Approximate Lower Bound Arguments (ALBA)

4 4 3

Pyrros Chaidos'* Aggelos Kiayias®* Leo Reyzin® Tolik Zinovyev3

INational & Kapodistrian University of Athens
2University of Edinburgh
3Boston University

410G

1/36

Problem Statement

Prover

IR AN
I AN,
IR AN
I AN,

D

c

I

Problem Statement
goal: “l know > n; elements |) with R(-) =1"

Prover > Verifier

IR AN
I AN,
IR AN
I AN,

D

&)

I

2/36

Problem Statement
goal: “l know > n; elements |) with R(-) =1"

Prover > Verifier

2/36

Problem Statement

goal: “l know > n; elements |) with R(-) =1"
how: send some D with special properties

> Verifier

2/36

Problem Statement

goal: “l know > n; elements |) with R(-) =1"
how: send some D with special properties

> Verifier

Larger ratio n,/n; enables more efficient schemes.

2/36

Problem Statement

goal: “l know > n; elements |) with R(-) =1"
how: send some D with special properties

> Verifier

-
-
(@)
<
D
=

l\l lko l,_. l\l
N o] © ©

l\l lU1 lm lU1
~ o (5] ©

.lE lE lE L=
=irlrln

S
ol
—
S
o}
V
=
~

Larger ratio n,/n; enables more efficient schemes.

2/36

Problem Statement

goal: “l know > n; elements |) with R(-) =1"
how: send some D with special properties

> Verifier

-
—
(@]
<
)
=

i

W(D)eN

l\l lko l»-‘ l\l
N « © ©
l\l lU‘! lo-\ lu‘!
~ o 5 ©
M) Hel He

g

S
ol
—
S
o}
V
=
~

Larger ratio n,/n; enables more efficient schemes.

2/36

Problem Statement
general goal: “I know [) with 33 W() > ng"
how: send some D with special properties

Prover > Verifier

l\l lko l»-‘ l\l
N « © ©

79 la
~ o o
% L@ Lg
(=)} o
= g le

—~

[

N~—

m

S
ol
—
S
o}
V
=
~

Larger ratio n,/n; enables more efficient schemes.

2/36

Problem Statement
general goal: “I know [) with 3> W/(-) > n;"
how: send some D with special properties

Prover > Verifier

X
[
m
Z

mlrireir
Eleleiy

l\l lxo l»-‘ l\l
M N « © ©
E l\l lm l(.n lm
— ~ S a ©

~
Il
S
T

Larger ratio n,/n; enables more efficient schemes.

2/36

Problem Statement
general goal: “I know [) with 3> W/(-) > n;"
how: send some D with special properties

Prover > Verifier

X
[
m
Z

mlrireir
Eleleiy

l\l lxo l»-‘ l\l
M N « © ©
-é l\l lm l(.n lm
— ~ S a ©

~—
Il
S
ge]

Larger ratio n,/n; enables more efficient schemes.

“Approximate Lower Bound Argument” (ALBA)

2/36

Example: Consensus

LoLe vy

2000 W

2000 20%
80%

3/36

Example: Consensus

LoLe vy

2000 W

2000 20%
80%

ny/ng =4

3/36

History

1985 "Approximate lower bound” term appears first in LaszIé Babai's work
1983 Sipser and Gacs use an ALBA protocol to prove BPP C RPN
1986 Goldwasser and Sipser use an ALBA protocol to prove IP[Q] C AM[Q + 2]

4/36

History

1985 "Approximate lower bound” term appears first in LaszIé Babai's work
1983 Sipser and Gacs use an ALBA protocol to prove BPP C RPN
1986 Goldwasser and Sipser use an ALBA protocol to prove IP[Q] C AM[Q + 2]

Above implementations of ALBA have interaction and large proofs.

4/36

History

1985 "Approximate lower bound” term appears first in LaszIé Babai's work
1983 Sipser and Gacs use an ALBA protocol to prove BPP C RPN
1986 Goldwasser and Sipser use an ALBA protocol to prove IP[Q] C AM[Q + 2]

Above implementations of ALBA have interaction and large proofs.

Our goal — ALBA for real world applications:
» minimize proof size

non-interactive

>

» fast prover & verifier

» minimize communication in decentralized setting
>

extractability (proof of knowledge)

4/36

Defining ALBA

» Non-interactive proof system in either

» random oracle (RO) model:
prover and verifier have oracle access to random H : {0,1}* — {0,1}*

» common reference string (CRS) model:
prover and verifier are given crs < GenCRS()

5/36

Defining ALBA

» Non-interactive proof system in either

» random oracle (RO) model:
prover and verifier have oracle access to random H : {0,1}* — {0,1}*

» common reference string (CRS) model:
prover and verifier are given crs < GenCRS()

» Prover and verifier have oracle access to weight function W/

5/36

Defining ALBA

» Non-interactive proof system in either

» random oracle (RO) model:
prover and verifier have oracle access to random H : {0,1}* — {0,1}*

» common reference string (CRS) model:
prover and verifier are given crs < GenCRS()

» Prover and verifier have oracle access to weight function W/
» Completeness: if prover has elements S, of total weight n, = prob. 1 — negl

> 71« Prove™"(S,)
> Verify™" (1) =1

5/36

Defining ALBA

» Non-interactive proof system in either
» random oracle (RO) model:
prover and verifier have oracle access to random H : {0,1}* — {0,1}*
» common reference string (CRS) model:
prover and verifier are given crs <— GenCRS()
» Prover and verifier have oracle access to weight function W/

» Completeness: if prover has elements S, of total weight n, = prob. 1 — negl
> 71« Prove™"(S,)
> Verify™" (1) =1
» Soundness: if A makes valid proof = extract elements of total weight > ng;
negligible knowledge error
> S« Extract™"A()

5/36

Defining ALBA

» Non-interactive proof system in either
» random oracle (RO) model:
prover and verifier have oracle access to random H : {0,1}* — {0,1}*
» common reference string (CRS) model:
prover and verifier are given crs <— GenCRS()
» Prover and verifier have oracle access to weight function W/
» Completeness: if prover has elements S, of total weight n, = prob. 1 — negl
> 71« Prove(crs, S,)
> Verify" (crs,) = 1
» Soundness: if A makes valid proof = extract elements of total weight > ng;
negligible knowledge error
> S; « Extract”(A)

5/36

Applications

» Weighted Multisignatures
» Prove that sufficiently many parties signed a message
» Proof-of-stake blockchains: prove that parties with
sufficient total stake attested to blockchain state

IR AN
I AN,
s
I AN,

signat

6/36

Applications

» Weighted Multisignatures
» Prove that sufficiently many parties signed a message
» Proof-of-stake blockchains: prove that parties with
sufficient total stake attested to blockchain state
» Straight-Line Witness Extraction for SNARKs

> Straight-line extraction (no rewinding) useful for
composability

6/36

Applications

» Weighted Multisignatures

» Prove that sufficiently many parties signed a message
» Proof-of-stake blockchains: prove that parties with
sufficient total stake attested to blockchain state

» Straight-Line Witness Extraction for SNARKs

> Straight-line extraction (no rewinding) useful for
composability

» Details to follow

6/36

Why not use SNARK to implement ALBA?

SNARK

“know elements xi, ..., Xk
of total weight > n¢"
(witness xi, ..., Xk)

7/36

Why not use SNARK to implement ALBA?

SNARK
» Not possible when the weight function “know elements xi, ..., Xk
cannot be represented by a single of total weight > n¢
program (witness xi, ..., Xk)

7/36

Why not use SNARK to implement ALBA?

SNARK
» Not possible when the weight function “know elements xi, ..., Xk
cannot be represented by a single of total weight > n¢
program (witness xi, ..., Xk)

» Too costly when number of elements
is large

7/36

Why

not use SNARK to implement ALBA?

Not possible when the weight function
cannot be represented by a single
program

Too costly when number of elements
is large

Instead, use ALBA + SNARK

SNARK

“know ALBA 7 s.t.
ALBA Verify(m) = 1"
(witness)

7/36

Why not use SNARK to implement ALBA?

» Not possible when the weight function
cannot be represented by a single
program

» Too costly when number of elements
is large

» Instead, use ALBA + SNARK

» Qur scheme works in CRS model =
avoid instantiating random oracle
inside a circuit

SNARK

“know ALBA 7 s.t.
ALBA Verify(m) = 1"
(witness)

7/36

Our Results

Completeness and soundness error 27, np, =2 ng

proof size (elements)

prover runtime

verifier runtime

A+logA+6

expected O(n + \2)

o)

Table: Upper bound

8/36

Our Results

Completeness and soundness error 27, np, =2 ng

proof size (elements)

prover runtime

verifier runtime

141 for A = 128

expected O(n + \2)

o)

Table: Upper bound

8/36

Our Results

Completeness and soundness error 27, np, =2 ng

proof size (elements)

prover runtime

verifier runtime

A+logA+6

expected O(n + \2)

o)

Table: Upper bound

8/36

Our Results

Completeness and soundness error 27, np, =2 ng

proof size (elements) prover runtime

verifier runtime

A+logA+6 expected O(n + \2)

o)

Table: Upper bound

proof size (elements)
>A-3

Table: Lower bound

8/36

Our Results

Completeness and soundness error 27, Ap="2—hr!

proof size (elements) prover runtime verifier runtime
A+log A+6
% expected O(n + \?) Oo(\)

Table: Upper bound

proof size (elements)

A—3
log(np/ny)

Table: Lower bound

8/36

For simplicity...

» Most constructions unweighted
» assume honest prover has n, elements
» Simple soundness

» no proof of knowledge
» assume malicious prover has n; fixed elements =—>
succeeds with negligible probability

9/36

Coming next...

¥/ Definitions
e Unweighted case

[0 Prover-inefficient construction
[J Telescope construction

L1 Improving prover running time
[0 Decentralized setting

[J Adding weights
[J Applications

10/36

Warmup: Prover-inefficient Construction

» Let proof size be u elements
(u to be chosen later)

» Consider all u-sequences of elements

11/36

Warmup: Prover-inefficient Construction

» Let proof size be u elements
(u to be chosen later)

Consider all u-sequences of elements

>

» Honest prover has n," sequences
» Malicious prover has n¢” sequences
>

u
Notice exponential gap (:—‘f’)

11/36

Warmup: Prover-inefficient Construction

\4

Let proof size be u elements
(u to be chosen later)

Consider all u-sequences of elements
Honest prover has n," sequences

Malicious prover has n¢ sequences

u
Notice exponential gap (:—‘f’)

vV vV vVvVvyYy

A valid proof will be a sequence chosen with
probability £ using RO

11/36

Warmup: Prover-inefficient Construction

\4

vV vV vVvVvyYy

Let proof size be u elements
(u to be chosen later)

Consider all u-sequences of elements
Honest prover has n," sequences

Malicious prover has n¢ sequences
u
. . nip
Notice exponential gap (nf)

A valid proof will be a sequence chosen with
probability £ using RO

Valid proof: (si,...,s,) s.t.

» H(si,...,su) = 1;
(Pr{H() = 1] = 2)

11/36

Warmup: Prover-inefficient Construction

» Soundness error bounded using union bound:
“number” - “probability” = n¢¥ - €

» Completeness error bounded by
(1—¢)m" < e em”

Valid proof: (si,...,s,) s.t.

> H(sp,...,sy) = 1;
(Pr{H(:) = 1] =¢)

11/36

Warmup: Prover-inefficient Construction

» Soundness error bounded using union bound:
“number” - “probability” = n¢¥ - €

» Completeness error bounded by

(1—)" < e=en” V;LIidI_;I)roof: (s1, ...,S,:,) s.t.
> Setting completeness and soundness errors Prll (517_---17 Si) =1L
< 27 and calibrating ¢, we find u = % (PriH() =1 =¢)
, _ A—3
suffices (lower bound: u > log(np/n[))

11/36

Warmup: Prover-inefficient Construction

» Soundness error bounded using union bound:
“number” - “probability” = n¢¥ - €

» Completeness error bounded by
(1—e)®" < e em’ Valid proof: (si,...,s,) s.t.

. > =1,
» Setting completeness and soundness errors H(s, o su) = 1,

< 27 and calibrating ¢, we find u = % (PrH() = 1] =¢)
A—3) l

suffices (lower bound: u > Tog(ns /)

» Exponential prover running time

11/36

Coming next...

I Definitions
e Unweighted case

¥ Prover-inefficient construction
[] Telescope construction

[J Improving prover running time
[Decentralized setting

[Adding weights
[Applications

12/36

Efficient Construction: Telescope

u
» Exploit the gap (%) in an efficient way

13/36

Efficient Construction: Telescope

u
» Exploit the gap (Z—‘?) in an efficient way

> Grow sequences of increasing length but keep the number small
(“Telescope” method)

13/36

Telescope Construction (cont.)
Let xi, ..., x, be honest prover’'s elements. (n = ny)

14/36

Telescope Construction (cont.)
Let xi, ..., x, be honest prover’'s elements. (n = ny)

@
©)

d 14/36

Telescope Construction (cont.)
Let xi, ..., x, be honest prover’'s elements. (n = ny)

14/36

Telescope Construction (cont.)
Let xi, ..., x, be honest prover’'s elements. (n = ny)

(select w. prob.
1/n using H

14/36

Telescope Construction (cont.)
Let xi, ..., x, be honest prover’'s elements. (n = ny)

(select w. prob.
1/n using Hi(+))

(d]
d ~ d

14/36

Telescope Construction (cont.)
Let xi, ..., x, be honest prover’'s elements. (n = ny)

(select w. prob.
1/n using Hi(+))

14/36

Telescope Construction (cont.)
Let xi, ..., x, be honest prover’'s elements. (n = ny)

(select w. prob.
1/n using Hi(+))

14/36

Telescope Construction (cont.)
Let xi, ..., x, be honest prover’'s elements. (n = ny)

(select w. prob.
1/n using Hi(+))

(repeat u times)

14/36

Telescope Construction (cont.)
Let xi, ..., x, be honest prover’'s elements. (n = ny)

(select w. prob.
1/n using Hi(+))

(repeat u times)

&Q
Q

14/36

Telescope Construction (cont.)
Let xi, ..., x, be honest prover’'s elements. (n = ny)

(select w. prob.
1/n using Hi(+))

(repeat u times)

Valid proof: (t,sp,...,s,) s.t.
> 1 <t<d;

> V1 <i<u, Hi(t,s1,...,s;) = 1;

(Pr{Hi(-) = 1] = 1/n)

Telescope Construction (cont.)
Let xi, ..., x, be honest prover’'s elements. (n = ny)

(select w. prob.
1/n using Hi(+))

(select w. prob.
q using Ha(-))

(repeat u times)

WD 0D

Valid proof: (t,s,...,s,
> 1 <t<d;

> Vi<i<u, Hl(t,Sl, ...,S,') =1;
> Ha(t,si,....,su) =1;
(Pr[Hi(-) =1] =1/n, Pr[Hy(:) = 1] = q)

t.

14 /3p

Telescope Construction (cont.)
Let xi, ..., x, be honest prover’'s elements. (n = ny)

(select w. prob.
1/n using Hi(+))

(select w. prob.
q using Ha(-))

(repeat u times)

WD 0D

Valid proof: (t,s,...,s,
> 1<t<d;
> V1 <i<u, H(t,s,....,s) =1;
> Ho(t,s1,....,s4) = 1;

(Pr[Hi(-) =1] =1/n, Pr[Hy(-) = 1] = q)

14

t.

Telescope Construction (cont.)

R 6,000 - T e e e T e -
=%

= 4,000 -

_‘:: 2,000 |- |
(3]

£ 0 ! ! ! ! ! ! ! ! i

0 10 20 30 40 50 60 70
tuple length

Figure: Telescope simulation: d = 6300, n, = 1000, n; = 500

14/36

Telescope Construction (cont.)

1%

;§_ 6,000 - -
o 4,000 |- —— honest e
- . .

_«:: 2,000 |- —— malicious |
(3]

£ U \ |] | | | | |]

0 10 20 30 40 50 60 70
tuple length

Figure: Telescope simulation: d = 6300, n, = 1000, n; = 500

14/36

Efficient Construction: Telescope (cont.)

» Represent as d trees

15/36

Efficient Construction: Telescope (cont.)

> Represent as d trees
» Prover runs DFS (instead of BFS)

15/36

Efficient Construction: Telescope (cont.)

» Represent as d trees

» Prover runs DFS (instead of BFS)
» Union bound to analyze soundness:

» soundness error)
«“ D« C FRS u 1
number” - “probability” = d - n{ - <np> el

15/36

Efficient Construction: Telescope (cont.)

» Represent as d trees

» Prover runs DFS (instead of BFS)
» Union bound to analyze soundness:

» soundness error)
“number” - “probability” = d - n{ - <1> -q

np

» Recursive formula to analyze completeness:
> f(0)=1-gq
> flk+1)=((1- é)Jr

> completeness error (f(u))

- f)™
d

n

15/36

Efficient Construction: Telescope (cont.)

» Represent as d trees

» Prover runs DFS (instead of BFS)
» Union bound to analyze soundness:
> soundness error

u
“number” - “probability” = d - n{ - <1> el

» Recursive formula to analyze completeness:
> f(0)=1-gq
> flk+1) = (-)+ F(K)™
> completeness error (f(u))d

> i —A, achi ize u =
Setting errors < 277, ach|eve proof size u Tog(np/10)

(lower bound: u > log(n /nf))

A+log A\ 42

15/36

Efficient Construction: Telescope (cont.)

» To analyze prover running time:

15/36

Efficient Construction: Telescope (cont.)

» To analyze prover running time:

» u reachable vertices in a tree in expectation
(by linearity of expectation)

15/36

Efficient Construction: Telescope (cont.)

» To analyze prover running time:
» u reachable vertices in a tree in expectation
(by linearity of expectation)
> a tree succeeds with probability Q(1/X)

15/36

Efficient Construction: Telescope (cont.)

» To analyze prover running time:
» u reachable vertices in a tree in expectation
(by linearity of expectation)
> a tree succeeds with probability Q(1/X)
> — expected running time O(u-\-n,) = O(\? - n,)

15/36

Efficient Construction: Telescope (cont.)

» To analyze prover running time:

» u reachable vertices in a tree in expectation
(by linearity of expectation)
> a tree succeeds with probability Q(1/X)
= expected running time O(u-\-n,) = O(\? - n,)
» also O(A* - ny,) w.h.p.

v

15/36

Coming next...

I Definitions
e Unweighted case

¥ Prover-inefficient construction
Telescope construction

[J Improving prover running time

[Decentralized setting

[Adding weights
[Applications

16/36

Improving Prover Runtime: Telescope with Prehashing

> Basic Telescope has running time O(\% - n)?!

17/36

Improving Prover Runtime: Telescope with Prehashing

> Basic Telescope has running time O(\% - n)!

EEY.

@

17/36

Improving Prover Runtime: Telescope with Prehashing

> Basic Telescope has running time O(\% - n)?!

» Optimization inspired by balls-and-bins

17/36

Improving Prover Runtime: Telescope with Prehashing

» Basic Telescope has running time O(\2 - n)!
» Optimization inspired by balls-and-bins S

» Hash xi, ..., X, into n bins using
Go(+) ~ Unif([n])

Go

i

17/36

A
D)

Improving Prover Runtime: Telescope with Prehashing

> Basic Telescope has running time O(\% - n)?!
» Optimization inspired by balls-and-bins
» Hash xi, ..., X, into n bins using
Go(+) ~ Unif([n])
» (t,s1,...,5;) has valid extensions in bin
Gi(t,st,...,s5) ~ Unif([n])

Go
Gl(t, Sy eeey SJ)

17/36

Improving Prover Runtime: Telescope with Prehashing

> Basic Telescope has running time O(\% - n)?!
» Optimization inspired by balls-and-bins T
» Hash xi, ..., X, into n bins using
Go(-) ~ Unif([n])
» (t,si,...,s;) has valid extensions in bin
Gi(t,si,...,s5) ~ Unif([n]) Go
Gl(t, Sy eeey Sj)

Valid proof: (t,si,...,s,) s.t.
> 1<t<d;

> V1 <i<u G(t,si,....si-1) = Go(s;);
> Go(t,s1,...,sy) = 1; % D D %
(Go(+), Gi(+) ~ Unif([n]), Ga(-) ~ Bernoulli(q))

17/36

Improving Prover Runtime: Telescope with Prehashing (cont.)

» Soundness analysis remains the same
(union bound)

» Completeness analysis is tricky

» Need a “good” condition on “balls” distribution

Valid proof: (t,si,...,s,) s.t.
> 1 <t<d;
> V1l <i<u,
Gl(t,sl, .‘.,S,',l) = G[)(S,');
> Gg(t,sl, ...,Su) =1;
(Go(+), Gi(+) ~ Unif([n]),
Ga2(-) ~ Bernoulli(q))

18/36

Improving Prover Runtime: Telescope with Prehashing (cont.)

» Soundness analysis remains the same
(union bound)

» Completeness analysis is tricky

» Need a “good” condition on “balls” distribution

\DONDE

VS.

bD
DD

18/36

Improving Prover Runtime: Telescope with Prehashing (cont.)

» Soundness analysis remains the same Gi(t,s1,...,5))
.) b
(union bound)

» Completeness analysis is tricky

» Need a “good” condition on “balls” distribution

\DONDE

VS.

bD
DD

18/36

Improving Prover Runtime: Telescope with Prehashing (cont.)

» Soundness analysis remains the same
(union bound)

» Completeness analysis is tricky

» Need a “good” condition on “balls” distribution

\DONDE

VS.

Gl(t, S1yeeny Sj)
18/36

Improving Prover Runtime: Telescope with Prehashing (cont.)

» Soundness analysis remains the same
(union bound)

» Completeness analysis is tricky

» Need a “good” condition on “balls” distribution

\DONDE

VS.

18/36

Improving Prover Runtime: Telescope with Prehashing (cont.)
» Soundness analysis remains the same
(union bound)
» Completeness analysis is tricky

» Need a “good” condition on “balls” distribution
» Use Poisson approximation + one of the following:

\DONDE

VS.

bD
DD

18/36

Improving Prover Runtime: Telescope with Prehashing (cont.)

» Soundness analysis remains the same
(union bound)
» Completeness analysis is tricky
» Need a “good” condition on “balls” distribution
» Use Poisson approximation + one of the following:

> Markov's inequality approach (when n, < ©()\?)): DDDDDD

» guarantees “good” condition with moderate prob.
> get a scheme with completeness 1/2; amplify
> expected running time O(n, + \?)

VS.

bD
DD

18/36

Improving Prover Runtime: Telescope with Prehashing (cont.)

» Soundness analysis remains the same
(union bound)

» Completeness analysis is tricky

» Need a “good” condition on “balls” distribution
» Use Poisson approximation + one of the following:

> Markov's inequality approach (when n, < ©()\?)): DDDDDD
» guarantees “good” condition with moderate prob.
> get a scheme with completeness 1/2; amplify
> expected running time O(n, + \?)

» Chernoff inequality approach (when n, > ©(A%)):

VS.

> “good"” condition w.h.p. by Chernoff-like analysis %%
> running time O(n, + Z) where E[Z] = \? DD

18/36

Improving Prover Runtime: Telescope with Prehashing (cont.)

» Soundness analysis remains the same
(union bound)

» Completeness analysis is tricky

» Need a “good” condition on “balls” distribution
» Use Poisson approximation + one of the following:

> Markov's inequality approach (when n, < ©()\?)): DDDDDD
» guarantees “good” condition with moderate prob.
> get a scheme with completeness 1/2; amplify
> expected running time O(n, + \?)

» Chernoff inequality approach (when n, > ©(A%)):

VS.

> “good"” condition w.h.p. by Chernoff-like analysis %%
> running time O(n, + Z) where E[Z] = \? DD

> Chernoff + amplify (when ©()\?) < n, < ©(A\?))

18/36

Improving Prover Runtime: Telescope with Prehashing (cont.)

» Soundness analysis remains the same
(union bound)

» Completeness analysis is tricky

» Need a “good” condition on “balls” distribution
» Use Poisson approximation + one of the following:

> Markov's inequality approach (when n, < ©()\?)): DDDDDD
» guarantees “good” condition with moderate prob.
> get a scheme with completeness 1/2; amplify
> expected running time O(n, + \?)

» Chernoff inequality approach (when n, > ©(A%)):

VS.

> “good"” condition w.h.p. by Chernoff-like »analysis %%
> running time O(n, + Z) where E[Z] = \? DD
> Chernoff + amplify (when ©()\?) < n, < ©(A\?))
» Proof size u = %
(lower bound: u > logf‘nﬁ)

18/36

Coming next...

I Definitions
e Unweighted case

¥ Prover-inefficient construction
Telescope construction
v Improving prover running time
[J Decentralized setting
[J Adding weights

[J Applications

19/36

Decentralized ALBA

prover
Sg
prover
msg
ms
prover g
ms,
prover

aggregator

b

verifier

20/36

Decentralized ALBA

]
prover (s

L O

prover

D~—_msg

goal: few provers communicate

]
00
prover (a2

L O

aggregator

—e
/

prover

b

verifier

20/36

Decentralized ALBA

prover

(select w. prob.
w/n, using

Lottery(+))

prover

DK

prover

aggregator

prover

b

verifier

20/36

Decentralized ALBA

prover (select w. prob.

w/n, using

Lottery(+))
prover

DK
prover aggregator T verifier
(Telescope prover) " (Telescope verifier)
D

prover

20/36

Decentralized ALBA

prover

(select w. prob.
w/n, using

Lottery(+))

prover

Valid proof: (t, s, ...,

Sy) s.t.

> V1 < i< u, Lottery(s;) = 1;
» ALBA.Verify(t,si,....,sy) = 1;
(Pr[Lottery(:) = 1] = p/nyp)

prover

DK

aggregator T

(Telescope prover)

prover

verifier

"l (Telescope verifier)

20/36

Decentralized ALBA

prover

(select w. prob.
w/n, using

Lottery(+))

prover

prover

DK

Valid proof: (t,si,...,sy) s.t.
> V1 < i< u, Lottery(s;) = 1;
» ALBA.Verify(t,si,....,sy) = 1;
(Pr[Lottery(:) = 1] = p/nyp)

aggregator
(Telescope prover)

T R verifier

"l (Telescope verifier)

prover

comm. proof size | aggregator runtime | verifier
complexity | (elements) runtime
2 A+FO(VA) 2
O()\) m eXpeCted O()\) O(A)

20/36

Coming next...

¥f Definitions
e Unweighted case

¥ Prover-inefficient construction
Telescope construction
M Improving prover running time
¥ Decentralized setting
(1 Adding weights

[Applications

21/36

Adding Weights

> Back to centralized setting

22/36

Adding Weights

> Back to centralized setting
» Naive approach

> turn weight-w element x into elements (x, 1), ..., (x, w)
> inefficient (think of w as ~ 264)

22/36

Adding Weights

> Back to centralized setting
» Naive approach

> turn weight-w element x into elements (x, 1), ..., (x, w)
> inefficient (think of w as ~ 264)

> Lottery based approach

22/36

Adding Weights (cont.)

“prover”

“prover”

K

“prover”

Telescope prover

b ”
prover

h'd

Telescope verifier

23/36

Adding Weights (cont.)

“prover”

“prover”

Weighted Prover

k}

“prover”

Telescope prover

h'd

b ”
prover

Telescope verifier

23/36

Adding Weights (cont.)

“prover”

Weighted Prover

w’ ~ Binom(w, u/np);

(x,1), ey (x, W)

“prover”

k

“prover”

Telescope prover

h'd

b ”
prover

Telescope verifier

23/36

Adding Weights (cont.)

“prover”

Weighted Prover

w’ ~ Binom(w, u/np);

(x,1), .0y (x, W)

“prover”

k

“prover”

Telescope prover

h'd

b ”
prover

Telescope verifier

23/36

Adding Weights (cont.)

“prover”

w’ ~ Binom(w, u/np);

(x,1), ey (x, W)

“prover”

wy Valid proof: (t, (s, v1), ..., (sy, vi)) s.t.

> V1 <i<u, 1<y <Lottery(s;);

» ALBA Verify(t, (s1,v1), ..., (Su, vu)) = 1;
(Lottery(x) ~ Binom(W/(x), u/np))

K)

“prover”

Telescope prover

h'd

b ”
prover

Telescope verifier

23/36

Adding Weights (cont.)

“prover”

w’ ~ Binom(w, u/np);

(x,1), ey (x, W)

“prover”

wy Valid proof: (t, (s, v1), ..., (sy, vi)) s.t.

> V1 <i<u, 1<y <Lottery(s;);

» ALBA Verify(t, (s1,v1), ..., (Su, vu)) = 1;
(Lottery(x) ~

Binom(W(x), u/np))

K

“prover”

b ”
prover

T -
Telescope prover % Telescope verifier
proof size prover runtime verifier
(elements) runtime
A+log A\+-6 2
W eXpeCted O(n + A) O()\)

23/36

Coming next...

¥f Definitions
e Unweighted case

¥ Prover-inefficient construction
Telescope construction

M Improving prover running time

¥ Decentralized setting

v Adding weights
[0 Applications

24/36

Application 1: Weighted Multisignatures

» Prove that sufficiently many parties
signed a message

)
A,
)
)

4
[oS]
=
5]
—
c
=
o
(2]

25/36

Application 1: Weighted Multisignatures

» Prove that sufficiently many parties
signed a message

» Proof-of-stake blockchains: prove that
parties with sufficient total stake
(money) attested to blockchain state

node 0 node 1 node 2
(89 coins) || (68 coins) || (72 coins)
node 3 node 4 node 5
(17 coins) || (55 coins) || (23 coins)
node 6 node 7 node 8
(16 coins) || (60 coins) || (14 coins)

25/36

Application 1: Weighted Multisignatures

» Prove that sufficiently many parties
signed a message

» Proof-of-stake blockchains: prove that
parties with sufficient total stake
(money) attested to blockchain state

> assume 80% honest stake, 20%
malicious stake = n,,/n; =4

node 0 node 1 node 2
(89 coins) || (68 coins) || (72 coins)
node 3 node 4 node 5
(17 coins) || (55 coins) || (23 coins)
node 6 node 7 node 8
(16 coins) || (60 coins) || (14 coins)

25/36

Application 1: Weighted Multisignatures

» Prove that sufficiently many parties
signed a message

» Proof-of-stake blockchains: prove that

parties with sufficient total stake

(money) attested to blockchain state

>

>
>

assume 80% honest stake, 20%
malicious stake = n,,/n; =4
sign blockchain state

signature weight = node’s stake

node 0
(89 coins)

D

node 1
(68 coins)

D

node 2
(72 coins)

D

node 3
(17 coins)

D

node 4
(55 coins)

D

node 5
(23 coins)

D

node 6
(16 coins)

D

node 7
(60 coins)

D

node 8
(14 coins)

25/36

Application 1: Weighted Multisignatures

» Prove that sufficiently many parties

signed a message

» Proof-of-stake blockchains: prove that

parties with sufficient total stake

(money) attested to blockchain state

>

>
>

assume 80% honest stake, 20%
malicious stake = n,,/n; =4
sign blockchain state

signature weight = node’s stake
aggregate signatures using
(decentralized) ALBA

node 0
(89 coins)

D

node 1
(68 coins)

D

node 2
(72 coins)

D

node 3
(17 coins)

D

node 4
(55 coins)

D

node 5
(23 coins)

D

node 6
(16 coins)

D

node 7
(60 coins)

D

node 8
(14 coins)

25/36

Application 1: Weighted Multisignatures (cont.)

small proof + small communication complexity

node 0 0

node 1 0

node 2 0

aggregator

~

verifier

26 /36

Application 1: Weighted Multisignatures (cont.)

small proof + small communication complexity, 128-bit security:

node 0 D communication:
1987 [) sent
node 1 0
\
node 2 N
aggregator
D

proof size: 104 D

~

verifier

26 /36

Application 2: Straight-Line Witness Extraction for SNARKSs

» [GKOPTT23] addresses Universal Composability (UC) for SNARKSs

» UC requires witness-extraction without rewinding

27/36

Application 2: Straight-Line Witness Extraction for SNARKSs

» [GKOPTT23] addresses Universal Composability (UC) for SNARKs
» UC requires witness-extraction without rewinding

» Since |7| < |w/|, how to extract w without rewinding? Possible in RO model

27/36

Application 2: Straight-Line Witness Extraction for SNARKSs
> [GKOPTT23]:

P> Represent the witness as degree d polynomial
» Commit using polynomial commitment scheme

28/36

Application 2: Straight-Line Witness Extraction for SNARKSs
> [GKOPTT23]:

P> Represent the witness as degree d polynomial
» Commit using polynomial commitment scheme
> Prove that RO was queried on d + 1 valid points by querying Ad points;

28/36

Application 2: Straight-Line Witness Extraction for SNARKSs
> [GKOPTT23]:

P> Represent the witness as degree d polynomial
» Commit using polynomial commitment scheme
> Prove that RO was queried on d + 1 valid points by querying Ad points;

» Observation: An application of ALBA

» Result: prover queries 2d points instead (\ times faster prover);
more modular construction

28/36

Outline

¥ Definitions
e Unweighted case

¥ Prover-inefficient construction
Telescope construction
Improving prover running time
¥ Decentralized setting

v Adding weights
i Applications

Additional slides:

» Lower bounds

» Table of all results

» Knowledge extraction (RO, straight-line)
> ALBA in CRS model

29/36

[GKOPTT23] Chaya Ganesh, Yashvanth Kondi, Claudio Orlandi, Mahak Pancholi,
Akira Takahashi, and Daniel Tschudi. “Witness-Succinct
Universally-Composable SNARKSs". In: EUROCRYPT 2023, Part |I.
Ed. by Carmit Hazay and Martijn Stam. Vol. 14005. LNCS. Springer,
Heidelberg, Apr. 2023, pp. 315-346. DOI:
10.1007/978-3-031-30617-4 _11.

30/36

https://doi.org/10.1007/978-3-031-30617-4_11

Lower Bounds

Theorem
Any ALBA scheme with completeness &
soundness errors < 27 must have Q(\)

proof size. 0 0 0 0 0 0 0

|Spl = np

30/36

Lower Bounds

Theorem
Any ALBA scheme with completeness &
soundness errors < 27 must have Q(\)

proof size. 0 0 0 0 0 0 0
Proof outline
P (random variable) T <— PFOVGH(SP) D D D D D D D

|Spl = np

30/36

Lower Bounds

Theorem
Any ALBA scheme with completeness &
soundness errors < 27 must have Q(\)

proof size. 0 0 0 0 0 0 0
Proof outline
P (random variable) T <— PFOVGH(SP) D D D D D D D

» suppose || is small

|Spl = np

30/36

Lower Bounds

Theorem
Any ALBA scheme with completeness &
soundness errors < 27 must have Q(\)

proof size. 0 0 0 0 0 0 0
Proof outline random S
> (random variable) 7 ¢— Prove/(S),) DD D D D D D
» suppose || is small
» take random S¢ C S, with |S¢| = n¢ b b D D D A b
O 0 0 O O D D

30/36

Lower Bounds

Theorem
Any ALBA scheme with completeness &
soundness errors < 27 must have Q(\)

proof size. 0 0 0 0 0 0 0
Proof outline random S
> (random variable) 7 ¢— Prove/(S),) DD D D D D D
» suppose || is small
» take random S¢ C S, with |S¢| = n¢ b b D D D A b
» Pry s [m C S is big N 0 0 0 0 0 0

30/36

Lower Bounds

Theorem
Any ALBA scheme with completeness &
soundness errors < 27 must have Q(\) S
proof size. 0 0 0 0 0 0 0
Proof outline random S
> (random variable) 7 ¢— Prove/(S),) DID D DI DI D D

» suppose || is small
» take random S¢ C S, with |S¢| = n¢ b b b b b A A
» Pry s [m C S is big
> by averaging argument 35; s.t.
Pry[r C 5] is big 1Sp] = np

30/36

Lower Bounds

Theorem
Any ALBA scheme with completeness &
soundness errors < 27 must have Q(\) S
proof size. 0 0 0 0 0 0 0
Proof outline random S
> (random variable) 7 ¢— Prove/(S),) DID D DI DI D D

» suppose || is small

» take random S¢ C S, with |S¢| = n¢ D D D D D D D
» Pry s [m C S is big

>

by averaging argument 35; s.t.
Pry[r C 5] is big |Sp| = np

v

Pry[r C §f] is small by soundness

30/36

Lower Bounds

Theorem
Any ALBA scheme with completeness &
soundness errors < 27 must have Q(\) S
proof size. 0 0 0 0 0 0 0
Proof outline random S
> (random variable) 7 ¢— Prove/(S),) DID D D! DI D D
» suppose || is small
» take random S¢ C S, with |S¢| = n¢ D D D D D N N
» Prys,[m Q Si| is big / nla o ol ol o D
» by averaging argument 35; s.t.
Pry[r C §f] is big 1S, = np
» Pryr C 5] is small by soundness
» contradiction

30/36

Lower Bounds (cont.)

scheme proof size (elements) | comm. rounds | comm. complexity
A=3
ALBA Tog(ms /)
decentralized ALBAL AV 1 0(\2)
log(np /)

in a simplified model

31/36

Lower Bounds (cont.)

scheme proof size (elements) | comm. rounds | comm. complexity
A3
ALBA B
. 1 AQ(VA) 2
decentralized ALBA m 1 O()\)

in a simplified model

31/36

All Results

setting lower bound | Telescope
P) Atlog A6

ALBA oa(np/m) | Tog(ny/n0)
decentralized ALBA; AHQ(VA) A0V
communication O(\?) log(np/ne) | log(np/ng)

Table: Proof size
scheme average worst case
Telescope prover

O(n+ M%) | O(n+)3

decentralized Telescope aggregator; 0()2)
communication O(\?)

0(\3)

Telescope verifier

o)

o(\)

Table: Running time

32/36

Knowledge Extraction (RO, straight-line)

» AMW produces valid proof with probability
27 +¢

P> goal: extract > ny weight-1 elements with
probability €

33/36

Knowledge Extraction (RO, straight-line)

» AMW produces valid proof with probability

27Nt
Algorithm Extract W4

run < APW() and

Verify"W () and observe
their RO transcript 7;
Sf = @;
for x queried to H; or Hy in 7
o
if W(x) =1 then
. add x to S¢;
return S;;

P> goal: extract > ny weight-1 elements with
probability €

33/36

Knowledge Extraction (RO, straight-line)

» AMW produces valid proof with probability

27Nt
Algorithm Extract W4

run < APW() and

Verify"W () and observe
their RO transcript 7;
Sf = @;
for x queried to H; or Hy in 7
o
if W(x) =1 then
. add x to S¢;
return S;;

P> goal: extract > ny weight-1 elements with
probability €

33/36

Knowledge Extraction (RO, straight-line)

» AMW produces valid proof with probability

27Nt
Algorithm Extract W4

run < APW() and

Verify"W () and observe
their RO transcript 7;
Sf = @;
for x queried to H; or Hy in 7
o
if W(x) =1 then
add x to S;
return S;;

P> goal: extract > ny weight-1 elements with
probability €

33/36

Knowledge Extraction (RO, straight-line)

» AMW produces valid proof with probability

27Nt
Algorithm Extract W4

run < APW() and

Verify"W () and observe
their RO transcript 7;
Sf = @;
for x queried to H; or Hy in 7
o
if W(x) =1 then
. add x to S¢;
return S;;

P> goal: extract > ny weight-1 elements with
probability €

33/36

Knowledge Extraction (RO, straight-line)

» AMW produces valid proof with probability
27 +¢

P> goal: extract > ny weight-1 elements with
probability €

Theorem
Extract'W:A
probability €

Proof.

27 te=

Pr[A succeeds| <

Pr[A queries < n¢ elements and succeeds] +
Pr[A queries > n¢ elements] O

extracts > n; elements with

Algorithm Extract W4

run < APW() and

Verify"W () and observe
their RO transcript 7;
Sf = @;
for x queried to H; or Hy in 7
o
if W(x) =1 then
. add x to S¢;
return S;;

33/36

Knowledge Extraction (RO, straight-line)

» AMW produces valid proof with probability
27 +¢

P> goal: extract > ny weight-1 elements with
probability €

Theorem
Extract'W:A
probability €

Proof.

27 te=

Pr[A succeeds| <

Pr[A queries < n¢ elements and succeeds] +
Pr[A queries > n¢ elements] O

extracts > n; elements with

Algorithm Extract W4

run < APW() and

Verify"W () and observe
their RO transcript 7;
Sf = @;
for x queried to H; or Hy in 7
o
if W(x) =1 then
. add x to S¢;
return S;;

33/36

Knowledge Extraction (RO, straight-line) (cont.)

Lemma
Pr[A queries < n; elements and succeeds] < 2—A

Issue: adaptive adversary => union bound doesn't work

34/36

Knowledge Extraction (RO, straight-line) (cont.)

Lemma
Pr[A queries < ny elements and succeeds] < 2—A

Issue: adaptive adversary => union bound doesn't work

Proof.
» think about indices as inputs to Hy, Ho

» union bound applies

34/36

Knowledge Extraction (RO, straight-line) (cont.)

Lemma
Pr[A queries < ny elements and succeeds] < 2—A

Issue: adaptive adversary => union bound doesn't work

Proof.
» think about indices as inputs to Hy, Ho

» union bound applies

We achieved:

» information-theoretic security
when weight function is fixed in advance

» can get security assuming a bound on the number of RO queries
when weight function can depend on RO

34/36

Telescope in CRS3 model

> Replace RO with PRF?
» CRS = PRF key
» PRF key need not be secret

2pseudorandom Function
3Common Reference String

35/36

Knowledge Extraction in CRS model

» Knowledge extraction via rewinding:

> suppose A" (crs) succeeds with
probability 27 + & —
extract with probability £

36/36

Knowledge Extraction in CRS model

» Knowledge extraction via rewinding:

> suppose A" (crs) succeeds with - W
probability 2= + = —s Algorithm Extract” (A)

extract with probability ¢ Sp=0;
while |5f’ < ng do
crs < GenCRS();
7+ AW (crs);
> PrirNnW\S>1]>¢
S¢ = SfU(Trﬂ W);
return S;;

36/36

Knowledge Extraction in CRS model

» Knowledge extraction via rewinding:

> suppose A" (crs) succeeds with - W
probability 2= + = —s Algorithm Extract” (A)

extract with probability ¢ Sp=0;
while |5f’ < ng do
crs <— GenCRS();
7+ AW (crs);
> PrirNnW\S>1]>¢
S¢ = SfU(Trﬂ W);
return S;;

36/36

Knowledge Extraction in CRS model

» Knowledge extraction via rewinding:

> suppose A" (crs) succeeds with - W
probability 2= + = —s Algorithm Extract” (A)

extract with probability ¢ Sp=0;
while |5f’ < ng do
crs < GenCRS();
7+ AW (crs);
> PrirNnW\S>1]>¢
S¢ = SfU(Trﬂ W);
return S;;

36/36

Knowledge Extraction in CRS model

» Knowledge extraction via rewinding:

> suppose A" (crs) succeeds with - W
probability 2= + = —s Algorithm Extract” (A)

extract with probability ¢ Sp=0;
while |5f’ < ng do
crs < GenCRS();
7+ AW (crs);
> PrirNnW\S>1]>¢
Sp=5U(rnNW);
return S;;

36/36

Knowledge Extraction in CRS model

» Knowledge extraction via rewinding:

> suppose A" (crs) succeeds with - W
probability 2= + = —s Algorithm Extract” (A)

extract with probability ¢ Sp=0;
while |5f’ < ng do
crs < GenCRS();
7+ AW (crs);
> PrirNnW\S>1]>¢
S¢ = SfU(Trﬂ W);
return S;;

36/36

Knowledge Extraction in CRS model

» Knowledge extraction via rewinding:
> suppose A" (crs) succeeds with
probability 27* 4+ ¢ =
extract with probability ¢
> while |S¢| < ng, AW (crs) outputs weight-1
elements outside of S¢ with probability

Algorithm Extract'V(A)

Sf = @;
while |5f’ < ng do
crs < GenCRS();
7+ AW (crs);
> PrfrnW\S>1]>¢
S¢ = 5 U (7‘(‘ N W),
return S;;

36/36

Knowledge Extraction in CRS model

» Knowledge extraction via rewinding:

> suppose A" (crs) succeeds with
probability 27* 4+ ¢ =
extract with probability ¢
> while |S¢| < ng, AW (crs) outputs weight-1
elements outside of S¢ with probability
> We achieve:

> security when weight function is fixed in
advance
» can get security when weight function is

not fixed in advance if PRF key is chosen
by RO

Algorithm Extract'V(A)

Sf = @;
while |5f’ < ng do
crs < GenCRS();
7+ AW (crs);
> PrfrnW\S>1]>¢
S¢ = 5 U (7‘(‘ N W),
return S;;

36/36

	References

