Space-stretch tradeoft
IN routing
revisited

Tolik Zinovyev



Routing in computer networks, model

* Undirected graph (network)




Routing in computer networks, model

* Undirected graph (network)

*  Nodes have labels (a binary string)




Routing in computer networks, model

* Undirected graph (network)
* Nodes have labels (a binary string)

*  Nodes have ports




Routing in computer networks, model

* Undirected graph (network)

*  Nodes have labels (a binary string)

*  Nodes have ports

* Nodes have routing programs

packet header,
incoming port

Routing program

new packet header,
outgoing port

.
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EIETIEI AT e P e s e e

* Space usage (program size)
* Routing stretch

* Route length / (shortest) distance
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* Adversarial: labels given, more practical
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* Adversarial / non-adversarial labels (bit strings)

* Adversarial: labels given, more practical

* Non-adversarial: designer labels, often used in adversarial labels
routing schemes

* Adversarial / non-adversarial ports (1..deg)

* Adversarial: ports given

* Non-adversarial: designer ports



Known results + contribution

Gavoille and Perennes (1996) <5/3 Q(n log n) on Q(n) nodes Node labels are [n]
Buhrman et al. (1996) 1 Q(n) on Q(n) nodes

Gavoille and Gengler (2001) <3 Q(n) on some node complex proof
This paper <3 Q(n) on cn nodes, v0<c<1

Non-adversarial (+ adversarial) ports
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Known results + contribution

Work Stretch Local memory (bits) Notes

Gavoille and Perennes (1996) <5/3 Q(n log n) on Q(n) nodes Node labels are [n]
Buhrman et al. (1996) 1 Q(n) on Q(n) nodes

Gavoille and Gengler (2001) <3 Q(n) on some node complex proof
This paper <3 Q(n) on cn nodes, v0<c<1

Non-adversarial (+ adversarial) ports

Work Stretch Local memory (bits) Notes
Peleg and Upfal (1989) s=>1 Q(n**2) on some node
Thorup and Zwick (2001) < 2k+1 Q(nY%) on some node Works in a different model;

relies on conjecture
This paper < 2k+1 Q(nY* log n) on some node relies on conjecture

Adversarial ports

Work Stretch Local memory (bits) Notes
Abraham et al. (2006) < 2k+1 Q((n log n)*) on some node requires weighted graphs

Adversarial ports and labels



Some upper bounds

Thorup and Zwick (2001) 4k - 5 O(n* on every node
Chechik (2013) ck, c<4 O(n¥ log D) on every node

Non-adversarial labels, adversarial ports

Abraham et al. (2008) 3 O(n) on every node
Abraham et al. (2006) O(k) O(n*% on every node

Adversarial labels, adversarial ports



Lower bounds with non-adversarial ports

Thm: there is a graph with n
vertices for which all stretch <3
routing schemes have a routing
program of size Q(n) bits

Work

Gavoille and Perennes (1996)
Buhrman et al. (1996)
Gavoille and Gengler (2001)
This paper

Stretch
<5/3

1

<3

<3

Non-adversarial (+ adversarial) ports

Work
Peleg and Upfal (1989)
Thorup and Zwick (2001)

This paper

Adversarial ports

Work
Abraham et al. (2006)

Adversarial ports and labels

Stretch
s=>1

< 2k+1

< 2k+1

Stretch
< 2k+1

Local memory (bits)
Q(n log n) on Q(n) nodes
Q(n) on Q(n) nodes
Q(n) on some node

Q(n) on cn nodes, v0<c<1

Local memory (bits)
Q(n**2) on some node

Q(nY%) on some node

Q(nY* log n) on some node

Local memory (bits)

Q((n log n)*) on some node

Notes

Node labels are [n]

complex proof

Notes

Works in a different model;
relies on conjecture

relies on conjecture

Notes

requires weighted graphs



Lower bounds with non-adversarial ports

* Idea: consider a family of graphs and show that 2%""2 routing schemes are
needed to satisfy all graphs

*  Then Q(n?) bits are necessary to describe some routing scheme

* Then at least one routing program must be Q(n) bits



* Let n=2q + 2, and consider a family of bipartite graphs with
parts Aand B
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* Let n=2q + 2, and consider a family of bipartite graphs with

parts Aand B
* aopis connected to all b;, by is connected to all a;

* All other nodes are connected arbitrarily (29"2 graphs)
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Let n = 2q + 2, and consider a family of bipartite graphs with
parts Aand B

ao is connected to all b;, bo is connected to all a;

All other nodes are connected arbitrarily (292 graphs)
Routing to a neighbor must take the shortest path!
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* Let's show that a single routing scheme cannot support

many graphs

* Fix a routing scheme and node labels, and
count supported graphs

* Take any v € A\{ao}, define X : B -» NU{0}
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Let's show that a single routing scheme cannot support

many graphs

Fix a routing scheme and node labels, and

count supported graphs

Take any v € A\ {ao}, define X: B » Nu{0}

Let M = max{X(u) : u € B}

deg(v) = M; otherwise, routing through undefined port
deg(v) = M; otherwise, some port is unused

Function X(u) partitions B based on outgoing port number
Neighbor behind port i must be in part i
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* si possible neighbors behind port i
* Neighbors of v can take at most l1s; possible values
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Let si be the size of parti:si= |{u € B: X(u) = i}|

si possible neighbors behind port i

Neighbors of v can take at most Is; possible values

Also know that s;= |B| = g+1

Geometic mean < arithmetic mean: ([Ms)"™ < (Zs)) / M

So, Msi= ((g+1) / M)A M

Differentiating... Maximized when M = (g+1)/ e

[s; < ela*re

Any routing scheme with fixed labels satisfies at most e(@*/ed
graphs in the family




* Routing schemes necessary:
(# graphs) / (# graphs per routing scheme) / (# node labels)
* Logarithm is in Q(n?)



Lower bounds with non-adversarial ports

Q(n) bits of storage on
arbitrary constant fraction of
nodes

Work

Gavoille and Perennes (1996)
Buhrman et al. (1996)
Gavoille and Gengler (2001)
This paper

Stretch
<5/3

1

<3

<3

Non-adversarial (+ adversarial) ports

Work
Peleg and Upfal (1989)
Thorup and Zwick (2001)

This paper

Adversarial ports

Work
Abraham et al. (2006)

Adversarial ports and labels

Stretch
s=>1

< 2k+1

< 2k+1

Stretch
< 2k+1

Local memory (bits)
Q(n log n) on Q(n) nodes
Q(n) on Q(n) nodes
Q(n) on some node

Q(n) on cn nodes, v0<c<1

Local memory (bits)
Q(n**2) on some node

Q(nY%) on some node

Q(nY* log n) on some node

Local memory (bits)

Q((n log n)*) on some node

Notes

Node labels are [n]

complex proof

Notes

Works in a different model;
relies on conjecture

relies on conjecture

Notes

requires weighted graphs

Same neighbor configurations
argument, but more careful
counting



Lower bounds with adversarial ports

In 2001 Thorup and Zwick
claim Q(n"¥) bits of storage for
stretch <2k+1

Work

Gavoille and Perennes (1996)
Buhrman et al. (1996)
Gavoille and Gengler (2001)
This paper

Stretch
<5/3

1

<3

<3

Non-adversarial (+ adversarial) ports

Work
Peleg and Upfal (1989)
Thorup and Zwick (2001)

This paper

Adversarial ports

Work
Abraham et al. (2006)

Adversarial ports and labels

Stretch
s=>1

< 2k+1

< 2k+1

Stretch
< 2k+1

Local memory (bits)
Q(n log n) on Q(n) nodes
Q(n) on Q(n) nodes
Q(n) on some node

Q(n) on cn nodes, v0<c<1

Local memory (bits)
Q(n**2) on some node

Q(nY%) on some node

Q(nY* log n) on some node

Local memory (bits)

Q((n log n)*) on some node

Notes

Node labels are [n]

complex proof

Notes

Works in a different model;
relies on conjecture

relies on conjecture

Notes

requires weighted graphs

Proof idea: reduction from a
lower bound for approximate
distance oracles

Distance oracles report
approximate distances in a
graph



Girth conjectire

* The lower bound for distance oracles relies on existence of
dense graphs with large girth
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Girth conjectire

* The lower bound for distance oracles relies on existence of def: graph G has
dense graphs with large girth girth s iff all

* Girth conjecture by Paul Erdds: there exists a graph with cycles in G have
* n nodes length = s
* Q(n'Vk) edges
* girth 2k+2

* Proven for k=1,2,3,5; weaker results for other k




Leliceesl A inE e citaes e s

Prove: distance oracles with stretch < 2k+1 require m bits
of storage

* Take a graph with n nodes, m edges and girth 2k+2

* All subsets of edges form a family of 2™ graphs
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Leliceesl A inE e citaes e s

Prove: distance oracles with stretch < 2k+1 require m bits

of storage G
Take a graph with n nodes, m edges and girth 2k+2
All subsets of edges form a family of 2™ graphs

Two distinct graphs require distinct distance oracles
Need 2™ distinct distance oracles = m bits for some Gy
By girth conjecture take m = Q(n""¥)
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* Suppose there is a routing scheme with low space complexity and low stretch
* Construct a distance oracle that simulates routing



ReciicOn o siEneaeiaas

* Suppose there is a routing scheme with low space complexity and low stretch
* Construct a distance oracle that simulates routing
* Does not work in the standard model (ports in 1..deg(v))



Lower bounds with adversarial ports

Thm: if graph with n vertices,
m edges, girth 2k+2 exists,
then routing with stretch <
2k+1 requires Q(m/n log(m/n))
bits at some node

Work

Gavoille and Perennes (1996)
Buhrman et al. (1996)
Gavoille and Gengler (2001)
This paper

Stretch
<5/3

1

<3

<3

Non-adversarial (+ adversarial) ports

Work
Peleg and Upfal (1989)
Thorup and Zwick (2001)

This paper

Adversarial ports

Work
Abraham et al. (2006)

Adversarial ports and labels

Stretch
s=>1

< 2k+1

< 2k+1

Stretch
< 2k+1

Local memory (bits)
Q(n log n) on Q(n) nodes
Q(n) on Q(n) nodes
Q(n) on some node

Q(n) on cn nodes, v0<c<1

Local memory (bits)
Q(n**2) on some node

Q(nY%) on some node

Q(nY* log n) on some node

Local memory (bits)

Q((n log n)*) on some node

Notes

Node labels are [n]

complex proof

Notes

Works in a different model;
relies on conjecture

relies on conjecture

Notes

requires weighted graphs

Cor: routing with stretch <
2k+1 requires Q(n"%log n) bits
at some node
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* Choose a graph with n nodes, m edges and girth 2k+2
* Consider all possible port assignments
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Choose a graph with n nodes, m edges and girth 2k+2
Consider all possible port assignments

Let m; be the degree of vertex i

There are Nm;! different port assignments

Mm;! = 2¢m logm/n)

Want to prove that a single routing scheme cannot
support many port assignments




* Construct an extractor program that given a routing
scheme, node labels and an advice string returns the
port assignment

* If the advice string is short, intuitively the routing
scheme must contain much information




Construct an extractor program that given a routing

scheme, node labels and an advice string returns the

port assignment

If the advice string is short, intuitively the routing

scheme must contain much information

More formally:

* fix routing scheme and node labels

* then extractor maps advice string to port assignment

* V supported port assignments 3 advice string

* all advice strings are short = not many supported port
assignments




* Initially port assignment is completely unknown
* while some node has incomplete port assignment
* let x be a node with incomplete port assignment with
the largest degree
let y be a neighbor with unknown outgoing port
r « read the number of hops
for r times:
* invoke routing program at x
* read the next hop if unknown
* let z be the next hop
* read the incoming port at the next hop if unknown
* X &2
learn source’s port towards destination ,for free”
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Bit string has length B

B < (1-1/(4k)) £ mi log m

Compare to the ,bit-size” of a port assignment:
~ 2 m;log m;

The difference is Q(Z m;log m;) = Q(m log(m/n))




Girth conjecture reguirement

* All known approaches: prove that many routing schemes are necessary



Girth conjecture reguirement

* All known approaches: prove that many routing schemes are necessary
o If 20 1+17klegn) routing schemes are needed to satisfy all n-vertex graphs
with stretch < 2k+1
then there exists a graph with Q(n'*'’k) edges and girth 2k+2






subgraphs that approximately
preserve distances

all n-vertex graphs

their spanners routing schemes



subgraphs that approximately
preserve distances

spanners with large girth known

all n-vertex graphs

their spanners routing schemes
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Work Stretch Local memory (bits) Notes
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Conclusion

Many routing schemes
needed = dense graphs with
large girth

Work

Gavoille and Perennes (1996)
Buhrman et al. (1996)
Gavoille and Gengler (2001)
This paper

Stretch
<5/3

1

<3

<3

Non-adversarial (+ adversarial) ports

Work
Peleg and Upfal (1989)
Thorup and Zwick (2001)

This paper

Adversarial ports

Work
Abraham et al. (2006)

Adversarial ports and labels

Stretch
s=>1

< 2k+1

< 2k+1

Stretch
< 2k+1

Local memory (bits)
Q(n log n) on Q(n) nodes
Q(n) on Q(n) nodes
Q(n) on some node

Q(n) on cn nodes, v0<c<1

Local memory (bits)
Q(n**2) on some node

Q(nY%) on some node

Q(nY* log n) on some node

Local memory (bits)

Q((n log n)*) on some node

Notes

Node labels are [n]

complex proof

Notes

Works in a different model;
relies on conjecture

relies on conjecture

Notes

requires weighted graphs

Can we overcome girth
conjecture with a different
approach?



	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 71
	Slide 72
	Slide 73
	Slide 74
	Slide 75
	Slide 76
	Slide 77

