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History

1985 "Approximate lower bound” term appears first in LaszIé Babai's work
1983 Sipser and Gacs use an ALBA protocol to prove BPP C RPN
1986 Goldwasser and Sipser use an ALBA protocol to prove IP[Q] C AM[Q + 2]
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1985 "Approximate lower bound” term appears first in LaszIé Babai's work
1983 Sipser and Gacs use an ALBA protocol to prove BPP C RPN
1986 Goldwasser and Sipser use an ALBA protocol to prove IP[Q] C AM[Q + 2]

Above implementations of ALBA have interaction and large proofs.

Our goal — ALBA for real world applications:
» minimize proof size

non-interactive

>

» fast prover & verifier

» minimize communication in decentralized setting
>

extractability (proof of knowledge)

4/36



Defining ALBA

» Non-interactive proof system in either

» random oracle (RO) model:
prover and verifier have oracle access to random H : {0,1}* — {0,1}*

» common reference string (CRS) model:
prover and verifier are given crs < GenCRS()

5/36



Defining ALBA

» Non-interactive proof system in either

» random oracle (RO) model:
prover and verifier have oracle access to random H : {0,1}* — {0,1}*

» common reference string (CRS) model:
prover and verifier are given crs < GenCRS()

» Prover and verifier have oracle access to weight function W/

5/36



Defining ALBA

» Non-interactive proof system in either

» random oracle (RO) model:
prover and verifier have oracle access to random H : {0,1}* — {0,1}*

» common reference string (CRS) model:
prover and verifier are given crs < GenCRS()

» Prover and verifier have oracle access to weight function W/
» Completeness: if prover has elements S, of total weight n, = prob. 1 — negl

> 71« Prove™"(S,)
> Verify™" (1) =1

5/36



Defining ALBA

» Non-interactive proof system in either
» random oracle (RO) model:
prover and verifier have oracle access to random H : {0,1}* — {0,1}*
» common reference string (CRS) model:
prover and verifier are given crs <— GenCRS()
» Prover and verifier have oracle access to weight function W/

» Completeness: if prover has elements S, of total weight n, = prob. 1 — negl
> 71« Prove™"(S,)
> Verify™" (1) =1
» Soundness: if A makes valid proof = extract elements of total weight > ng;
negligible knowledge error
> S« Extract™"A()

5/36



Defining ALBA

» Non-interactive proof system in either
» random oracle (RO) model:
prover and verifier have oracle access to random H : {0,1}* — {0,1}*
» common reference string (CRS) model:
prover and verifier are given crs <— GenCRS()
» Prover and verifier have oracle access to weight function W/
» Completeness: if prover has elements S, of total weight n, = prob. 1 — negl
> 71« Prove(crs, S,)
> Verify" (crs, ) = 1
» Soundness: if A makes valid proof = extract elements of total weight > ng;
negligible knowledge error
> S; « Extract”(A)

5/36



Applications

» Weighted Multisignatures
» Prove that sufficiently many parties signed a message
» Proof-of-stake blockchains: prove that parties with
sufficient total stake attested to blockchain state

IR AN
I AN,
s
I AN,

signat

6/36



Applications

» Weighted Multisignatures
» Prove that sufficiently many parties signed a message
» Proof-of-stake blockchains: prove that parties with
sufficient total stake attested to blockchain state
» Straight-Line Witness Extraction for SNARKs

> Straight-line extraction (no rewinding) useful for
composability

6/36



Applications

» Weighted Multisignatures

» Prove that sufficiently many parties signed a message
» Proof-of-stake blockchains: prove that parties with
sufficient total stake attested to blockchain state

» Straight-Line Witness Extraction for SNARKs

> Straight-line extraction (no rewinding) useful for
composability

» Details to follow
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Why not use SNARK to implement ALBA?

SNARK

“know elements xi, ..., Xk
of total weight > n¢"
(witness xi, ..., Xk)
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Why not use SNARK to implement ALBA?

» Not possible when the weight function
cannot be represented by a single
program

» Too costly when number of elements
is large

» Instead, use ALBA + SNARK

» Qur scheme works in CRS model =
avoid instantiating random oracle
inside a circuit

SNARK

“know ALBA 7 s.t.
ALBA Verify(m) = 1"
(witness )
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Our Results
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Our Results

Completeness and soundness error 27, Ap="2—hr!

proof size (elements) prover runtime verifier runtime
A+log A+6
% expected O(n + \?) Oo(\)

Table: Upper bound

proof size (elements)

A—3
log(np/ny)

Table: Lower bound
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For simplicity...

» Most constructions unweighted
» assume honest prover has n, elements
» Simple soundness

» no proof of knowledge
» assume malicious prover has n; fixed elements =—>
succeeds with negligible probability
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Coming next...

¥/ Definitions
e Unweighted case

[0 Prover-inefficient construction
[J Telescope construction

L1 Improving prover running time
[0 Decentralized setting

[J Adding weights
[J Applications
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Warmup: Prover-inefficient Construction

» Let proof size be u elements
(u to be chosen later)

» Consider all u-sequences of elements
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Warmup: Prover-inefficient Construction

\4

vV vV vVvVvyYy

Let proof size be u elements
(u to be chosen later)

Consider all u-sequences of elements
Honest prover has n," sequences

Malicious prover has n¢ sequences
u
. . nip
Notice exponential gap (nf)

A valid proof will be a sequence chosen with
probability £ using RO

Valid proof: (si,...,s,) s.t.

» H(si,...,su) = 1;
(Pr{H() = 1] = 2)
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Warmup: Prover-inefficient Construction

» Soundness error bounded using union bound:
“number” - “probability” = n¢¥ - €

» Completeness error bounded by
(1—¢)m" < e em”

Valid proof: (si,...,s,) s.t.

> H(sp,...,sy) = 1;
(Pr{H(:) = 1] =¢)

11/36



Warmup: Prover-inefficient Construction

» Soundness error bounded using union bound:
“number” - “probability” = n¢¥ - €

» Completeness error bounded by

(1— )" < e=en” V;LIidI_;I)roof: (s1, ...,S,:,) s.t.
> Setting completeness and soundness errors Prll (517_---17 Si) =1L
< 27 and calibrating ¢, we find u = % (PriH() =1 =¢)
, _ A—3
suffices (lower bound: u > log(np/n[))

11/36



Warmup: Prover-inefficient Construction

» Soundness error bounded using union bound:
“number” - “probability” = n¢¥ - €

» Completeness error bounded by
(1—e)®" < e em’ Valid proof: (si,...,s,) s.t.

. > =1,
» Setting completeness and soundness errors H(s, o su) = 1,

< 27 and calibrating ¢, we find u = % (PrH() = 1] =¢)
A—3 ) l

suffices (lower bound: u > Tog(ns /)

» Exponential prover running time
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Coming next...

I Definitions
e Unweighted case

¥ Prover-inefficient construction
[] Telescope construction

[J Improving prover running time
[ Decentralized setting

[ Adding weights
[ Applications
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Efficient Construction: Telescope
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Efficient Construction: Telescope

u
» Exploit the gap (Z—‘?) in an efficient way

> Grow sequences of increasing length but keep the number small
(“Telescope” method)
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Telescope Construction (cont.)
Let xi, ..., x, be honest prover’'s elements. (n = ny)
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Telescope Construction (cont.)
Let xi, ..., x, be honest prover’'s elements. (n = ny)

(select w. prob.
1/n using Hi(+))

(repeat u times)

Valid proof: (t,sp,...,s,) s.t.
> 1 <t<d;

> V1 <i<u, Hi(t,s1,...,s;) = 1;
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Telescope Construction (cont.)
Let xi, ..., x, be honest prover’'s elements. (n = ny)

(select w. prob.
1/n using Hi(+))

(select w. prob.
q using Ha(-))

(repeat u times)

WD 0D

Valid proof: (t,s,...,s,
> 1 <t<d;

> Vi<i<u, Hl(t,Sl, ...,S,') =1;
> Ha(t,si,....,su) =1;
(Pr[Hi(-) =1] =1/n, Pr[Hy(:) = 1] = q)

t.
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Telescope Construction (cont.)
Let xi, ..., x, be honest prover’'s elements. (n = ny)

(select w. prob.
1/n using Hi(+))

(select w. prob.
q using Ha(-))

(repeat u times)

WD 0D

Valid proof: (t,s,...,s,
> 1<t<d;
> V1 <i<u, H(t,s,....,s) =1;
> Ho(t,s1,....,s4) = 1;

(Pr[Hi(-) =1] =1/n, Pr[Hy(-) = 1] = q)

14
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Telescope Construction (cont.)
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Telescope Construction (cont.)
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Figure: Telescope simulation: d = 6300, n, = 1000, n; = 500
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Efficient Construction: Telescope (cont.)

» Represent as d trees
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Efficient Construction: Telescope (cont.)

» Represent as d trees

» Prover runs DFS (instead of BFS)
» Union bound to analyze soundness:

» soundness error )
“number” - “probability” = d - n{ - <1> -q

np

» Recursive formula to analyze completeness:
> f(0)=1-gq
> flk+1)=((1- é)Jr

> completeness error (f(u))

- f)™
d

n
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Efficient Construction: Telescope (cont.)

» Represent as d trees

» Prover runs DFS (instead of BFS)
» Union bound to analyze soundness:
> soundness error

u
“number” - “probability” = d - n{ - <1> el

» Recursive formula to analyze completeness:
> f(0)=1-gq
> flk+1) = (- )+ F(K)™
> completeness error (f(u ))d

> i —A, achi ize u =
Setting errors < 277, ach|eve proof size u Tog(np/10)

(lower bound: u > log(n /nf))

A+log A\ 42
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Efficient Construction: Telescope (cont.)

» To analyze prover running time:
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Efficient Construction: Telescope (cont.)

» To analyze prover running time:

» u reachable vertices in a tree in expectation
(by linearity of expectation)
> a tree succeeds with probability Q(1/X)
= expected running time O(u-\-n,) = O(\? - n,)
» also O(A* - ny,) w.h.p.

v
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Coming next...

I Definitions
e Unweighted case

¥ Prover-inefficient construction
Telescope construction

[J Improving prover running time

[ Decentralized setting

[ Adding weights
[ Applications
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Improving Prover Runtime: Telescope with Prehashing

> Basic Telescope has running time O(\% - n)?!
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Improving Prover Runtime: Telescope with Prehashing

» Basic Telescope has running time O(\2 - n)!
» Optimization inspired by balls-and-bins S

» Hash xi, ..., X, into n bins using
Go(+) ~ Unif([n])

Go

i
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Improving Prover Runtime: Telescope with Prehashing

> Basic Telescope has running time O(\% - n)?!
» Optimization inspired by balls-and-bins T
» Hash xi, ..., X, into n bins using
Go(-) ~ Unif([n])
» (t,si,...,s;) has valid extensions in bin
Gi(t,si,...,s5) ~ Unif([n]) Go
Gl(t, Sy eeey Sj)

Valid proof: (t,si,...,s,) s.t.
> 1<t<d;

> V1 <i<u G(t,si,....si-1) = Go(s;);
> Go(t,s1,...,sy) = 1; % D D %
(Go(+), Gi(+) ~ Unif([n]), Ga(-) ~ Bernoulli(q))
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Improving Prover Runtime: Telescope with Prehashing (cont.)

» Soundness analysis remains the same
(union bound)

» Completeness analysis is tricky

» Need a “good” condition on “balls” distribution

Valid proof: (t,si,...,s,) s.t.
> 1 <t<d;
> V1l <i<u,
Gl(t,sl, .‘.,S,',l) = G[)(S,');
> Gg(t,sl, ...,Su) =1;
(Go(+), Gi(+) ~ Unif([n]),
Ga2(-) ~ Bernoulli(q))
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Improving Prover Runtime: Telescope with Prehashing (cont.)
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Improving Prover Runtime: Telescope with Prehashing (cont.)
» Soundness analysis remains the same
(union bound)
» Completeness analysis is tricky
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» Use Poisson approximation + one of the following:
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Improving Prover Runtime: Telescope with Prehashing (cont.)

» Soundness analysis remains the same
(union bound)
» Completeness analysis is tricky
» Need a “good” condition on “balls” distribution
» Use Poisson approximation + one of the following:

> Markov's inequality approach (when n, < ©()\?)): DDDDDD

» guarantees “good” condition with moderate prob.
> get a scheme with completeness 1/2; amplify
> expected running time O(n, + \?)
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» Soundness analysis remains the same
(union bound)

» Completeness analysis is tricky

» Need a “good” condition on “balls” distribution
» Use Poisson approximation + one of the following:

> Markov's inequality approach (when n, < ©()\?)): DDDDDD
» guarantees “good” condition with moderate prob.
> get a scheme with completeness 1/2; amplify
> expected running time O(n, + \?)

» Chernoff inequality approach (when n, > ©(A%)):

VS.
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Improving Prover Runtime: Telescope with Prehashing (cont.)

» Soundness analysis remains the same
(union bound)

» Completeness analysis is tricky

» Need a “good” condition on “balls” distribution
» Use Poisson approximation + one of the following:

> Markov's inequality approach (when n, < ©()\?)): DDDDDD
» guarantees “good” condition with moderate prob.
> get a scheme with completeness 1/2; amplify
> expected running time O(n, + \?)

» Chernoff inequality approach (when n, > ©(A%)):

VS.

> “good"” condition w.h.p. by Chernoff-like »analysis %%
> running time O(n, + Z) where E[Z] = \? DD
> Chernoff + amplify (when ©()\?) < n, < ©(A\?))
» Proof size u = %
(lower bound: u > logf‘nﬁ)
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Coming next...

I Definitions
e Unweighted case

¥ Prover-inefficient construction
Telescope construction
v Improving prover running time
[J Decentralized setting
[J Adding weights

[J Applications
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Decentralized ALBA
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Decentralized ALBA
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prover

(select w. prob.
w/n, using

Lottery(+))

prover

prover

DK

Valid proof: (t,si,...,sy) s.t.
> V1 < i< u, Lottery(s;) = 1;
» ALBA.Verify(t,si,....,sy) = 1;
(Pr[Lottery(:) = 1] = p/nyp)

aggregator
(Telescope prover)

T R verifier

"l (Telescope verifier)
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> Back to centralized setting
» Naive approach

> turn weight-w element x into elements (x, 1), ..., (x, w)
> inefficient (think of w as ~ 264)

> Lottery based approach
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Application 1: Weighted Multisignatures

» Prove that sufficiently many parties
signed a message
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Application 1: Weighted Multisignatures

» Prove that sufficiently many parties

signed a message

» Proof-of-stake blockchains: prove that

parties with sufficient total stake

(money) attested to blockchain state

>

>
>

assume 80% honest stake, 20%
malicious stake = n,,/n; =4
sign blockchain state

signature weight = node’s stake
aggregate signatures using
(decentralized) ALBA

node 0
(89 coins)

D

node 1
(68 coins)

D

node 2
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node 3
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node 4
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Application 1: Weighted Multisignatures (cont.)

small proof + small communication complexity

node 0 0

node 1 0

node 2 0

aggregator

~

verifier
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Application 1: Weighted Multisignatures (cont.)

small proof + small communication complexity, 128-bit security:

node 0 D communication:
1987 [) sent
node 1 0
\
node 2 N
aggregator
D

proof size: 104 D

~

verifier
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Application 2: Straight-Line Witness Extraction for SNARKSs

» [GKOPTT23] addresses Universal Composability (UC) for SNARKSs

» UC requires witness-extraction without rewinding
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Application 2: Straight-Line Witness Extraction for SNARKSs

» [GKOPTT23] addresses Universal Composability (UC) for SNARKs
» UC requires witness-extraction without rewinding

» Since |7| < |w/|, how to extract w without rewinding? Possible in RO model
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Application 2: Straight-Line Witness Extraction for SNARKSs
> [GKOPTT23]:

P> Represent the witness as degree d polynomial
» Commit using polynomial commitment scheme
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Application 2: Straight-Line Witness Extraction for SNARKSs
> [GKOPTT23]:

P> Represent the witness as degree d polynomial
» Commit using polynomial commitment scheme
> Prove that RO was queried on d + 1 valid points by querying Ad points;

» Observation: An application of ALBA

» Result: prover queries 2d points instead (\ times faster prover);
more modular construction
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Outline

¥ Definitions
e Unweighted case

¥ Prover-inefficient construction
Telescope construction
Improving prover running time
¥ Decentralized setting

v Adding weights
i Applications

Additional slides:

» Lower bounds

» Table of all results

» Knowledge extraction (RO, straight-line)
> ALBA in CRS model
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[GKOPTT23] Chaya Ganesh, Yashvanth Kondi, Claudio Orlandi, Mahak Pancholi,
Akira Takahashi, and Daniel Tschudi. “Witness-Succinct
Universally-Composable SNARKSs". In: EUROCRYPT 2023, Part |I.
Ed. by Carmit Hazay and Martijn Stam. Vol. 14005. LNCS. Springer,
Heidelberg, Apr. 2023, pp. 315-346. DOI:
10.1007/978-3-031-30617-4 _11.

30/36


https://doi.org/10.1007/978-3-031-30617-4_11

Lower Bounds

Theorem
Any ALBA scheme with completeness &
soundness errors < 27 must have Q(\)

proof size. 0 0 0 0 0 0 0

|Spl = np

30/36



Lower Bounds

Theorem
Any ALBA scheme with completeness &
soundness errors < 27 must have Q(\)

proof size. 0 0 0 0 0 0 0
Proof outline
P (random variable) T <— PFOVGH(SP) D D D D D D D

|Spl = np

30/36



Lower Bounds

Theorem
Any ALBA scheme with completeness &
soundness errors < 27 must have Q(\)

proof size. 0 0 0 0 0 0 0
Proof outline
P (random variable) T <— PFOVGH(SP) D D D D D D D

» suppose || is small

|Spl = np

30/36



Lower Bounds

Theorem
Any ALBA scheme with completeness &
soundness errors < 27 must have Q(\)

proof size. 0 0 0 0 0 0 0
Proof outline random S
> (random variable) 7 ¢— Prove/(S),) DD D D D D D
» suppose || is small
» take random S¢ C S, with |S¢| = n¢ b b D D D A b
O 0 0 O O D D

30/36



Lower Bounds

Theorem
Any ALBA scheme with completeness &
soundness errors < 27 must have Q(\)

proof size. 0 0 0 0 0 0 0
Proof outline random S
> (random variable) 7 ¢— Prove/(S),) DD D D D D D
» suppose || is small
» take random S¢ C S, with |S¢| = n¢ b b D D D A b
» Pry s [m C S is big N 0 0 0 0 0 0

30/36



Lower Bounds

Theorem
Any ALBA scheme with completeness &
soundness errors < 27 must have Q(\) S
proof size. 0 0 0 0 0 0 0
Proof outline random S
> (random variable) 7 ¢— Prove/(S),) DID D DI DI D D

» suppose || is small
» take random S¢ C S, with |S¢| = n¢ b b b b b A A
» Pry s [m C S is big
> by averaging argument 35; s.t.
Pry[r C 5] is big 1Sp] = np

30/36



Lower Bounds

Theorem
Any ALBA scheme with completeness &
soundness errors < 27 must have Q(\) S
proof size. 0 0 0 0 0 0 0
Proof outline random S
> (random variable) 7 ¢— Prove/(S),) DID D DI DI D D

» suppose || is small

» take random S¢ C S, with |S¢| = n¢ D D D D D D D
» Pry s [m C S is big

>

by averaging argument 35; s.t.
Pry[r C 5] is big |Sp| = np

v

Pry[r C §f] is small by soundness

30/36



Lower Bounds

Theorem
Any ALBA scheme with completeness &
soundness errors < 27 must have Q(\) S
proof size. 0 0 0 0 0 0 0
Proof outline random S
> (random variable) 7 ¢— Prove/(S),) DID D D! DI D D
» suppose || is small
» take random S¢ C S, with |S¢| = n¢ D D D D D N N
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» by averaging argument 35; s.t.
Pry[r C §f] is big 1S, = np
» Pryr C 5] is small by soundness
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Lower Bounds (cont.)

scheme proof size (elements) | comm. rounds | comm. complexity
A=3
ALBA Tog(ms /)
decentralized ALBAL AV 1 0(\2)
log(np /)

in a simplified model
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Lower Bounds (cont.)

scheme proof size (elements) | comm. rounds | comm. complexity
A3
ALBA B
. 1 AQ(VA) 2
decentralized ALBA m 1 O()\ )

in a simplified model
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All Results

setting lower bound | Telescope
P) Atlog A6

ALBA oa(np/m) | Tog(ny/n0)
decentralized ALBA; AHQ(VA) A0V
communication O(\?) log(np/ne) | log(np/ng)

Table: Proof size
scheme average worst case
Telescope prover

O(n+ M%) | O(n+ )3

decentralized Telescope aggregator; 0()2)
communication O(\?)

0(\3)

Telescope verifier

o)

o(\)

Table: Running time
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Knowledge Extraction (RO, straight-line)

» AMW produces valid proof with probability
27 +¢

P> goal: extract > ny weight-1 elements with
probability €
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Knowledge Extraction (RO, straight-line) (cont.)

Lemma
Pr[A queries < n; elements and succeeds] < 2—A

Issue: adaptive adversary => union bound doesn't work
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Lemma
Pr[A queries < ny elements and succeeds] < 2—A

Issue: adaptive adversary => union bound doesn't work

Proof.
» think about indices as inputs to Hy, Ho

» union bound applies
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Knowledge Extraction (RO, straight-line) (cont.)

Lemma
Pr[A queries < ny elements and succeeds] < 2—A

Issue: adaptive adversary => union bound doesn't work

Proof.
» think about indices as inputs to Hy, Ho

» union bound applies

We achieved:

» information-theoretic security
when weight function is fixed in advance

» can get security assuming a bound on the number of RO queries
when weight function can depend on RO
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Telescope in CRS3 model

> Replace RO with PRF?
» CRS = PRF key
» PRF key need not be secret

2pseudorandom Function
3Common Reference String

35/36



Knowledge Extraction in CRS model

» Knowledge extraction via rewinding:

> suppose A" (crs) succeeds with
probability 27 + & —
extract with probability £
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Knowledge Extraction in CRS model

» Knowledge extraction via rewinding:
> suppose A" (crs) succeeds with
probability 27* 4+ ¢ =
extract with probability ¢
> while |S¢| < ng, AW (crs) outputs weight-1
elements outside of S¢ with probability

Algorithm Extract'V(A)

Sf = @;
while |5f’ < ng do
crs < GenCRS();
7+ AW (crs);
> PrfrnW\S>1]>¢
S¢ = 5 U (7‘(‘ N W),
return S;;
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Knowledge Extraction in CRS model

» Knowledge extraction via rewinding:

> suppose A" (crs) succeeds with
probability 27* 4+ ¢ =
extract with probability ¢
> while |S¢| < ng, AW (crs) outputs weight-1
elements outside of S¢ with probability
> We achieve:

> security when weight function is fixed in
advance
» can get security when weight function is

not fixed in advance if PRF key is chosen
by RO

Algorithm Extract'V(A)

Sf = @;
while |5f’ < ng do
crs < GenCRS();
7+ AW (crs);
> PrfrnW\S>1]>¢
S¢ = 5 U (7‘(‘ N W),
return S;;
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