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Committee selection (cont.)

Typical goal: b — 1 if party i is chosen
0 otherwise

» 20% of parties are malicious, need to elect a
committee with < % parties malicious A C [n] — adversary set, want
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> some security is lost: = — 3
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Committee selection (cont.)

Introducing weights

» the n parties have weights wy, wo, ..., w, € Z>g
» need to assign new weights ty, to, ..., t, € Z>g
» say “party i gets t; tickets” -
» new problem statement: adversary has weight
at most 20%; he must have < % tickets
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Committee selection (cont.)

need to sample

Introducing weights t, ta, ..., tp € Z>p such that

» the n parties have weights wy, wo, ..., w, € Z>g
> need to assign new weights ti, to, ..., tn € Z>g for all A with
» say “party i gets t; tickets” 1 —

y party I g i . ZWiS*ZWi3

» new problem statement: adversary has weight Y ) =i
at most 20%; he must have < % tickets Lo
Pr [Zt; < 3215,-] is big
i€EA i=1
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Committee selection (cont.)
Typical solution:

» select each unit of weight with probability p:
ti ~ Binomial(w;, p)

need to sample
( N

ty, to, ..., ty € ZZO such that
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Committee selection (cont.)
Typical solution:
» select each unit of weight with probability p:

t; ~ Binomial(w;, p) need to sample
( ) ty, to, ..., ty € ZZO such that
< for all A with
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Committee selection (cont.)
Typical solution:
» select each unit of weight with probability p:

t; ~ Binomial(w;, p) need to sample
( ) ty, to, ..., th € ZZO such that
< for all A with

< 1
'-J = L IGZAWISE);VW :
1 n
Pr[Zt;<3Zt,-] is big
i=1

J
» about 20% of selected weight will be malicious; =
use tail bounds to analyze bad event e |

» security error 272 requires committee size
~ 50\ (for £ — 1)
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» Swiper [TF23] + others [BHS23, FMT24, DPTX25]:
» fully deterministic =

forallAwichw,-glzn:w,-:P Zt,-<lzn:t; ig
icA 5 i=1 icA 3 i=1
1)

> cons: committee size {2(n) in worst case (e.g., w; = wo = ... = w, =
P pros: security against adaptive corruptions guaranteed
» pros: (?) deterministic committees are smaller when security parameter is large

» both show that realistic weight distributions allow small committees
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Objective function

Minimize the size of the committee (t1, to, ..., tp): how to quantify?
> the total new weight: >0, t;
» useful when the protocol scales poorly with the weights (e.g., secret sharing)
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Problem statement

Assume 0 < av < 8 < 1. Given wy, ..., w, € Z>g, find t1, ..., t, € Z>( such that
> minimize > 1 t;

» o — 3, deterministic:

fOI'aHAWIchW, SaZW, Zt, <52t,
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Problem statement

Assume 0 < av < 8 < 1. Given wy, ..., w, € Z>g, find t1, ..., t, € Z>( such that
> minimize > 1 t;

» o — 3, deterministic:

forallAw1chW, SaZW, Zt, <BZt,

i€eA i€EA

This work extends Swiper (Tonkikh, Freitas '24).

» pure optimization problem
Adopt terminology: party i gets t; “tickets”.

» NP-hard? — unknown
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Swiper [TF23] overview
Linear scaling:
» assignment (ti, ..., ty) = (Wi, ..., w,) works, (ti,...,t,) = 0" doesn't
> set in-between: t; = [sw; + ¢ (¢ = const)

» run binary search to find locally minimal s D
O DD = =l mm

that generates a valid ticket assignment
P each iteration tests one ticket assignment via dynamic programming for knapsack
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Linear scaling:
» assignment (ti, ..., ty) = (Wi, ..., w,) works, (ti,...,t,) = 0" doesn't
> set in-between: t; = [sw; + ¢ (¢ = const)

» run binary search to find locally minimal s D
O DD = =l mm

that generates a valid ticket assignment
P each iteration tests one ticket assignment via dynamic programming for knapsack

Equivalently:
> define potential solutions t;, t3, ... with size(?j') = j tickets
» find locally minimal j such that ?f is valid but tj_,f is not
Swiper paper proves that when ¢ = o, all ty, fm, ... are valid, where

M = r(ﬁl__;’y)nJAJ = O(n).

Running time analysis:
> each search iteration: validity testing in time O(n- Y7, t;)) < O(n- M) = O(n?)
> total: O(n2 10gn)
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Improving Swiper: super Swiper

DDDD = =l mm

» Replaces binary search with linear search
> 1,
while fj is not valid do
L et
return fﬁ
» binary search can get stuck in a “local minimum”
» linear search improves output
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» Reuse dynamic programming computations for testing ticket assignments

» generalized data structure DP:

method mutable? parameters output
.apply(w,t) | mutable party’s weight w;, # tickets t; | none
.get() immutable | none integer

» guarantee: want to test T

T

> call DP.apply(w;, (f);) once for all i € [n] with (); # 0 in any order
> then DP.get() returns max # tickets the adversary gets in t

P time complexity

> if 7 ()i = T, then DP.apply(w;, (T);) takes time O(T)
> DP.get() takes time O(1)
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Testing t; (cont.)

Example: want to test £ = (4,3,3,0) for w = (90, 60, 50, 10)
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Testing t; (cont.)

Example: want to test t = (4,3,3,0) for w = (90, 60, 50, 10)

dp.apply(90,4)

dp.apply(50, 3)

dp.apply(60, 3)
dp.get()
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Testing t; (cont.)

More interesting example: want to test t = (4,3,3,0) and i = (4,4,3,0)
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Testing t; (cont.)
More interesting example: want to test (2,1,1,1), (2,2,1,1), (2,2,2,1), (2,2,2,2)
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Testing t; (cont.)
More interesting example: want to test (2,1,1,1), (2,2,1,1), (2,2,2,1), (2,2,2,2)

2111 2211 2221 2222

4 - (log4 4 1) = 12 applies. Generalize: can test Swiper's 1, ts, ..., to(r) with
O(Rlog R) applies; each apply takes time O(R).
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Improving Swiper: super Swiper (cont.)

j+ 1

while fj’ is not valid do

L et

return t;;

» Challenge 1: compute ff —time O(n+ RlogR)
> Challenge 2: test t; — time O(R?log R)

Total: time O(n + R%*log R)
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Improving Swiper:

w2
2
o]
]
[

super Swiper (cont.)

B=1/3 B=1/2 3
0=02 a=025 a=03 a=03a=035 a=04 a=045
22 85 346 23 29 95 279
1.61lms | 2.07ms 1.96ms | 1.40ms | 1.88ms 1.80ms | 1.96ms
22 58 277 23 29 95 241
6.5511s 13.0ps 116ps 6.43ps | 7.13ps 31.3ps | 88.4us

Table: Evaluation on the Aptos stake distribution
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Improving Swiper: super Swiper (cont.)

» linear search outputs fewer tickets

w2
2
o]
]
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Improving Swiper: super Swiper (cont.)

» linear search outputs fewer tickets

» linear search faster than binary search

[@7]
2
o]
]
[

B=1/3 B=1/2
0=02 a=025 a=03 a=03]a=035 a=04 a=045
235 745 22393 203 383 1203 17591
1.10s 1.22s 1.78s 1.03s 1.14s 1.19s 1.65s
232 745 22384 201 383 1171 17581
75.7ns | 461ps 115ms 84.511s 202pus 1.41ms | 118ms

Table: Evaluation on the Algorand stake distribution
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Lower bounds

» super Swiper works great in practice, what about in theory?
» how big is output compared to optimal solution?
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Lower bounds

» super Swiper works great in practice, what about in theory?
» how big is output compared to optimal solution?

» our result: super Swiper, Swiper [TF23] + others [BHS23, FMT24, DPTX25] all
have approximation factor £2(n)

> constructed an example where output is £2(n) but OPT = O(1)
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Algorithms with better guarantees

Some progress (see paper):
> exact algorithm (approximation factor 1) with time O(n + R3/2ec‘/ﬁ>

> R < O(n) — size of optimal solution
> C=my6/3~~257
» practical when R < 100
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Algorithms with better guarantees

Some progress (see paper):
> exact algorithm (approximation factor 1) with time O(n + R3/2ec‘/ﬁ>

> R < O(n) — size of optimal solution

> C=rV6/3~ 257

» practical when R < 100
» polytime algorithm with approximation factor O(n/ log? n)
P polytime algorithm based on linear programming

» denote the smallest number of tickets by OPT, 3
> LP algorithm outputs solution of size OPT,, (1_5)s for any constant § > 0
(“bi-criteria approximation”)

18/20



Numerical evaluation

- B=1/3 B=1/2
a=02 =02 a=03!a=03 a«=035 a=04  a=045
o 22 85 346 23 29 95 279
! Swiper
! 1.61ms | 2.07ms 1.96ms 1.40ms 1.88ms 1.80ms 1.96ms
' super | 22 58 277 23 29 95 241
- Swiper | 6.55ps | 13.0ps 116ps | 6.43ps | 7.13ps 31.3ps | 88.4ps
o 99 55 23 29 91
' exact
! 133ps 127ms 23611s 1.08ms 45.9s

Table: Evaluation on the Aptos stake distribution
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Numerical evaluation

» sub-exponential time exact algorithm can be practical!

» super Swiper is almost optimal in practice

- B=1/3 B=1/2
a=02 =02 a=03!a=03 =035 a=04  a=045 |
o 22 85 346 23 29 95 279
! Swiper
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Conclusion

» Good practical improvements

» super Swiper. better solution in less time:

O(n+ R?logR)
> exact algorithm in time O(n) + 90(VR) _
sometimes practical

Weight reduction problem:

given wi,...,w, € Zx>q, find
t1,...,.th € Zzo such that
> minimize Y 1 t;
» for all A with
n .
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» super Swiper. better solution in less time:

O(n + R?log R)
> exact algorithm in time O(n) + 20(VR) _
sometimes practical
» more theoretical work to be done
» NP-hard?
P better approximation factor in polytime
> see eprint.iacr.org/2025/1076 for
latest version
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