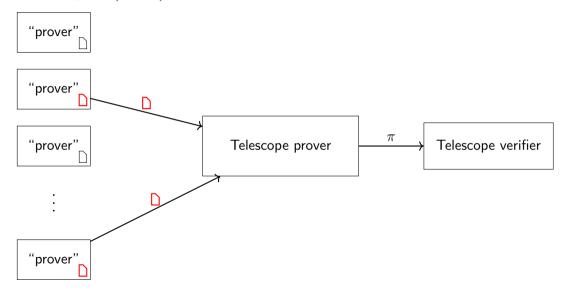
- ► Back to centralized setting
- ► Naive approach
 - turn weight-w element x into elements (x, 1), ..., (x, w)
 - ightharpoonup inefficient (think of w as $\sim 2^{64}$)
- Lottery based approach

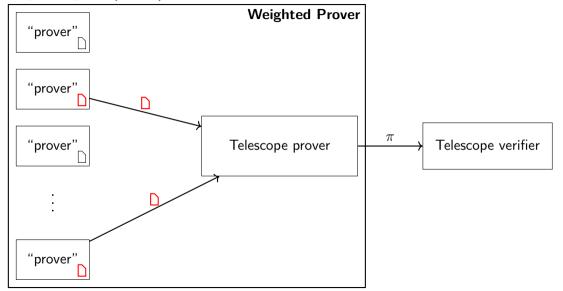
Adding Weights

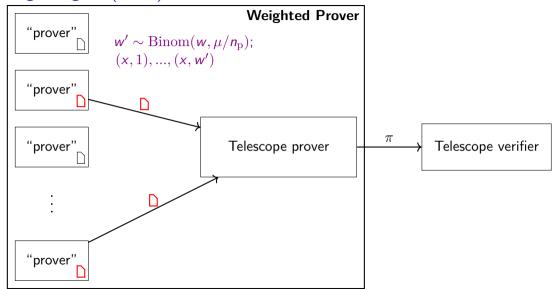
- ► Back to centralized setting
- Naive approach
 - turn weight-w element x into elements (x, 1), ..., (x, w)
 - lacktriangle inefficient (think of w as $\sim 2^{64}$)
- Lottery based approach

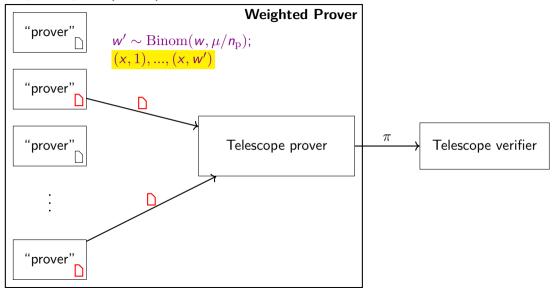
Adding Weights

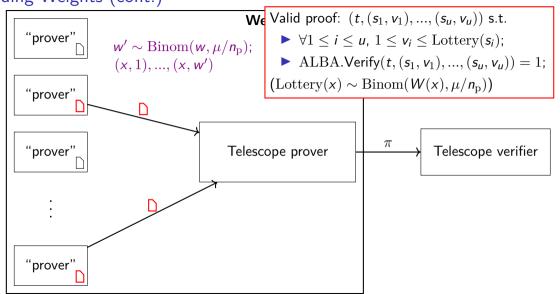
- ► Back to centralized setting
- ► Naive approach
 - turn weight-w element x into elements (x, 1), ..., (x, w)
 - ightharpoonup inefficient (think of w as $\sim 2^{64}$)
- Lottery based approach

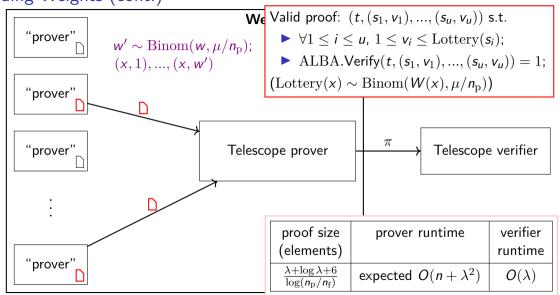












Coming next...

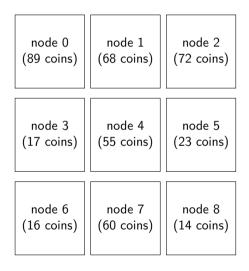
- Definitions
- Unweighted case
 - ✓ Prover-inefficient construction
 - ✓ Telescope construction
 - ✓ Improving prover running time
 - ✓ Decentralized setting
- ✓ Adding weights
- Applications

Application 1: Weighted Multisignatures

- Prove that sufficiently many parties signed a message
- Proof-of-stake blockchains: prove that parties with sufficient total stake (money) attested to blockchain state
 - assume 80% honest stake, 20% malicious stake $\implies n_{\rm p}/n_{\rm f} = 4$
 - sign blockchain state
 - signature weight = node's stake
 - aggregate signatures using (decentralized) ALBA

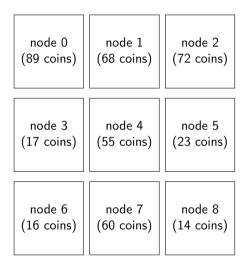
Application 1: Weighted Multisignatures

- Prove that sufficiently many parties signed a message
- Proof-of-stake blockchains: prove that parties with sufficient total stake (money) attested to blockchain state
 - ► assume 80% honest stake, 20% malicious stake $\implies n_{\rm D}/n_{\rm f} = 4$
 - sign blockchain state
 - ► signature weight = node's stake
 - aggregate signatures using (decentralized) ALBA



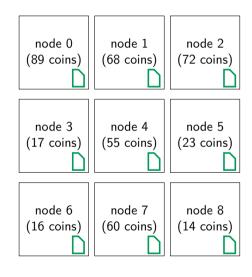
Application 1: Weighted Multisignatures

- Prove that sufficiently many parties signed a message
- Proof-of-stake blockchains: prove that parties with sufficient total stake (money) attested to blockchain state
 - assume 80% honest stake, 20% malicious stake $\Longrightarrow n_{\rm D}/n_{\rm f} = 4$
 - sign blockchain state
 - ► signature weight = node's stake
 - aggregate signatures using (decentralized) ALBA



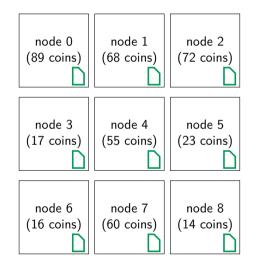
Application 1: Weighted Multisignatures

- Prove that sufficiently many parties signed a message
- Proof-of-stake blockchains: prove that parties with sufficient total stake (money) attested to blockchain state
 - ► assume 80% honest stake, 20% malicious stake $\implies n_{\rm D}/n_{\rm f} = 4$
 - ▶ sign blockchain state
 - signature weight = node's stake
 - aggregate signatures using (decentralized) ALBA



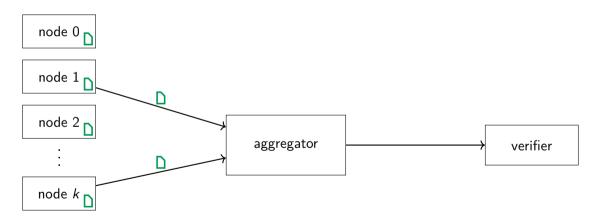
Application 1: Weighted Multisignatures

- Prove that sufficiently many parties signed a message
- Proof-of-stake blockchains: prove that parties with sufficient total stake (money) attested to blockchain state
 - ► assume 80% honest stake, 20% malicious stake $\implies n_{\rm p}/n_{\rm f} = 4$
 - ▶ sign blockchain state
 - signature weight = node's stake
 - aggregate signatures using (decentralized) ALBA



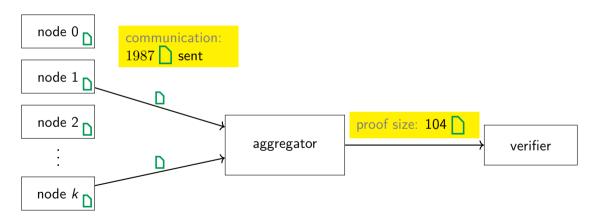
Application 1: Weighted Multisignatures (cont.)

 $small\ proof + small\ communication\ complexity$



Application 1: Weighted Multisignatures (cont.)

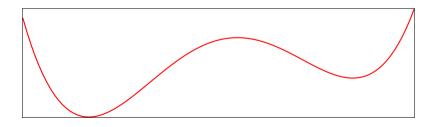
small proof + small communication complexity, 128-bit security:



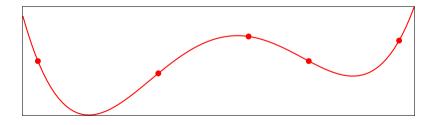
- ► [GKOPTT23] addresses Universal Composability (UC) for SNARKs
- ▶ UC requires witness-extraction without rewinding
- ▶ Since $|\pi| \ll |w|$, how to extract w without rewinding? Possible in RO model

- ► [GKOPTT23] addresses Universal Composability (UC) for SNARKs
- ▶ UC requires witness-extraction without rewinding
- ▶ Since $|\pi| \ll |w|$, how to extract w without rewinding? Possible in RO model

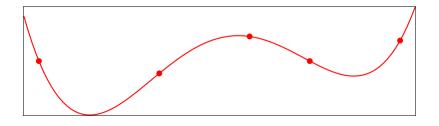
- ► [GKOPTT23]:
 - ▶ Represent the witness as degree *d* polynomial
 - Commit using polynomial commitment scheme
 - Prove that RO was queried on d+1 valid points by querying λd points;
- ► Observation: An application of ALBA
- Result: prover queries 2d points instead (λ times faster prover) more modular construction



- ► [GKOPTT23]:
 - ▶ Represent the witness as degree *d* polynomial
 - Commit using polynomial commitment scheme
 - Prove that RO was queried on d+1 valid points by querying λd points;
- ► Observation: An application of ALBA
- Result: prover queries 2d points instead (λ times faster prover); more modular construction



- ► [GKOPTT23]:
 - ▶ Represent the witness as degree *d* polynomial
 - Commit using polynomial commitment scheme
 - Prove that RO was queried on d+1 valid points by querying λd points;
- ► Observation: An application of ALBA
- Result: prover queries 2d points instead (λ times faster prover); more modular construction



Outline

- Definitions
- Unweighted case
 - ✓ Prover-inefficient construction
 - ▼ Telescope construction
 - ✓ Improving prover running time
 - ✓ Decentralized setting
- Adding weights
- Applications

Additional slides:

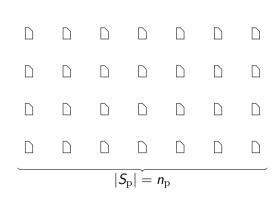
- Lower bounds
- ► Table of all results
- ► Knowledge extraction (RO, straight-line)
- ► ALBA in CRS model

[GKOPTT23] Chaya Ganesh, Yashvanth Kondi, Claudio Orlandi, Mahak Pancholi, Akira Takahashi, and Daniel Tschudi. "Witness-Succinct Universally-Composable SNARKs". In: EUROCRYPT 2023, Part II. Ed. by Carmit Hazay and Martijn Stam. Vol. 14005. LNCS. Springer, Heidelberg, Apr. 2023, pp. 315–346. DOI: 10.1007/978-3-031-30617-4 11.

Theorem

Any ALBA scheme with completeness & soundness errors $\leq 2^{-\lambda}$ must have $\Omega(\lambda)$ proof size.

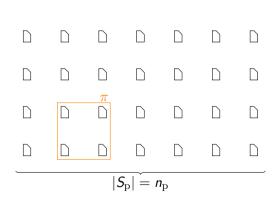
- ightharpoonup (random variable) $\pi \leftarrow \mathsf{Prove}^H(S_{\mathbf{p}})$
- ightharpoonup suppose $|\pi|$ is small
- lacktriangle take random $S_{
 m f}\subseteq S_{
 m p}$ with $|S_{
 m f}|=n_{
 m f}$
- $ightharpoonup \operatorname{Pr}_{H,S_{\mathrm{f}}}[\pi \subseteq S_{\mathrm{f}}]$ is big
- by averaging argument $\exists S'_f$ s.t. $\Pr_H[\pi \subseteq S'_f]$ is big
- $ightharpoonup \operatorname{Pr}_H[\pi \subseteq S'_f]$ is small by soundness
- contradiction



Theorem

Any ALBA scheme with completeness & soundness errors $\leq 2^{-\lambda}$ must have $\Omega(\lambda)$ proof size.

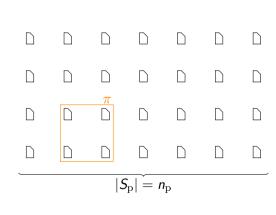
- lacksquare (random variable) $\pi \leftarrow \mathsf{Prove}^{H}(\mathcal{S}_{\mathrm{p}})$
- ightharpoonup suppose $|\pi|$ is small
- lacktriangle take random $S_{
 m f}\subseteq S_{
 m p}$ with $|S_{
 m f}|=n_{
 m f}$
- $ightharpoonup \operatorname{Pr}_{H,S_{\mathrm{f}}}[\pi \subseteq S_{\mathrm{f}}]$ is big
- by averaging argument $\exists S'_f$ s.t. $\Pr_H[\pi \subseteq S'_f]$ is big
- $ightharpoonup \Pr_H[\pi \subseteq S'_f]$ is small by soundness
- contradiction



Theorem

Any ALBA scheme with completeness & soundness errors $\leq 2^{-\lambda}$ must have $\Omega(\lambda)$ proof size.

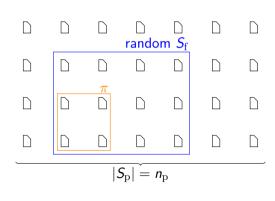
- lacktriangleright (random variable) $\pi \leftarrow \mathsf{Prove}^{H}(\mathcal{S}_{\mathrm{p}})$
- ightharpoonup suppose $|\pi|$ is small
- lacktriangle take random $S_{
 m f}\subseteq S_{
 m p}$ with $|S_{
 m f}|=n_{
 m f}$
- $ightharpoonup \Pr_{H,S_{\mathrm{f}}}[\pi \subseteq S_{\mathrm{f}}]$ is big
- by averaging argument $\exists S'_f$ s.t. $\Pr_H[\pi \subseteq S'_f]$ is big
- $ightharpoonup \operatorname{Pr}_H[\pi \subseteq S'_{\mathrm{f}}]$ is small by soundness
- contradiction



Theorem

Any ALBA scheme with completeness & soundness errors $\leq 2^{-\lambda}$ must have $\Omega(\lambda)$ proof size.

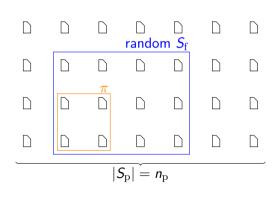
- lacktriangleright (random variable) $\pi \leftarrow \mathsf{Prove}^{H}(\mathcal{S}_{\mathrm{p}})$
- ightharpoonup suppose $|\pi|$ is small
- lacktriangle take random $S_{
 m f}\subseteq S_{
 m p}$ with $|S_{
 m f}|=n_{
 m f}$
- $ightharpoonup \operatorname{Pr}_{H,S_{\mathrm{f}}}[\pi \subseteq S_{\mathrm{f}}]$ is big
- ▶ by averaging argument $\exists S'_f$ s.t. $\Pr_H[\pi \subseteq S'_f]$ is big
- $ightharpoonup \operatorname{Pr}_H[\pi \subseteq S'_{\mathrm{f}}]$ is small by soundness
- contradiction



Theorem

Any ALBA scheme with completeness & soundness errors $\leq 2^{-\lambda}$ must have $\Omega(\lambda)$ proof size.

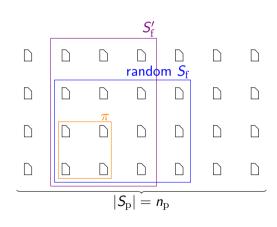
- lacktriangleright (random variable) $\pi \leftarrow \mathsf{Prove}^{H}(\mathcal{S}_{\mathrm{p}})$
- ightharpoonup suppose $|\pi|$ is small
- lacktriangle take random $S_{
 m f}\subseteq S_{
 m p}$ with $|S_{
 m f}|=n_{
 m f}$
- $ightharpoonup \operatorname{Pr}_{H,S_{\mathrm{f}}}[\pi \subseteq S_{\mathrm{f}}]$ is big
- ▶ by averaging argument $\exists S'_f$ s.t. $\Pr_H[\pi \subseteq S'_f]$ is big
- $ightharpoonup \operatorname{Pr}_H[\pi \subseteq S'_{\mathrm{f}}]$ is small by soundness
- contradiction



Theorem

Any ALBA scheme with completeness & soundness errors $\leq 2^{-\lambda}$ must have $\Omega(\lambda)$ proof size.

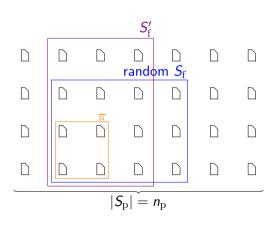
- lacktriangleright (random variable) $\pi \leftarrow \mathsf{Prove}^{H}(\mathcal{S}_{\mathrm{p}})$
- ightharpoonup suppose $|\pi|$ is small
- lacktriangle take random $S_{
 m f}\subseteq S_{
 m p}$ with $|S_{
 m f}|=n_{
 m f}$
- $ightharpoonup \operatorname{Pr}_{H,S_{\mathrm{f}}}[\pi \subseteq S_{\mathrm{f}}]$ is big
- by averaging argument $\exists S'_f$ s.t. $\Pr_H[\pi \subseteq S'_f]$ is big
- $ightharpoonup \operatorname{Pr}_{\mathcal{H}}[\pi \subseteq S'_{\mathrm{f}}]$ is small by soundness
- contradiction



Theorem

Any ALBA scheme with completeness & soundness errors $\leq 2^{-\lambda}$ must have $\Omega(\lambda)$ proof size.

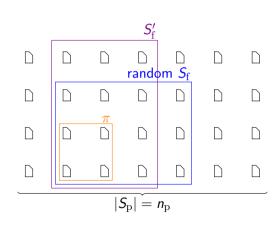
- lacktriangleright (random variable) $\pi \leftarrow \mathsf{Prove}^{H}(\mathcal{S}_{\mathrm{p}})$
- ightharpoonup suppose $|\pi|$ is small
- lacktriangle take random $S_{
 m f}\subseteq S_{
 m p}$ with $|S_{
 m f}|=n_{
 m f}$
- $ightharpoonup \operatorname{Pr}_{H,\mathcal{S}_{\mathrm{f}}}[\pi\subseteq\mathcal{S}_{\mathrm{f}}]$ is big
- ▶ by averaging argument $\exists S'_f$ s.t. $\Pr_H[\pi \subseteq S'_f]$ is big
- $ightharpoonup \operatorname{Pr}_{H}[\pi \subseteq S'_{\mathrm{f}}]$ is small by soundness
- contradiction



Theorem

Any ALBA scheme with completeness & soundness errors $\leq 2^{-\lambda}$ must have $\Omega(\lambda)$ proof size.

- lacktriangleright (random variable) $\pi \leftarrow \mathsf{Prove}^{H}(\mathcal{S}_{\mathrm{p}})$
- ightharpoonup suppose $|\pi|$ is small
- lacktriangle take random $S_{
 m f}\subseteq S_{
 m p}$ with $|S_{
 m f}|=n_{
 m f}$
- $ightharpoonup \operatorname{Pr}_{H,S_{\mathrm{f}}}[\pi \subseteq S_{\mathrm{f}}]$ is big
- by averaging argument $\exists S'_f$ s.t. $\Pr_{H}[\pi \subseteq S'_f]$ is big
- $ightharpoonup \operatorname{Pr}_{H}[\pi\subseteq S'_{\mathrm{f}}]$ is small by soundness
- contradiction



Lower Bounds (cont.)

scheme	proof size (elements)	comm. rounds	comm. complexity
ALBA	$> rac{\lambda - 3}{\log(n_{ m p}/n_{ m f})}$		
decentralized ALBA ¹	$> rac{\lambda + \Omega(\sqrt{\lambda})}{\log(n_{ m p}/n_{ m f})}$	1	$O(\lambda^2)$

¹in a simplified model

Lower Bounds (cont.)

scheme	proof size (elements)	comm. rounds	comm. complexity
ALBA	$> rac{\lambda - 3}{\log(n_{ m p}/n_{ m f})}$		
decentralized ALBA ¹	$> rac{\lambda + \Omega(\sqrt{\lambda})}{\log(n_{ m p}/n_{ m f})}$	1	$O(\lambda^2)$

¹in a simplified model

All Results

setting	lower bound	Telescope
ALBA	$> rac{\lambda - 3}{\log(n_{ m p}/n_{ m f})}$	$\frac{\lambda + \log \lambda + 6}{\log(n_{ m p}/n_{ m f})}$
decentralized ALBA; communication $O(\lambda^2)$	$> rac{\lambda + \Omega(\sqrt{\lambda})}{\log(n_{ m p}/n_{ m f})}$	$rac{\lambda + O(\sqrt{\lambda})}{\log(n_{ m p}/n_{ m f})}$

Table: Proof size

scheme	average	worst case
Telescope prover	$O(n + \lambda^2)$	$O(n + \lambda^3)$
decentralized Telescope aggregator; communication ${\cal O}(\lambda^2)$	$O(\lambda^2)$	$O(\lambda^3)$
Telescope verifier	$O(\lambda)$	$O(\lambda)$

Table: Running time

- $\mathcal{A}^{H,W}$ produces valid proof with probability $2^{-\lambda} + \varepsilon$
- ▶ **goal**: extract > $n_{\rm f}$ weight-1 elements with probability ε

Theorem

Extract^{H,W,A} extracts $> n_f$ elements with probability ε

Proof

```
2^{-\lambda} + \varepsilon =
\Pr[\mathcal{A} \text{ succeeds}] \leq
\Pr[\mathcal{A} \text{ queries} \leq \frac{n_{\text{f}}}{n_{\text{f}}} \text{ elements and succeeds}] +
\Pr[\mathcal{A} \text{ queries} > \frac{n_{\text{f}}}{n_{\text{f}}} \text{ elements}]
```

```
run \pi \leftarrow \mathcal{A}^{H,W}() and Verify ^{H,W}(\pi) and observe their RO transcript \tau; S_f := \emptyset; for x queried to H_1 or H_2 in \tau do if W(x) = 1 then \Delta G_f; return S_f;
```

- $\mathcal{A}^{H,W}$ produces valid proof with probability $2^{-\lambda} + \varepsilon$
- ▶ **goal**: extract > $n_{\rm f}$ weight-1 elements with probability ε

Theorem

Extract^{H,W,A} extracts $> n_f$ elements with probability ε

Proot. $2^{-\lambda} + \varepsilon = \Pr[\mathcal{A} \text{ succeeds}] \leq \Pr[\mathcal{A} \text{ queries} \leq n_f \text{ elements and succe}]$

```
run \pi \leftarrow \mathcal{A}^{H,W}() and
Verify H,W(\pi) and observe
their RO transcript \tau;
S_{\mathbf{f}} := \emptyset:
for x queried to H_1 or H_2 in \tau
do
    if W(x) = 1 then
    add x to S_f:
return S_{\rm f}:
```

- $\mathcal{A}^{H,W}$ produces valid proof with probability $2^{-\lambda} + \varepsilon$
- ▶ **goal**: extract > $n_{\rm f}$ weight-1 elements with probability ε

Theorem

Extract^{H,W,A} extracts $> n_f$ elements with probability ε

```
Proof.

2^{-\lambda} + \varepsilon =
\Pr[A \text{ succeeds}] \leq
\Pr[A \text{ queries } \leq n_f \text{ elements and succeeds}] +
```

```
Algorithm Extract^{H,W,\mathcal{A}}
run \pi \leftarrow \mathcal{A}^{H,W}() and
Verify^{H,W}(\pi) and observe
their RO transcript \tau;
S_{\mathbf{f}} := \emptyset;
for x queried to H_1 or H_2 in \tau
do

if W(x) = 1 then
add x to S_{\mathbf{f}}:
```

return $S_{\rm f}$:

- $\mathcal{A}^{H,W}$ produces valid proof with probability $2^{-\lambda} + \varepsilon$
- ▶ **goal**: extract > $n_{\rm f}$ weight-1 elements with probability ε

Theorem

Extract $^{H,W,\mathcal{A}}$ extracts $> n_f$ elements with probability ε

Proof.

$$2^{-\lambda} + \varepsilon =$$
 $\Pr[A \text{ succeeds}] \leq$
 $\Pr[A \text{ queries} \leq n_f \text{ elements and succeeds}] +$
 $\Pr[A \text{ queries} > n_f \text{ elements}]$

- $\mathcal{A}^{H,W}$ produces valid proof with probability $2^{-\lambda} + \varepsilon$
- ▶ **goal**: extract > $n_{\rm f}$ weight-1 elements with probability ε

Theorem

Extract^{H,W,A} extracts $> n_f$ elements with probability ε

Proof.

$$2^{-\lambda} + \varepsilon =$$
 $\Pr[A \text{ succeeds}] \leq$
 $\Pr[A \text{ queries} \leq n_f \text{ elements and succeeds}] +$
 $\Pr[A \text{ queries} > n_f \text{ elements}]$

- $igspace{\ \ \ } {\cal A}^{H,W}$ produces valid proof with probability $2^{-\lambda} + \varepsilon$
- ▶ **goal**: extract > $n_{\rm f}$ weight-1 elements with probability ε

Theorem

Extract^{H,W,A} extracts > n_f elements with probability ε

Proof.

$$2^{-\lambda} + \varepsilon =$$

$$\Pr[\mathcal{A} \text{ succeeds}] \leq$$

$$\Pr[\mathcal{A} \text{ queries} \leq n_{\text{f}} \text{ elements and succeeds}] +$$

$$\Pr[\mathcal{A} \text{ queries} > n_{\text{f}} \text{ elements}]$$

```
\begin{array}{ll} \operatorname{run} & \pi \leftarrow \mathcal{A}^{H,W}() \quad \text{and} \\ \operatorname{Verify}^{H,W}(\pi) \quad \text{and observe} \\ \operatorname{their} \operatorname{RO} \operatorname{transcript} \tau; \\ & \mathcal{S}_{\mathbf{f}} \coloneqq \emptyset; \\ & \operatorname{for} x \operatorname{queried} \operatorname{to} H_1 \operatorname{or} H_2 \operatorname{in} \tau \\ & \operatorname{do} \\ & \operatorname{if} W(x) = 1 \operatorname{then} \\ & \quad \text{add} x \operatorname{to} \mathcal{S}_{\mathbf{f}}; \\ & \operatorname{return} \mathcal{S}_{\mathbf{f}}; \end{array}
```

- $igspace{\ \ \ } {\cal A}^{H,W}$ produces valid proof with probability $2^{-\lambda} + \varepsilon$
- ▶ **goal**: extract > $n_{\rm f}$ weight-1 elements with probability ε

Theorem

Extract^{H,W,A} extracts > n_f elements with probability ε

Proof.

$$2^{-\lambda} + \varepsilon = \Pr[\mathcal{A} \text{ succeeds}] \le$$

 $\Pr[A \text{ queries} \leq n_f \text{ elements and succeeds}] +$

 $\Pr[A \text{ queries} > \frac{n_f}{n_f} \text{ elements}]$

Lemma

 $\Pr[\mathcal{A} | queries \leq \frac{n_f}{n_f} | elements | and | succeeds] \leq 2^{-\lambda}$

 $\underline{\text{Issue}} \colon \text{adaptive adversary} \Longrightarrow \text{union bound doesn't work}$

Proof

- ▶ think about indices as inputs to H_1, H_2
- union bound applies

We achieved

- information-theoretic security when weight function is fixed in advance
- can get security assuming a bound on the number of RO queries when weight function can depend on RO

Lemma

 $\Pr[\mathcal{A} | queries \leq \frac{n_f}{n_f} | elements | and | succeeds] \leq 2^{-\lambda}$

 $\underline{\mathsf{Issue}} \colon \mathsf{adaptive} \ \mathsf{adversary} \Longrightarrow \mathsf{union} \ \mathsf{bound} \ \mathsf{doesn't} \ \mathsf{work}$

Proof.

- ightharpoonup think about indices as inputs to H_1, H_2
- union bound applies

We achieved

- information-theoretic security when weight function is fixed in advance
- can get security assuming a bound on the number of RO queries when weight function can depend on RO

Lemma

 $\Pr[\mathcal{A} | queries \leq \frac{n_f}{n_f} | elements | and | succeeds] \leq 2^{-\lambda}$

 $\underline{\mathsf{Issue}} \colon \mathsf{adaptive} \ \mathsf{adversary} \Longrightarrow \mathsf{union} \ \mathsf{bound} \ \mathsf{doesn't} \ \mathsf{work}$

Proof.

- ightharpoonup think about indices as inputs to H_1, H_2
- union bound applies

We achieved:

- information-theoretic security when weight function is fixed in advance
- can get security assuming a bound on the number of RO queries when weight function can depend on RO

Telescope in CRS³ model

- ► Replace RO with PRF²
- ► CRS = PRF key
- ▶ PRF key need not be secret

²Pseudorandom Function

³Common Reference String

- Knowledge extraction via rewinding:
 - suppose $\mathcal{A}^W(\operatorname{crs})$ succeeds with probability $2^{-\lambda} + \varepsilon \Longrightarrow$ extract with probability ε
 - ▶ while $|S_{\mathbf{f}}| \leq n_{\mathbf{f}}$, $\mathcal{A}^W(\text{crs})$ outputs weight-1 elements outside of $S_{\mathbf{f}}$ with probability ε
- ► We achieve:
 - security when weight function is fixed in advance
 - can get security when weight function is not fixed in advance if PRF key is chosen by RO

```
\begin{split} & \textbf{Algorithm} \quad \mathsf{Extract}^{W}(\mathcal{A}) \\ & \overline{S_f} \coloneqq \emptyset; \\ & \textbf{while} \ |S_f| \leq \textit{n}_f \ \textbf{do} \\ & \quad \mathsf{crs} \leftarrow \mathsf{GenCRS}(); \\ & \quad \pi \leftarrow \mathcal{A}^W(\mathsf{crs}); \\ & \quad \triangleright \Pr[\pi \cap W \setminus S_f \geq 1] \geq \epsilon \\ & \quad S_f \coloneqq S_f \cup (\pi \cap W); \\ & \quad \mathsf{return} \ S_f; \end{split}
```

- Knowledge extraction via rewinding:
 - suppose $\mathcal{A}^W(\operatorname{crs})$ succeeds with probability $2^{-\lambda} + \varepsilon \Longrightarrow$ extract with probability ε
 - while $|S_{\rm f}| \leq n_{\rm f}$, $\mathcal{A}^W({\rm crs})$ outputs weight-1 elements outside of $S_{\rm f}$ with probability ε
- ► We achieve:
 - security when weight function is fixed in advance
 - can get security when weight function is not fixed in advance if PRF key is chosen by RO

Algorithm Extract W(A)

```
\begin{split} \textbf{\textit{S}}_{f} &\coloneqq \emptyset; \\ \textbf{while} \; |\textbf{\textit{S}}_{f}| \leq \textit{\textit{n}}_{f} \; \textbf{do} \\ & \operatorname{crs} \leftarrow \mathsf{GenCRS}(); \\ & \pi \leftarrow \mathcal{A}^{W}(\operatorname{crs}); \\ & \triangleright \Pr[\pi \cap W \setminus \mathcal{S}_{f} \geq 1] \geq \varepsilon \\ & \underline{\textbf{\textit{S}}_{f}} \coloneqq \textbf{\textit{S}}_{f} \cup (\pi \cap W); \\ & \mathbf{return} \; \textbf{\textit{S}}_{f}; \end{split}
```

- Knowledge extraction via rewinding:
 - suppose $\mathcal{A}^W(\operatorname{crs})$ succeeds with probability $2^{-\lambda} + \varepsilon \Longrightarrow$ extract with probability ε
 - while $|S_{\rm f}| \leq n_{\rm f}$, $\mathcal{A}^W({\rm crs})$ outputs weight-1 elements outside of $S_{\rm f}$ with probability ε
- ► We achieve:
 - security when weight function is fixed in advance
 - can get security when weight function is not fixed in advance if PRF key is chosen by RO

Algorithm Extract $^{W}(A)$

```
\begin{split} & \mathcal{S}_{\mathbf{f}} \coloneqq \emptyset; \\ & \textbf{while} \ |\mathcal{S}_{\mathbf{f}}| \leq \textit{n}_{\mathbf{f}} \ \textbf{do} \\ & \underbrace{\mathbf{crs} \leftarrow \mathsf{GenCRS}()}_{\mathbf{crs}}; \\ & \pi \leftarrow \mathcal{A}^{W}(\mathbf{crs}); \\ & \triangleright \Pr[\pi \cap W \setminus \mathcal{S}_{f} \geq 1] \geq \varepsilon \\ & \underbrace{\mathcal{S}_{\mathbf{f}} \coloneqq \mathcal{S}_{\mathbf{f}} \cup (\pi \cap W)}_{\mathbf{return}}; \end{split}
```

- Knowledge extraction via rewinding:
 - suppose $\mathcal{A}^W(\operatorname{crs})$ succeeds with probability $2^{-\lambda} + \varepsilon \Longrightarrow$ extract with probability ε
 - ▶ while $|S_{\rm f}| \le n_{\rm f}$, $\mathcal{A}^W({\rm crs})$ outputs weight-1 elements outside of $S_{\rm f}$ with probability ε
- ► We achieve:
 - security when weight function is fixed in advance
 - can get security when weight function is not fixed in advance if PRF key is chosen by RO

Algorithm Extract W(A)

```
\begin{split} & \mathcal{S}_f \coloneqq \emptyset; \\ & \text{while } |\mathcal{S}_f| \leq \textit{n}_f \text{ do} \\ & \operatorname{crs} \leftarrow \mathsf{GenCRS}(); \\ & \pi \leftarrow \mathcal{A}^W(\operatorname{crs}); \\ & \triangleright \Pr[\pi \cap W \setminus \mathcal{S}_f \geq 1] \geq \varepsilon \\ & \mathcal{S}_f \coloneqq \mathcal{S}_f \cup (\pi \cap W); \\ & \text{return } \mathcal{S}_f; \end{split}
```

- Knowledge extraction via rewinding:
 - suppose $\mathcal{A}^W(\operatorname{crs})$ succeeds with probability $2^{-\lambda} + \varepsilon \Longrightarrow$ extract with probability ε
 - ▶ while $|S_{\rm f}| \le n_{\rm f}$, $\mathcal{A}^W({\rm crs})$ outputs weight-1 elements outside of $S_{\rm f}$ with probability ε
- ► We achieve:
 - security when weight function is fixed in advance
 - can get security when weight function is not fixed in advance if PRF key is chosen by RO

```
\begin{split} & \textbf{Algorithm} \quad \mathsf{Extract}^{W}(\mathcal{A}) \\ & \overline{S_f} \coloneqq \emptyset; \\ & \textbf{while} \ |S_f| \le n_f \ \textbf{do} \\ & \quad \mathsf{crs} \leftarrow \mathsf{GenCRS}(); \\ & \quad \pi \leftarrow \mathcal{A}^{W}(\mathsf{crs}); \\ & \quad \triangleright \Pr[\pi \cap W \setminus S_f \ge 1] \ge \varepsilon \\ & \quad \overline{S_f} \coloneqq \overline{S_f} \cup (\pi \cap W); \\ & \quad \mathsf{return} \ S_f; \end{split}
```

- Knowledge extraction via rewinding:
 - suppose $\mathcal{A}^W(\operatorname{crs})$ succeeds with probability $2^{-\lambda} + \varepsilon \Longrightarrow$ extract with probability ε
 - ▶ while $|S_{\rm f}| \le n_{\rm f}$, $\mathcal{A}^W({\rm crs})$ outputs weight-1 elements outside of $S_{\rm f}$ with probability ε
- ► We achieve:
 - security when weight function is fixed in advance
 - can get security when weight function is not fixed in advance if PRF key is chosen by RO

Algorithm Extract W(A)

```
\begin{split} & \mathcal{S}_{f} \coloneqq \emptyset; \\ & \text{while } |\mathcal{S}_{f}| \leq \textit{n}_{f} \text{ do} \\ & \operatorname{crs} \leftarrow \mathsf{GenCRS}(); \\ & \pi \leftarrow \mathcal{A}^{W}(\operatorname{crs}); \\ & \triangleright \Pr[\pi \cap W \setminus \mathcal{S}_{f} \geq 1] \geq \varepsilon \\ & \mathcal{S}_{f} \coloneqq \mathcal{S}_{f} \cup (\pi \cap W); \\ & \text{return } \mathcal{S}_{f}; \end{split}
```

- Knowledge extraction via rewinding:
 - suppose $\mathcal{A}^W(\operatorname{crs})$ succeeds with probability $2^{-\lambda} + \varepsilon \Longrightarrow$ extract with probability ε
 - ▶ while $|S_f| \le n_f$, $A^W(crs)$ outputs weight-1 elements outside of S_f with probability ε
- ► We achieve:
 - security when weight function is fixed in advance
 - can get security when weight function is not fixed in advance if PRF key is chosen by RO

```
\label{eq:special_stract} \begin{split} & \overline{S_f} \coloneqq \emptyset; \\ & \overline{S_f} \coloneqq \emptyset; \\ & \text{while } |S_f| \le \textit{n}_f \text{ do} \\ & | \operatorname{crs} \leftarrow \operatorname{GenCRS}(); \\ & | \pi \leftarrow \mathcal{A}^W(\operatorname{crs}); \\ & | \triangleright \overline{\Pr[\pi \cap W \setminus S_f \ge 1] \ge \varepsilon} \\ & | S_f \coloneqq S_f \cup (\pi \cap W); \\ & \text{return } S_f; \end{split}
```

- Knowledge extraction via rewinding:
 - suppose $\mathcal{A}^W(\operatorname{crs})$ succeeds with probability $2^{-\lambda} + \varepsilon \Longrightarrow$ extract with probability ε
 - while $|S_{\mathbf{f}}| \leq n_{\mathbf{f}}$, $\mathcal{A}^{W}(\mathrm{crs})$ outputs weight-1 elements outside of $S_{\mathbf{f}}$ with probability ε
- ► We achieve:
 - security when weight function is fixed in advance
 - can get security when weight function is not fixed in advance if PRF key is chosen by RO


```
\begin{split} & \textbf{S}_{\mathbf{f}} \coloneqq \emptyset; \\ & \textbf{while} \ |\textbf{S}_{\mathbf{f}}| \leq \textbf{\textit{n}}_{\mathbf{f}} \ \textbf{do} \\ & \quad \text{crs} \leftarrow \mathsf{GenCRS}(); \\ & \quad \pi \leftarrow \mathcal{A}^{W}(\text{crs}); \\ & \quad \triangleright \Pr[\pi \cap W \setminus S_{f} \geq 1] \geq \varepsilon \\ & \quad \textbf{S}_{\mathbf{f}} \coloneqq \textbf{\textit{S}}_{\mathbf{f}} \cup (\pi \cap W); \\ & \quad \text{return } \textbf{\textit{S}}_{\mathbf{f}}; \end{split}
```