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Routing in computer networks, model

Undirected graph (network)

Nodes have labels (a binary string)

Nodes have ports

Nodes have routing programs

packet header, new packet header,

incoming port outgoing port .

> Routing program
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Space usage: program size
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Routing stretch: route length / distance

route

shortest path



Model, continued

* Adversarial / non-adversarial labels

* Adversarial: labels given; aka name-
independent model

* Non-adversarial: designer labels; aka
labeled model
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* Adversarial / non-adversarial labels

* Adversarial: labels given; aka name-
independent model

* Non-adversarial: designer labels; aka
labeled model

* Adversarial / non-adversarial ports

* Adversarial: ports given

* Non-adversarial: designer ports
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Work

Gavoille and Perennes (1996)

Buhrman, Hoepman, Vitanyi (1996)

Gavoille and Gengler (2001)

Stretch

< 5/3

1

<3

Local memory (bits)

Q(n log n) on Q(n) nodes

Q(n) on Q(n) nodes

Q(n) on some node

Notes

Node labels are [n]

complex proof
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Work Stretch  Local memory (bits) Notes

Gavoille and Perennes (1996) <5/3 Q(n log n) on Q(n) nodes Node labels are [n]
Buhrman, Hoepman, Vitanyi (1996) 1 Q(n) on Q(n) nodes

Gavoille and Gengler (2001) <3 Q(n) on some node complex proof
This paper <3 Q(n) on cn nodes, v0<c<1
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Lower bounds with adversarial ports

Work Stretch  Local memory (bits) Notes

Peleg and Upfal (1989) 3 Q(n'®) on some node
5 Q(nY¥") on some node
s=1 Q(nYc*2) on some node

Thorup and Zwick (2001) 3 Q(n'2) on some node Does not work in standard model;
5 Q(n'®) on some node relies on girth conjecture

< 2k+1 Q(n¥) on some node
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Lower bounds with adversarial ports

Work
Peleg and Upfal (1989)

Thorup and Zwick (2001)

This paper

Local memory (bits)

Q(n%) on some node
Q(nY¥") on some node
Q(nYc*2) on some node

Q(n¥?) on some node
Q(n'®) on some node
Q(n'¥*) on some node

Q(n*¥* log n) on some node

Notes

Does not work in standard model;
relies on girth conjecture

relies on girth conjecture
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Previous proof does not work

* Mikkel Thorup’s and Uri Zwick’s proof relies on a reduction
from approximate distance oracles

compact data
structure

* Distance oracles with stretch <2k+1 require Q(n™"¥) bits of
storage [1]

[1]: Mikkel Thorup and Uri Zwick. Approximate distance oracles. 2001
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Previous proof does not work

* Reduction in [2]:
* Given a routing scheme with small size, construct small
distance oracle
* Distance oracle simulates routing and counts hops

u§ header, port
» routing [

program What is next node?

header, ?
> ? >
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[2]: Mikkel Thorup and Uri Zwick. Compact routing schemes. 2001



New proof

* Works in the standard model

* Borrows inspiration from Thorup’s and Zwick’s proof by
using graphs with large girth

* Property: routing to a neighbor with stretch <2k+1 in
graph with girth 2k+2 traverses edge toward neighbor

<2k+1 path ?
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New proof

* Routing scheme must know port toward neighbor!

* Make extractor program
* input: routing scheme, node labels, advice string

* output: port assignment for the whole graph

<2k+1 path ?

port

) ;
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Rl R

* Start with unknown port assignment adv. 01001110...

* Repeat:
* Take vertex x with incomplete port
assignment
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Rl R

* Start with unknown port assignment adv. 01001110...

* Repeat:
* Take vertex x with incomplete port
assignment
* Take neighbor y with unknown
outgoing port
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Rl R

* Start with unknown port assignment
* Repeat:
* Take vertex x with incomplete port
assignment
* Take neighbor y with unknown
outgoing port
* Simulate routing from xtoy
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Rl R
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Rl R

* Start with unknown port assignment
* Repeat:
* Take vertex x with incomplete port
assignment
* Take neighbor y with unknown
outgoing port
* Simulate routing from xtoy
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Rl R

* Start with unknown port assignment
* Repeat:
* Take vertex x with incomplete port
assignment
* Take neighbor y with unknown
outgoing port
* Simulate routing from xtoy

adv. 01001110...
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Rl R

* Start with unknown port assignment
* Repeat:
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Rl R
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Rl R
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Rl R

* Start with unknown port assignment
* Repeat:
* Take vertex x with incomplete port
assignment
* Take neighbor y with unknown
outgoing port
* Simulate routing from xtoy
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Rl R

* Start with unknown port assignment
* Repeat:
* Take vertex x with incomplete port
assignment
* Take neighbor y with unknown
outgoing port
* Simulate routing from xtoy
* As last step, learn port at x toward y
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Rl R

* Start with unknown port assignment
* Repeat:
* Take vertex x with incomplete port
assignment
* Take neighbor y with unknown
outgoing port
* Simulate routing from xtoy
* As last step, learn port at x toward y
* 1in 4k ports learned from routing
scheme
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Results

* Thm: if graph with n vertices, m edges, girth 2k+2 exists,
then routing with stretch <2k+1 requires Q(m/n log(m/n))
bits at some node
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Results

* Thm: if graph with n vertices, m edges, girth 2k+2 exists,
then routing with stretch <2k+1 requires Q(m/n log(m/n))
bits at some node

* Cor: assuming girth conjecture by Paul Erd6s, routing with
stretch <2k+1 requires Q(n"* log n) bits at some node
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Results

Thm: if graph with n vertices, m edges, girth 2k+2 exists,
then routing with stretch <2k+1 requires Q(m/n log(m/n))
bits at some node

Cor: assuming girth conjecture by Paul Erd0s, routing with
stretch <2k+1 requires Q(n"* log n) bits at some node
Girth conjecture by Paul Erd0s: there exists a graph with

* n nodes

. Q(n“”k) edges

* girth 2k+2

Proven for k=1,2,3,5; weaker results for other k
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Girth conjecture reguirement

* All known approaches: prove that many routing schemes
are necessary (including last proof)

o If 2000"(+1klegn routing schemes are needed to satisfy all n-
vertex graphs with stretch <2k+1, then there exists a
graph with Q(n""X) edges and girth 2k+2
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all n-vertex graphs

their spanners routing schemes
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subgraphs that approximately
preserve distances

all n-vertex graphs

their spanners routing schemes
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subgraphs that approximately
preserve distances

spanners with large girth known

all n-vertex graphs

their spanners routing schemes
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subgraphs that approximately
preserve distances

spanners with large girth known

all n-vertex graphs

their spanners routing schemes

too small
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Open problems

1. Can we overcome girth conjecture in labeled model?

* (in name-independent model we can [1])

2. Unconditional (non-adversarial ports) lower bound for stretch = 3?

[1]: Ittai Abraham, Cyril Gavoille, and Dahlia Malkhi. On space-stretch trade-offs: Lower bounds. 2006
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Extra slides
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