
Space-stretch tradeoff
in routing
revisited

Tolik Zinovyev

Routing in computer networks, model
● Undirected graph (network)

0010

1110

Routing in computer networks, model
● Undirected graph (network)
● Nodes have labels (a binary string)

0010

1110

Routing in computer networks, model
● Undirected graph (network)
● Nodes have labels (a binary string)
● Nodes have ports

1
2
3

0010

1110

Routing in computer networks, model
● Undirected graph (network)
● Nodes have labels (a binary string)
● Nodes have ports
● Nodes have routing programs

Routing program

packet header,
incoming port

new packet header,
outgoing port

h0, 1

Routing in computer networks, model

1110, 0

1
2
3

0010

1110

h1, 2

h0, 1

Routing in computer networks, model

1110, 0

1
2
3

0010

1110

h0, 3

3 2

1

h1, 2

h0, 1

Routing in computer networks, model

1110, 0

1
2
3

0010

1110

h0, 3

3 2

1

h6, 0

Routing characteristics
● Space usage (program size)
● Routing stretch

● Route length / (shortest) distance

Model, continued
● Adversarial / non-adversarial labels (bit strings)

● Adversarial: labels given, more practical
● Non-adversarial: designer labels, often used in adversarial labels

routing schemes

Model, continued
● Adversarial / non-adversarial labels (bit strings)

● Adversarial: labels given, more practical
● Non-adversarial: designer labels, often used in adversarial labels

routing schemes
● Adversarial / non-adversarial ports (1..deg)

● Adversarial: ports given
● Non-adversarial: designer ports

Known results + contribution
Work Stretch Local memory (bits) Notes

Gavoille and Perennes (1996) < 5/3 Ω(n log n) on Ω(n) nodes Node labels are [n]

Buhrman et al. (1996) 1 Ω(n) on Ω(n) nodes

Gavoille and Gengler (2001) < 3 Ω(n) on some node complex proof

This paper < 3 Ω(n) on cn nodes, 0<c<1∀

Non-adversarial (+ adversarial) ports

Known results + contribution
Work Stretch Local memory (bits) Notes

Gavoille and Perennes (1996) < 5/3 Ω(n log n) on Ω(n) nodes Node labels are [n]

Buhrman et al. (1996) 1 Ω(n) on Ω(n) nodes

Gavoille and Gengler (2001) < 3 Ω(n) on some node complex proof

This paper < 3 Ω(n) on cn nodes, 0<c<1∀

Non-adversarial (+ adversarial) ports

Work Stretch Local memory (bits) Notes

Peleg and Upfal (1989) s ≥ 1 Ω(n1/(s+2)) on some node

Thorup and Zwick (2001) < 2k+1 Ω(n1/k) on some node Works in a different model;
relies on conjecture

This paper < 2k+1 Ω(n1/k log n) on some node relies on conjecture

Adversarial ports

Known results + contribution
Work Stretch Local memory (bits) Notes

Gavoille and Perennes (1996) < 5/3 Ω(n log n) on Ω(n) nodes Node labels are [n]

Buhrman et al. (1996) 1 Ω(n) on Ω(n) nodes

Gavoille and Gengler (2001) < 3 Ω(n) on some node complex proof

This paper < 3 Ω(n) on cn nodes, 0<c<1∀

Non-adversarial (+ adversarial) ports

Work Stretch Local memory (bits) Notes

Peleg and Upfal (1989) s ≥ 1 Ω(n1/(s+2)) on some node

Thorup and Zwick (2001) < 2k+1 Ω(n1/k) on some node Works in a different model;
relies on conjecture

This paper < 2k+1 Ω(n1/k log n) on some node relies on conjecture

Adversarial ports

Work Stretch Local memory (bits) Notes

Abraham et al. (2006) < 2k+1 Ω((n log n)1/k) on some node requires weighted graphs

Adversarial ports and labels

Some upper bounds
Work Stretch Local memory (bits)

Thorup and Zwick (2001) 4k - 5 Õ(n1/k) on every node

Chechik (2013) ck, c<4 Õ(n1/k log D) on every node

Non-adversarial labels, adversarial ports

Work Stretch Local memory (bits)

Abraham et al. (2008) 3 Õ(√n) on every node

Abraham et al. (2006) O(k) Õ(n1/k) on every node

Adversarial labels, adversarial ports

Work Stretch Local memory (bits) Notes

Gavoille and Perennes (1996) < 5/3 Ω(n log n) on Ω(n) nodes Node labels are [n]

Buhrman et al. (1996) 1 Ω(n) on Ω(n) nodes

Gavoille and Gengler (2001) < 3 Ω(n) on some node complex proof

This paper < 3 Ω(n) on cn nodes, 0<c<1∀

Non-adversarial (+ adversarial) ports

Work Stretch Local memory (bits) Notes

Peleg and Upfal (1989) s ≥ 1 Ω(n1/(s+2)) on some node

Thorup and Zwick (2001) < 2k+1 Ω(n1/k) on some node Works in a different model;
relies on conjecture

This paper < 2k+1 Ω(n1/k log n) on some node relies on conjecture

Adversarial ports

Work Stretch Local memory (bits) Notes

Abraham et al. (2006) < 2k+1 Ω((n log n)1/k) on some node requires weighted graphs

Adversarial ports and labels

Thm: there is a graph with n
vertices for which all stretch < 3
routing schemes have a routing
program of size Ω(n) bits

Lower bounds with non-adversarial ports

Lower bounds with non-adversarial ports
● Idea: consider a family of graphs and show that 2Ω(n^2) routing schemes are

needed to satisfy all graphs
● Then Ω(n2) bits are necessary to describe some routing scheme
● Then at least one routing program must be Ω(n) bits

● Let n = 2q + 2, and consider a family of bipartite graphs with
parts A and B a0 b0

a1 b1

a2 b2

aq bq

...

a3 b3

● Let n = 2q + 2, and consider a family of bipartite graphs with
parts A and B

● a0 is connected to all bi, b0 is connected to all ai

a0 b0

a1 b1

a2 b2

aq bq

...

a3 b3

● Let n = 2q + 2, and consider a family of bipartite graphs with
parts A and B

● a0 is connected to all bi, b0 is connected to all ai
● All other nodes are connected arbitrarily (2q^2 graphs)

a0 b0

a1 b1

a2 b2

aq bq

...

a3 b3

● Let n = 2q + 2, and consider a family of bipartite graphs with
parts A and B

● a0 is connected to all bi, b0 is connected to all ai
● All other nodes are connected arbitrarily (2q^2 graphs)
● Routing to a neighbor must take the shortest path!

a0 b0

a1 b1

a2 b2

aq bq

...

a3 b3

● Let’s show that a single routing scheme cannot support
many graphs

● Fix a routing scheme and node labels, and
count supported graphs

● Take any v A \ {a∈ 0}, define X : B ℕ {0}→ ∪

a0 b0

v

...

u

1 2

X(u)4

● Let’s show that a single routing scheme cannot support
many graphs

● Fix a routing scheme and node labels, and
count supported graphs

● Take any v A \ {a∈ 0}, define X : B ℕ {0}→ ∪
● Let M = max{X(u) : u B}∈
● deg(v) M; otherwise, routing through undefined port≥
● deg(v) M; otherwise, some port is unused≤

a0 b0

v

...

u

1 2

X(u)4

● Let’s show that a single routing scheme cannot support
many graphs

● Fix a routing scheme and node labels, and
count supported graphs

● Take any v A \ {a∈ 0}, define X : B ℕ {0}→ ∪
● Let M = max{X(u) : u B}∈
● deg(v) M; otherwise, routing through undefined port≥
● deg(v) M; otherwise, some port is unused≤
● Function X(u) partitions B based on outgoing port number
● Neighbor behind port i must be in part i

v

X(u) = 1

b3

b5

b8

b1

b6

b0

b2

b4

b7

X(u) = 2

X(u) = 3

X(u) = 4

● Let si be the size of part i: si = |{u B : X(u) = i}|∈
● si possible neighbors behind port i
● Neighbors of v can take at most Πsi possible values

v

X(u) = 1

b3

b5

b8

b1

b6

b0

b2

b4

b7

X(u) = 2

X(u) = 3

X(u) = 4

● Let si be the size of part i: si = |{u B : X(u) = i}|∈
● si possible neighbors behind port i
● Neighbors of v can take at most Πsi possible values
● Also know that Σsi = |B| = q+1
● Geometic mean arithmetic mean: (Πs≤ i)1/M (Σs≤ i) / M
● So, Πsi ((q+1) / M)^M≤

v

X(u) = 1

b3

b5

b8

b1

b6

b0

b2

b4

b7

X(u) = 2

X(u) = 3

X(u) = 4

● Let si be the size of part i: si = |{u B : X(u) = i}|∈
● si possible neighbors behind port i
● Neighbors of v can take at most Πsi possible values
● Also know that Σsi = |B| = q+1
● Geometic mean arithmetic mean: (Πs≤ i)1/M (Σs≤ i) / M
● So, Πsi ((q+1) / M)^M≤
● Differentiating… Maximized when M = (q+1) / e
● Πsi e≤ (q+1)/e v

X(u) = 1

b3

b5

b8

b1

b6

b0

b2

b4

b7

X(u) = 2

X(u) = 3

X(u) = 4

● Let si be the size of part i: si = |{u B : X(u) = i}|∈
● si possible neighbors behind port i
● Neighbors of v can take at most Πsi possible values
● Also know that Σsi = |B| = q+1
● Geometic mean arithmetic mean: (Πs≤ i)1/M (Σs≤ i) / M
● So, Πsi ((q+1) / M)^M≤
● Differentiating… Maximized when M = (q+1) / e
● Πsi e≤ (q+1)/e

● Any routing scheme with fixed labels satisfies at most e(q+1)/e·q
graphs in the family

a0 b0

v

...

u

1 2

X(u)4

● Routing schemes necessary:
(# graphs) / (# graphs per routing scheme) / (# node labels)

● Logarithm is in Ω(n2)

Work Stretch Local memory (bits) Notes

Gavoille and Perennes (1996) < 5/3 Ω(n log n) on Ω(n) nodes Node labels are [n]

Buhrman et al. (1996) 1 Ω(n) on Ω(n) nodes

Gavoille and Gengler (2001) < 3 Ω(n) on some node complex proof

This paper < 3 Ω(n) on cn nodes, 0<c<1∀

Non-adversarial (+ adversarial) ports

Work Stretch Local memory (bits) Notes

Peleg and Upfal (1989) s ≥ 1 Ω(n1/(s+2)) on some node

Thorup and Zwick (2001) < 2k+1 Ω(n1/k) on some node Works in a different model;
relies on conjecture

This paper < 2k+1 Ω(n1/k log n) on some node relies on conjecture

Adversarial ports

Work Stretch Local memory (bits) Notes

Abraham et al. (2006) < 2k+1 Ω((n log n)1/k) on some node requires weighted graphs

Adversarial ports and labels

● Ω(n) bits of storage on
arbitrary constant fraction of
nodes

● Same neighbor configurations
argument, but more careful
counting

Lower bounds with non-adversarial ports

Work Stretch Local memory (bits) Notes

Gavoille and Perennes (1996) < 5/3 Ω(n log n) on Ω(n) nodes Node labels are [n]

Buhrman et al. (1996) 1 Ω(n) on Ω(n) nodes

Gavoille and Gengler (2001) < 3 Ω(n) on some node complex proof

This paper < 3 Ω(n) on cn nodes, 0<c<1∀

Non-adversarial (+ adversarial) ports

Work Stretch Local memory (bits) Notes

Peleg and Upfal (1989) s ≥ 1 Ω(n1/(s+2)) on some node

Thorup and Zwick (2001) < 2k+1 Ω(n1/k) on some node Works in a different model;
relies on conjecture

This paper < 2k+1 Ω(n1/k log n) on some node relies on conjecture

Adversarial ports

Work Stretch Local memory (bits) Notes

Abraham et al. (2006) < 2k+1 Ω((n log n)1/k) on some node requires weighted graphs

Adversarial ports and labels

● In 2001 Thorup and Zwick
claim Ω(n1/k) bits of storage for
stretch <2k+1

● Proof idea: reduction from a
lower bound for approximate
distance oracles

● Distance oracles report
approximate distances in a
graph

Lower bounds with adversarial ports

Girth conjecture
● The lower bound for distance oracles relies on existence of

dense graphs with large girth

Girth conjecture
● The lower bound for distance oracles relies on existence of

dense graphs with large girth
def: graph G has
girth s iff all
cycles in G have
length s≥

Girth conjecture
● The lower bound for distance oracles relies on existence of

dense graphs with large girth
● Girth conjecture by Paul Erdős: there exists a graph with

● n nodes
● Ω(n1+1/k) edges
● girth 2k+2

● Proven for k=1,2,3,5; weaker results for other k

def: graph G has
girth s iff all
cycles in G have
length s≥

Lower bound for distance oracle
Prove: distance oracles with stretch < 2k+1 require m bits
of storage

● Take a graph with n nodes, m edges and girth 2k+2
● All subsets of edges form a family of 2m graphs

Lower bound for distance oracle
Prove: distance oracles with stretch < 2k+1 require m bits
of storage

● Take a graph with n nodes, m edges and girth 2k+2
● All subsets of edges form a family of 2m graphs
● Two distinct graphs require distinct distance oracles

G1

G2

Lower bound for distance oracle
Prove: distance oracles with stretch < 2k+1 require m bits
of storage

● Take a graph with n nodes, m edges and girth 2k+2
● All subsets of edges form a family of 2m graphs
● Two distinct graphs require distinct distance oracles
● Need 2m distinct distance oracles m bits for some⇒ G1

G2

Lower bound for distance oracle
Prove: distance oracles with stretch < 2k+1 require m bits
of storage

● Take a graph with n nodes, m edges and girth 2k+2
● All subsets of edges form a family of 2m graphs
● Two distinct graphs require distinct distance oracles
● Need 2m distinct distance oracles m bits for some⇒
● By girth conjecture take m = Ω(n1+1/k)

G1

G2

Reduction from distance oracles
● Suppose there is a routing scheme with low space complexity and low stretch
● Construct a distance oracle that simulates routing

Reduction from distance oracles
● Suppose there is a routing scheme with low space complexity and low stretch
● Construct a distance oracle that simulates routing
● Does not work in the standard model (ports in 1..deg(v))

Work Stretch Local memory (bits) Notes

Gavoille and Perennes (1996) < 5/3 Ω(n log n) on Ω(n) nodes Node labels are [n]

Buhrman et al. (1996) 1 Ω(n) on Ω(n) nodes

Gavoille and Gengler (2001) < 3 Ω(n) on some node complex proof

This paper < 3 Ω(n) on cn nodes, 0<c<1∀

Non-adversarial (+ adversarial) ports

Work Stretch Local memory (bits) Notes

Peleg and Upfal (1989) s ≥ 1 Ω(n1/(s+2)) on some node

Thorup and Zwick (2001) < 2k+1 Ω(n1/k) on some node Works in a different model;
relies on conjecture

This paper < 2k+1 Ω(n1/k log n) on some node relies on conjecture

Adversarial ports

Work Stretch Local memory (bits) Notes

Abraham et al. (2006) < 2k+1 Ω((n log n)1/k) on some node requires weighted graphs

Adversarial ports and labels

● Thm: if graph with n vertices,
m edges, girth 2k+2 exists,
then routing with stretch <
2k+1 requires Ω(m/n log(m/n))
bits at some node

● Cor: routing with stretch <
2k+1 requires Ω(n1/k log n) bits
at some node

Lower bounds with adversarial ports

Routing to a neighbor with stretch <2k+1 in a graph with girth 2k+2:

x

y

Routing to a neighbor with stretch <2k+1 in a graph with girth 2k+2:

x

y

1

Routing to a neighbor with stretch <2k+1 in a graph with girth 2k+2:

x

y

1

2

Routing to a neighbor with stretch <2k+1 in a graph with girth 2k+2:

x

y

1

2

3

Routing to a neighbor with stretch <2k+1 in a graph with girth 2k+2:

x

y

1

2

3
4

Routing to a neighbor with stretch <2k+1 in a graph with girth 2k+2:

x

y

1

2

3
4

5

Routing to a neighbor with stretch <2k+1 in a graph with girth 2k+2:

x

y

1

2

3
4

5

6

Routing to a neighbor with stretch <2k+1 in a graph with girth 2k+2:

x

y

1

2

3
4

5

6

7

● Choose a graph with n nodes, m edges and girth 2k+2
● Consider all possible port assignments

x

y

1

2

3
4

5

6

7

● Choose a graph with n nodes, m edges and girth 2k+2
● Consider all possible port assignments
● Let mi be the degree of vertex i
● There are Πmi! different port assignments
● Πmi! = 2Ω(m log(m/n))

x

y

1

2

3
4

5

6

7

● Choose a graph with n nodes, m edges and girth 2k+2
● Consider all possible port assignments
● Let mi be the degree of vertex i
● There are Πmi! different port assignments
● Πmi! = 2Ω(m log(m/n))

● Want to prove that a single routing scheme cannot
support many port assignments

x

y

1

2

3
4

5

6

7

● Construct an extractor program that given a routing
scheme, node labels and an advice string returns the
port assignment

● If the advice string is short, intuitively the routing
scheme must contain much information

x

y

1

2

3
4

5

6

7

● Construct an extractor program that given a routing
scheme, node labels and an advice string returns the
port assignment

● If the advice string is short, intuitively the routing
scheme must contain much information

● More formally:
● fix routing scheme and node labels
● then extractor maps advice string to port assignment
● ∀ supported port assignments advice string∃
● all advice strings are short not many supported port ⇒

assignments

x

y

1

2

3
4

5

6

7

● Initially port assignment is completely unknown
● while some node has incomplete port assignment

● let x be a node with incomplete port assignment with
the largest degree

● let y be a neighbor with unknown outgoing port
● r ← read the number of hops
● for r times:

● invoke routing program at x
● read the next hop if unknown
● let z be the next hop
● read the incoming port at the next hop if unknown
● x z←

● learn source’s port towards destination „for free“

x

y

1

2

3
4

5

6

7

● Initially port assignment is completely unknown
● while some node has incomplete port assignment

● let x be a node with incomplete port assignment with
the largest degree

● let y be a neighbor with unknown outgoing port
● r ← read the number of hops
● for r times:

● invoke routing program at x
● read the next hop if unknown
● let z be the next hop
● read the incoming port at the next hop if unknown
● x z←

● learn source’s port towards destination „for free“

x

y

● Initially port assignment is completely unknown
● while some node has incomplete port assignment

● let x be a node with incomplete port assignment with
the largest degree

● let y be a neighbor with unknown outgoing port
● r ← read the number of hops
● for r times:

● invoke routing program at x
● read the next hop if unknown
● let z be the next hop
● read the incoming port at the next hop if unknown
● x z←

● learn source’s port towards destination „for free“

x

y

?

● Initially port assignment is completely unknown
● while some node has incomplete port assignment

● let x be a node with incomplete port assignment with
the largest degree

● let y be a neighbor with unknown outgoing port
● r ← read the number of hops
● for r times:

● invoke routing program at x
● read the next hop if unknown
● let z be the next hop
● read the incoming port at the next hop if unknown
● x z←

● learn source’s port towards destination „for free“

x

y

?

r = 6

● Initially port assignment is completely unknown
● while some node has incomplete port assignment

● let x be a node with incomplete port assignment with
the largest degree

● let y be a neighbor with unknown outgoing port
● r ← read the number of hops
● for r times:

● invoke routing program at x
● read the next hop if unknown
● let z be the next hop
● read the incoming port at the next hop if unknown
● x z←

● learn source’s port towards destination „for free“

x

y

?

r = 6

● Initially port assignment is completely unknown
● while some node has incomplete port assignment

● let x be a node with incomplete port assignment with
the largest degree

● let y be a neighbor with unknown outgoing port
● r ← read the number of hops
● for r times:

● invoke routing program at x
● read the next hop if unknown
● let z be the next hop
● read the incoming port at the next hop if unknown
● x z←

● learn source’s port towards destination „for free“

x

y

z

?

r = 6

● Initially port assignment is completely unknown
● while some node has incomplete port assignment

● let x be a node with incomplete port assignment with
the largest degree

● let y be a neighbor with unknown outgoing port
● r ← read the number of hops
● for r times:

● invoke routing program at x
● read the next hop if unknown
● let z be the next hop
● read the incoming port at the next hop if unknown
● x z←

● learn source’s port towards destination „for free“

x

y

z

?

r = 6

3

● Initially port assignment is completely unknown
● while some node has incomplete port assignment

● let x be a node with incomplete port assignment with
the largest degree

● let y be a neighbor with unknown outgoing port
● r ← read the number of hops
● for r times:

● invoke routing program at x
● read the next hop if unknown
● let z be the next hop
● read the incoming port at the next hop if unknown
● x z←

● learn source’s port towards destination „for free“
y

x

?

r = 6

3

● Initially port assignment is completely unknown
● while some node has incomplete port assignment

● let x be a node with incomplete port assignment with
the largest degree

● let y be a neighbor with unknown outgoing port
● r ← read the number of hops
● for r times:

● invoke routing program at x
● read the next hop if unknown
● let z be the next hop
● read the incoming port at the next hop if unknown
● x z←

● learn source’s port towards destination „for free“
y

x

?

r = 6

3

● Initially port assignment is completely unknown
● while some node has incomplete port assignment

● let x be a node with incomplete port assignment with
the largest degree

● let y be a neighbor with unknown outgoing port
● r ← read the number of hops
● for r times:

● invoke routing program at x
● read the next hop if unknown
● let z be the next hop
● read the incoming port at the next hop if unknown
● x z←

● learn source’s port towards destination „for free“
y

x

z

?

r = 6

3

● Initially port assignment is completely unknown
● while some node has incomplete port assignment

● let x be a node with incomplete port assignment with
the largest degree

● let y be a neighbor with unknown outgoing port
● r ← read the number of hops
● for r times:

● invoke routing program at x
● read the next hop if unknown
● let z be the next hop
● read the incoming port at the next hop if unknown
● x z←

● learn source’s port towards destination „for free“
y

x

z

?

r = 6

3

1

● Initially port assignment is completely unknown
● while some node has incomplete port assignment

● let x be a node with incomplete port assignment with
the largest degree

● let y be a neighbor with unknown outgoing port
● r ← read the number of hops
● for r times:

● invoke routing program at x
● read the next hop if unknown
● let z be the next hop
● read the incoming port at the next hop if unknown
● x z←

● learn source’s port towards destination „for free“
y

x

?

r = 6

3

1

● Initially port assignment is completely unknown
● while some node has incomplete port assignment

● let x be a node with incomplete port assignment with
the largest degree

● let y be a neighbor with unknown outgoing port
● r ← read the number of hops
● for r times:

● invoke routing program at x
● read the next hop if unknown
● let z be the next hop
● read the incoming port at the next hop if unknown
● x z←

● learn source’s port towards destination „for free“

x

y

?

r = 6

3

1

● Initially port assignment is completely unknown
● while some node has incomplete port assignment

● let x be a node with incomplete port assignment with
the largest degree

● let y be a neighbor with unknown outgoing port
● r ← read the number of hops
● for r times:

● invoke routing program at x
● read the next hop if unknown
● let z be the next hop
● read the incoming port at the next hop if unknown
● x z←

● learn source’s port towards destination „for free“

x

y

4

r = 6

3

1

● Bit string has length B
● B (1-1/(4k)) Σ m≲ i log mi
● Compare to the „bit-size“ of a port assignment:

 Σ m≈ i log mi

● The difference is Ω(Σ mi log mi) = Ω(m log(m/n))

x

y

4

r = 6

3

1

Girth conjecture requirement
● All known approaches: prove that many routing schemes are necessary

Girth conjecture requirement
● All known approaches: prove that many routing schemes are necessary
● If 2Ω(n^(1+1/k) log n) routing schemes are needed to satisfy all n-vertex graphs

with stretch < 2k+1
then there exists a graph with Ω(n1+1/k) edges and girth 2k+2

all n-vertex graphs
their spanners routing schemes

all n-vertex graphs
their spanners routing schemes

subgraphs that approximately
preserve distances

all n-vertex graphs
their spanners routing schemes

subgraphs that approximately
preserve distances

spanners with large girth known

Work Stretch Local memory (bits) Notes

Gavoille and Perennes (1996) < 5/3 Ω(n log n) on Ω(n) nodes Node labels are [n]

Buhrman et al. (1996) 1 Ω(n) on Ω(n) nodes

Gavoille and Gengler (2001) < 3 Ω(n) on some node complex proof

This paper < 3 Ω(n) on cn nodes, 0<c<1∀

Non-adversarial (+ adversarial) ports

Work Stretch Local memory (bits) Notes

Peleg and Upfal (1989) s ≥ 1 Ω(n1/(s+2)) on some node

Thorup and Zwick (2001) < 2k+1 Ω(n1/k) on some node Works in a different model;
relies on conjecture

This paper < 2k+1 Ω(n1/k log n) on some node relies on conjecture

Adversarial ports

Work Stretch Local memory (bits) Notes

Abraham et al. (2006) < 2k+1 Ω((n log n)1/k) on some node requires weighted graphs

Adversarial ports and labels

Conclusion

Work Stretch Local memory (bits) Notes

Gavoille and Perennes (1996) < 5/3 Ω(n log n) on Ω(n) nodes Node labels are [n]

Buhrman et al. (1996) 1 Ω(n) on Ω(n) nodes

Gavoille and Gengler (2001) < 3 Ω(n) on some node complex proof

This paper < 3 Ω(n) on cn nodes, 0<c<1∀

Non-adversarial (+ adversarial) ports

Work Stretch Local memory (bits) Notes

Peleg and Upfal (1989) s ≥ 1 Ω(n1/(s+2)) on some node

Thorup and Zwick (2001) < 2k+1 Ω(n1/k) on some node Works in a different model;
relies on conjecture

This paper < 2k+1 Ω(n1/k log n) on some node relies on conjecture

Adversarial ports

Work Stretch Local memory (bits) Notes

Abraham et al. (2006) < 2k+1 Ω((n log n)1/k) on some node requires weighted graphs

Adversarial ports and labels

Conclusion

Work Stretch Local memory (bits) Notes

Gavoille and Perennes (1996) < 5/3 Ω(n log n) on Ω(n) nodes Node labels are [n]

Buhrman et al. (1996) 1 Ω(n) on Ω(n) nodes

Gavoille and Gengler (2001) < 3 Ω(n) on some node complex proof

This paper < 3 Ω(n) on cn nodes, 0<c<1∀

Non-adversarial (+ adversarial) ports

Work Stretch Local memory (bits) Notes

Peleg and Upfal (1989) s ≥ 1 Ω(n1/(s+2)) on some node

Thorup and Zwick (2001) < 2k+1 Ω(n1/k) on some node Works in a different model;
relies on conjecture

This paper < 2k+1 Ω(n1/k log n) on some node relies on conjecture

Adversarial ports

Work Stretch Local memory (bits) Notes

Abraham et al. (2006) < 2k+1 Ω((n log n)1/k) on some node requires weighted graphs

Adversarial ports and labels

Conclusion
● Many routing schemes

needed dense graphs with ⇒
large girth

● Can we overcome girth
conjecture with a different
approach?

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 71
	Slide 72
	Slide 73
	Slide 74
	Slide 75
	Slide 76
	Slide 77

