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Routing in computer networks, model
● Undirected graph (network)
● Nodes have labels (a binary string)
● Nodes have ports
● Nodes have routing programs

Routing program

packet header, 
incoming port

new packet header, 
outgoing port
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Routing characteristics
● Space usage (program size)
● Routing stretch

● Route length / (shortest) distance



Model, continued
● Adversarial / non-adversarial labels (bit strings)

● Adversarial: labels given, more practical
● Non-adversarial: designer labels, often used in adversarial labels 
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Model, continued
● Adversarial / non-adversarial labels (bit strings)

● Adversarial: labels given, more practical
● Non-adversarial: designer labels, often used in adversarial labels 

routing schemes
● Adversarial / non-adversarial ports (1..deg)

● Adversarial: ports given
● Non-adversarial: designer ports



Known results + contribution
Work Stretch Local memory (bits) Notes

Gavoille and Perennes (1996) < 5/3 Ω(n log n) on Ω(n) nodes Node labels are [n]

Buhrman et al. (1996) 1 Ω(n) on Ω(n) nodes

Gavoille and Gengler (2001) < 3 Ω(n) on some node complex proof

This paper < 3 Ω(n) on cn nodes, 0<c<1∀
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Some upper bounds
Work Stretch Local memory (bits)

Thorup and Zwick (2001) 4k - 5 Õ(n1/k) on every node

Chechik (2013) ck, c<4 Õ(n1/k log D) on every node

Non-adversarial labels, adversarial ports

Work Stretch Local memory (bits)

Abraham et al. (2008) 3 Õ(√n) on every node

Abraham et al. (2006) O(k) Õ(n1/k) on every node

Adversarial labels, adversarial ports
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Gavoille and Gengler (2001) < 3 Ω(n) on some node complex proof
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Work Stretch Local memory (bits) Notes

Peleg and Upfal (1989) s ≥ 1 Ω(n1/(s+2)) on some node

Thorup and Zwick (2001) < 2k+1 Ω(n1/k) on some node Works in a different model; 
relies on conjecture

This paper < 2k+1 Ω(n1/k log n) on some node relies on conjecture

Adversarial ports

Work Stretch Local memory (bits) Notes

Abraham et al. (2006) < 2k+1 Ω((n log n)1/k) on some node requires weighted graphs

Adversarial ports and labels

Thm: there is a graph with n 
vertices for which all stretch < 3 
routing schemes have a routing 
program of size Ω(n) bits

Lower bounds with non-adversarial ports



Lower bounds with non-adversarial ports
● Idea: consider a family of graphs and show that 2Ω(n^2) routing schemes are 

needed to satisfy all graphs
● Then Ω(n2) bits are necessary to describe some routing scheme
● Then at least one routing program must be Ω(n) bits
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● Let n = 2q + 2, and consider a family of bipartite graphs with 
parts A and B

● a0 is connected to all bi, b0 is connected to all ai
● All other nodes are connected arbitrarily (2q^2 graphs)
● Routing to a neighbor must take the shortest path!

a0 b0

a1 b1

a2 b2

aq bq

...

a3 b3



● Let’s show that a single routing scheme cannot support 
many graphs

● Fix a routing scheme and node labels, and
count supported graphs

● Take any v  A \ {a∈ 0}, define X : B  ℕ {0}→ ∪
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● Let’s show that a single routing scheme cannot support 
many graphs

● Fix a routing scheme and node labels, and
count supported graphs

● Take any v  A \ {a∈ 0}, define X : B  ℕ {0}→ ∪
● Let M = max{X(u) : u  B}∈
● deg(v)  M; otherwise, routing through undefined port≥
● deg(v)  M; otherwise, some port is unused≤
● Function X(u) partitions B based on outgoing port number
● Neighbor behind port i must be in part i

v
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b8
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X(u) = 4



● Let si be the size of part i: si = |{u  B : X(u) = i}|∈
● si possible neighbors behind port i
● Neighbors of v can take at most Πsi possible values
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● Let si be the size of part i: si = |{u  B : X(u) = i}|∈
● si possible neighbors behind port i
● Neighbors of v can take at most Πsi possible values
● Also know that Σsi = |B| = q+1
● Geometic mean  arithmetic mean: (Πs≤ i)1/M  (Σs≤ i) / M
● So, Πsi  ((q+1) / M)^M≤
● Differentiating… Maximized when M = (q+1) / e
● Πsi  e≤ (q+1)/e

● Any routing scheme with fixed labels satisfies at most e(q+1)/e·q 
graphs in the family

a0 b0

v

...

u

1 2

X(u)4



● Routing schemes necessary:
(# graphs) / (# graphs per routing scheme) / (# node labels)

● Logarithm is in Ω(n2)



Work Stretch Local memory (bits) Notes

Gavoille and Perennes (1996) < 5/3 Ω(n log n) on Ω(n) nodes Node labels are [n]

Buhrman et al. (1996) 1 Ω(n) on Ω(n) nodes

Gavoille and Gengler (2001) < 3 Ω(n) on some node complex proof

This paper < 3 Ω(n) on cn nodes, 0<c<1∀

Non-adversarial (+ adversarial) ports

Work Stretch Local memory (bits) Notes

Peleg and Upfal (1989) s ≥ 1 Ω(n1/(s+2)) on some node

Thorup and Zwick (2001) < 2k+1 Ω(n1/k) on some node Works in a different model; 
relies on conjecture

This paper < 2k+1 Ω(n1/k log n) on some node relies on conjecture

Adversarial ports

Work Stretch Local memory (bits) Notes

Abraham et al. (2006) < 2k+1 Ω((n log n)1/k) on some node requires weighted graphs

Adversarial ports and labels

● Ω(n) bits of storage on 
arbitrary constant fraction of 
nodes

● Same neighbor configurations 
argument, but more careful 
counting

Lower bounds with non-adversarial ports
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Work Stretch Local memory (bits) Notes

Abraham et al. (2006) < 2k+1 Ω((n log n)1/k) on some node requires weighted graphs

Adversarial ports and labels

● In 2001 Thorup and Zwick 
claim Ω(n1/k) bits of storage for 
stretch <2k+1

● Proof idea: reduction from a 
lower bound for approximate 
distance oracles

● Distance oracles report 
approximate distances in a 
graph

Lower bounds with adversarial ports
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Girth conjecture
● The lower bound for distance oracles relies on existence of 

dense graphs with large girth
● Girth conjecture by Paul Erdős: there exists a graph with

● n nodes
● Ω(n1+1/k) edges
● girth 2k+2

● Proven for k=1,2,3,5; weaker results for other k

def: graph G has 
girth s iff all 
cycles in G have 
length  s≥
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of storage

● Take a graph with n nodes, m edges and girth 2k+2
● All subsets of edges form a family of 2m graphs
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Lower bound for distance oracle
Prove: distance oracles with stretch < 2k+1 require m bits 
of storage

● Take a graph with n nodes, m edges and girth 2k+2
● All subsets of edges form a family of 2m graphs
● Two distinct graphs require distinct distance oracles
● Need 2m distinct distance oracles  m bits for some⇒
● By girth conjecture take m = Ω(n1+1/k)

G1

G2



Reduction from distance oracles
● Suppose there is a routing scheme with low space complexity and low stretch
● Construct a distance oracle that simulates routing



Reduction from distance oracles
● Suppose there is a routing scheme with low space complexity and low stretch
● Construct a distance oracle that simulates routing
● Does not work in the standard model (ports in 1..deg(v))



Work Stretch Local memory (bits) Notes

Gavoille and Perennes (1996) < 5/3 Ω(n log n) on Ω(n) nodes Node labels are [n]
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Work Stretch Local memory (bits) Notes

Peleg and Upfal (1989) s ≥ 1 Ω(n1/(s+2)) on some node

Thorup and Zwick (2001) < 2k+1 Ω(n1/k) on some node Works in a different model; 
relies on conjecture

This paper < 2k+1 Ω(n1/k log n) on some node relies on conjecture

Adversarial ports

Work Stretch Local memory (bits) Notes

Abraham et al. (2006) < 2k+1 Ω((n log n)1/k) on some node requires weighted graphs

Adversarial ports and labels

● Thm: if graph with n vertices, 
m edges, girth 2k+2 exists, 
then routing with stretch < 
2k+1 requires Ω(m/n log(m/n)) 
bits at some node

● Cor: routing with stretch < 
2k+1 requires Ω(n1/k log n) bits 
at some node

Lower bounds with adversarial ports
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● Choose a graph with n nodes, m edges and girth 2k+2
● Consider all possible port assignments
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● Choose a graph with n nodes, m edges and girth 2k+2
● Consider all possible port assignments
● Let mi be the degree of vertex i
● There are Πmi! different port assignments
● Πmi! = 2Ω(m log(m/n))
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● Choose a graph with n nodes, m edges and girth 2k+2
● Consider all possible port assignments
● Let mi be the degree of vertex i
● There are Πmi! different port assignments
● Πmi! = 2Ω(m log(m/n))

● Want to prove that a single routing scheme cannot 
support many port assignments

x

y

1

2

3
4

5

6

7



● Construct an extractor program that given a routing 
scheme, node labels and an advice string returns the 
port assignment

● If the advice string is short, intuitively the routing 
scheme must contain much information
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● Construct an extractor program that given a routing 
scheme, node labels and an advice string returns the 
port assignment

● If the advice string is short, intuitively the routing 
scheme must contain much information

● More formally:
● fix routing scheme and node labels
● then extractor maps advice string to port assignment
●  ∀ supported port assignments  advice string∃
● all advice strings are short  not many supported port ⇒

assignments
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● Initially port assignment is completely unknown
● while some node has incomplete port assignment

● let x be a node with incomplete port assignment with 
the largest degree

● let y be a neighbor with unknown outgoing port
● r  ← read the number of hops
● for r times:

● invoke routing program at x
● read the next hop if unknown
● let z be the next hop
● read the incoming port at the next hop if unknown
● x  z←

● learn source’s port towards destination „for free“
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● Initially port assignment is completely unknown
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● let x be a node with incomplete port assignment with 
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● let y be a neighbor with unknown outgoing port
● r  ← read the number of hops
● for r times:

● invoke routing program at x
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● Initially port assignment is completely unknown
● while some node has incomplete port assignment

● let x be a node with incomplete port assignment with 
the largest degree

● let y be a neighbor with unknown outgoing port
● r  ← read the number of hops
● for r times:

● invoke routing program at x
● read the next hop if unknown
● let z be the next hop
● read the incoming port at the next hop if unknown
● x  z←

● learn source’s port towards destination „for free“
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● Bit string has length B
● B  (1-1/(4k)) Σ m≲ i log mi
● Compare to the „bit-size“ of a port assignment: 

 Σ m≈ i log mi

● The difference is Ω(Σ mi log mi) = Ω(m log(m/n))
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Girth conjecture requirement
● All known approaches: prove that many routing schemes are necessary



Girth conjecture requirement
● All known approaches: prove that many routing schemes are necessary
● If 2Ω(n^(1+1/k) log n) routing schemes are needed to satisfy all n-vertex graphs 

with stretch < 2k+1
then there exists a graph with Ω(n1+1/k) edges and girth 2k+2



all n-vertex graphs
their spanners routing schemes



all n-vertex graphs
their spanners routing schemes

subgraphs that approximately 
preserve distances



all n-vertex graphs
their spanners routing schemes

subgraphs that approximately 
preserve distances

spanners with large girth known
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Gavoille and Perennes (1996) < 5/3 Ω(n log n) on Ω(n) nodes Node labels are [n]
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Gavoille and Gengler (2001) < 3 Ω(n) on some node complex proof

This paper < 3 Ω(n) on cn nodes, 0<c<1∀

Non-adversarial (+ adversarial) ports

Work Stretch Local memory (bits) Notes

Peleg and Upfal (1989) s ≥ 1 Ω(n1/(s+2)) on some node

Thorup and Zwick (2001) < 2k+1 Ω(n1/k) on some node Works in a different model; 
relies on conjecture

This paper < 2k+1 Ω(n1/k log n) on some node relies on conjecture

Adversarial ports

Work Stretch Local memory (bits) Notes

Abraham et al. (2006) < 2k+1 Ω((n log n)1/k) on some node requires weighted graphs

Adversarial ports and labels

Conclusion
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Work Stretch Local memory (bits) Notes

Abraham et al. (2006) < 2k+1 Ω((n log n)1/k) on some node requires weighted graphs

Adversarial ports and labels

Conclusion
● Many routing schemes 

needed  dense graphs with ⇒
large girth

● Can we overcome girth 
conjecture with a different 
approach?
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