Space-stretch tradeoft
IN routing
revisited

Tolik Zinovyev (Boston University)

Routing in computer networks, model

* Undirected graph (network)

N

Routing in computer networks, model

* Undirected graph (network)

* Nodes have labels (a binary string)

W

Routing in computer networks, model

* Undirected graph (network)
* Nodes have labels (a binary string)

* Nodes have ports

AN

Routing in computer networks, model

Undirected graph (network)

Nodes have labels (a binary string)

Nodes have ports

Nodes have routing programs

packet header, new packet header,

incoming port outgoing port .

> Routing program

EIETIEI AT e P e s e e

Space usage: program size

—» > = —

Routing stretch: route length / distance

route

shortest path

Model, continued

* Adversarial / non-adversarial labels

* Adversarial: labels given; aka name-
independent model

* Non-adversarial: designer labels; aka
labeled model

Model, continued

* Adversarial / non-adversarial labels

* Adversarial: labels given; aka name-
independent model

* Non-adversarial: designer labels; aka
labeled model

* Adversarial / non-adversarial ports

* Adversarial: ports given

* Non-adversarial: designer ports

LoWe i Bulias It Helegnier aal ihoiis

Work

Gavoille and Perennes (1996)

Buhrman, Hoepman, Vitanyi (1996)

Gavoille and Gengler (2001)

Stretch

< 5/3

1

<3

Local memory (bits)

Q(n log n) on Q(n) nodes

Q(n) on Q(n) nodes

Q(n) on some node

Notes

Node labels are [n]

complex proof

LoWe i Bulias It Helegnier aal ihoiis

Work Stretch Local memory (bits) Notes

Gavoille and Perennes (1996) <5/3 Q(n log n) on Q(n) nodes Node labels are [n]
Buhrman, Hoepman, Vitanyi (1996) 1 Q(n) on Q(n) nodes

Gavoille and Gengler (2001) <3 Q(n) on some node complex proof
This paper <3 Q(n) on cn nodes, v0<c<1

10

Lower bounds with adversarial ports

Work Stretch Local memory (bits) Notes

Peleg and Upfal (1989) 3 Q(n'®) on some node
5 Q(nY¥") on some node
s=1 Q(nYc*2) on some node

Thorup and Zwick (2001) 3 Q(n'2) on some node Does not work in standard model;
5 Q(n'®) on some node relies on girth conjecture

< 2k+1 Q(n¥) on some node

11

Lower bounds with adversarial ports

Work Stretch Local memory (bits) Notes

Peleg and Upfal (1989) 3 Q(n'®) on some node
5 Q(nY¥") on some node
s=1 Q(nYc*2) on some node

Thorup and Zwick (2001) 3 Q(n'2) on some node Does not work in standard model;
5 Q(n'®) on some node relies on girth conjecture

< 2k+1 Q(n¥) on some node

12

Lower bounds with adversarial ports

Work
Peleg and Upfal (1989)

Thorup and Zwick (2001)

This paper

Local memory (bits)

Q(n%) on some node
Q(nY¥") on some node
Q(nYc*2) on some node

Q(n¥?) on some node
Q(n'®) on some node
Q(n'¥*) on some node

Q(n*¥* log n) on some node

Notes

Does not work in standard model;
relies on girth conjecture

relies on girth conjecture

13

Previous proof does not work

* Mikkel Thorup’s and Uri Zwick’s proof relies on a reduction
from approximate distance oracles

compact data
structure

* Distance oracles with stretch <2k+1 require Q(n™"¥) bits of
storage [1]

[1]: Mikkel Thorup and Uri Zwick. Approximate distance oracles. 2001

14

Previous proof does not work

* Reduction in [2]:
* Given a routing scheme with small size, construct small
distance oracle
* Distance oracle simulates routing and counts hops

u§ header, port
» routing [

program What is next node?

header, ?
> ? >

15

[2]: Mikkel Thorup and Uri Zwick. Compact routing schemes. 2001

New proof

* Works in the standard model

* Borrows inspiration from Thorup’s and Zwick’s proof by
using graphs with large girth

* Property: routing to a neighbor with stretch <2k+1 in
graph with girth 2k+2 traverses edge toward neighbor

<2k+1 path ?

16

New proof

* Routing scheme must know port toward neighbor!

* Make extractor program
* input: routing scheme, node labels, advice string

* output: port assignment for the whole graph

<2k+1 path ?

port

) ;

et el e

0]
adv. 010
: 01110

<
’

—" d
-
-
-
-
-
-
-
-
”
-

Rl R

* Start with unknown port assignment adv. 01001110...

* Repeat:
* Take vertex x with incomplete port
assignment

-
-am="
-

—---
--——
—'--

-
- -
-
-
-
-
-
-
-
-
-
-
-
PR
-

Rl R

* Start with unknown port assignment adv. 01001110...

* Repeat:
* Take vertex x with incomplete port
assignment
* Take neighbor y with unknown
outgoing port

-
-
-
-

--——
-
-
---—
-

-
- -
-
-
-
-
-
-
-
-
-
-
-
PR
-

Rl R

* Start with unknown port assignment
* Repeat:
* Take vertex x with incomplete port
assignment
* Take neighbor y with unknown
outgoing port
* Simulate routing from xtoy

adv. 01001110...

-

-V
-=="
-

-
-
-

-
-
-
-
-
-
-
-
.
’ -
-
-
-
-
-
-
-

21

Rl R

* Start with unknown port assignment
* Repeat:
* Take vertex x with incomplete port
assignment
* Take neighbor y with unknown
outgoing port
* Simulate routing from xtoy

adv. 01001110...

-

-
-
-
-
-
-
-
-
.
’ -
-
-
-
-
-
-
-

22

Rl R

* Start with unknown port assignment
* Repeat:
* Take vertex x with incomplete port
assignment
* Take neighbor y with unknown
outgoing port
* Simulate routing from xtoy

adv. 01001110...

-

-V
-=="
-

-
-
-

-
-
-
-
-
-
-
-
.
’ -
-
-
-
-
-
-
-

23

Rl R

* Start with unknown port assignment
* Repeat:
* Take vertex x with incomplete port
assignment
* Take neighbor y with unknown
outgoing port
* Simulate routing from xtoy

adv. 01001110...

-

-V
-=="
-

-
-
-

-
-
-
-
-
-
-
-
.
’ -
-
-
-
-
-
-
-

24

Rl R

* Start with unknown port assignment
* Repeat:
* Take vertex x with incomplete port
assignment
* Take neighbor y with unknown
outgoing port
* Simulate routing from xtoy

adv. 01001110...

-

-

-V
-=="
-

-
-
-

-
-
-
-
-
-
-
-
.
’ -
-
-
-
-
-
-
-

25

Rl R

* Start with unknown port assignment
* Repeat:
* Take vertex x with incomplete port
assignment
* Take neighbor y with unknown
outgoing port
* Simulate routing from xtoy

adv. 01001110...

3

-

-V
-=="
-

-
-
-

-
-
-
-
-
-
-
-
.
’ -
-
-
-
-
-
-
-

26

Rl R

* Start with unknown port assignment
* Repeat:
* Take vertex x with incomplete port
assignment
* Take neighbor y with unknown
outgoing port
* Simulate routing from xtoy

adv. 01001110...

3

-

-V
-=="
-

-
-
-

-
-
-
-
-
-
-
-
.
’ -
-
-
-
-
-
-
-

27

Rl R

* Start with unknown port assignment
* Repeat:
* Take vertex x with incomplete port
assignment
* Take neighbor y with unknown
outgoing port
* Simulate routing from xtoy

adv. 01001110...

-

-V
-=="
-

-
-
-

-
-
-
-
-
-
-
-
.
’ -
-
-
-
-
-
-
-

28

Rl R

* Start with unknown port assignment
* Repeat:
* Take vertex x with incomplete port
assignment
* Take neighbor y with unknown
outgoing port
* Simulate routing from xtoy

adv. 01001110...

-

-V
-=="
-

-
-
-

-
-
-
-
-
-
-
-
.
’ -
-
-
-
-
-
-
-

29

Rl R

* Start with unknown port assignment
* Repeat:
* Take vertex x with incomplete port
assignment
* Take neighbor y with unknown
outgoing port
* Simulate routing from xtoy

adv. 01001110...

-

-V
-=="
-

-
-
-

-
-
-
-
-
-
-
-
.
’ -
-
-
-
-
-
-
-

30

Rl R

* Start with unknown port assignment
* Repeat:
* Take vertex x with incomplete port
assignment
* Take neighbor y with unknown
outgoing port
* Simulate routing from xtoy
* As last step, learn port at x toward y

adv. 01001110...

-

-
-
-
-
-
-
-
-
.
’ -
-
-
-
-
-
-
-

31

Rl R

* Start with unknown port assignment
* Repeat:
* Take vertex x with incomplete port
assignment
* Take neighbor y with unknown
outgoing port
* Simulate routing from xtoy
* As last step, learn port at x toward y
* 1in 4k ports learned from routing
scheme

adv. 01001110...

-

-V
-=="
-

-
-
-

-
-
-
-
-
-
-
-
.
’ -
-
-
-
-
-
-
-

32

Results

* Thm: if graph with n vertices, m edges, girth 2k+2 exists,
then routing with stretch <2k+1 requires Q(m/n log(m/n))
bits at some node

33

Results

* Thm: if graph with n vertices, m edges, girth 2k+2 exists,
then routing with stretch <2k+1 requires Q(m/n log(m/n))
bits at some node

* Cor: assuming girth conjecture by Paul Erd6s, routing with
stretch <2k+1 requires Q(n"* log n) bits at some node

34

Results

Thm: if graph with n vertices, m edges, girth 2k+2 exists,
then routing with stretch <2k+1 requires Q(m/n log(m/n))
bits at some node

Cor: assuming girth conjecture by Paul Erd0s, routing with
stretch <2k+1 requires Q(n"* log n) bits at some node
Girth conjecture by Paul Erd0s: there exists a graph with

* n nodes

. Q(n“”k) edges

* girth 2k+2

Proven for k=1,2,3,5; weaker results for other k

35

Girth conjecture reguirement

* All known approaches: prove that many routing schemes
are necessary (including last proof)

o If 2000"(+1klegn routing schemes are needed to satisfy all n-
vertex graphs with stretch <2k+1, then there exists a
graph with Q(n""X) edges and girth 2k+2

36

all n-vertex graphs

their spanners routing schemes

37

subgraphs that approximately
preserve distances

all n-vertex graphs

their spanners routing schemes

38

subgraphs that approximately
preserve distances

spanners with large girth known

all n-vertex graphs

their spanners routing schemes

39

subgraphs that approximately
preserve distances

spanners with large girth known

all n-vertex graphs

their spanners routing schemes

too small

40

Open problems

1. Can we overcome girth conjecture in labeled model?

* (in name-independent model we can [1])

2. Unconditional (non-adversarial ports) lower bound for stretch = 3?

[1]: Ittai Abraham, Cyril Gavoille, and Dahlia Malkhi. On space-stretch trade-offs: Lower bounds. 2006

41

Extra slides

42

Routing in computer networks, example

1110, 0 ho, 1
—

Routing in computer networks, example

1110, 0 ho, 1
—

Routing in computer networks, example

1110, 0 ho, 1
—

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45

