Weight reduction in distributed protocols:
new algorithms and analysis

Tolik Zinovyev

Boston University

1/20

Committee selection

» Have n parties, want to select a small subset and delegate work to them

(e.g., in consensus)

2/20

Committee selection

» Have n parties, want to select a small subset and delegate work to them
(e.g., in consensus)

» The protocol should remain reliable / secure

[e}e}

2/20

Committee selection

» Have n parties, want to select a small subset and delegate work to them

(e.g., in consensus)

» The protocol should remain reliable / secure

2/20

Committee selection (cont.)

Typical goal:
» 20% of parties are malicious, need to elect a
committee with < % parties malicious

3/20

Committee selection (cont.)

Typical goal: b — 1 if party i is chosen
0 otherwise

» 20% of parties are malicious, need to elect a
committee with < % parties malicious A C [n] — adversary set, want

for all A with |A| <

n
5
n
t,'<1 ti| is big
3,1
=

i€A

Pr

3/20

Committee selection (cont.)

Typical goal: b — 1 if party i is chosen
0 otherwise

» 20% of parties are malicious, need to elect a
committee with < % parties malicious A C [n] — adversary set, want

. . 1 1
> some security is lost: = — 3

for all A with |A| <

n
5
n
o< ;Zt,-] is big
i=1

i€A

Pr

3/20

Committee selection (cont.)

Introducing weights

» the n parties have weights wy, wo, ..., w, € Z>g
» need to assign new weights ty, to, ..., t, € Z>g
» say “party i gets t; tickets” -
» new problem statement: adversary has weight
at most 20%; he must have < % tickets

4/20

Committee selection (cont.)

need to sample

Introducing weights t, ta, ..., tp € Z>p such that

» the n parties have weights wy, wo, ..., w, € Z>g
> need to assign new weights ti, to, ..., tn € Z>g for all A with
» say “party i gets t; tickets” 1 —

y party I g i . ZWiS*ZWi3

» new problem statement: adversary has weight Y) =i
at most 20%; he must have < % tickets Lo
Pr [Zt; < 3215,-] is big
i€EA i=1

4/20

Committee selection (cont.)
Typical solution:

» select each unit of weight with probability p:
ti ~ Binomial(w;, p)

need to sample
(N

ty, to, ..., ty € ZZO such that

< for all A with
|] . L
. =, 3 Z wi < 5 Z wi
' icA i=1
L J 1 W
Pr [Zt; < 3215,-] is big
i=1

i€A

5/20

Committee selection (cont.)
Typical solution:
» select each unit of weight with probability p:

t; ~ Binomial(w;, p) need to sample
() ty, to, ..., ty € ZZO such that
< for all A with

-~ n
= & ZWiS%ZWi :
i=1

icA

L J 1 W
Pr Zt,-<3iz;t,- is big

» about 20% of selected weight will be malicious; '
use tail bounds to analyze bad event ieA |

‘(I

5/20

Committee selection (cont.)
Typical solution:
» select each unit of weight with probability p:

t; ~ Binomial(w;, p) need to sample
() ty, to, ..., th € ZZO such that
< for all A with

< 1
'-J = L IGZAWISE);VW :
1 n
Pr[Zt;<3Zt,-] is big
i=1

J
» about 20% of selected weight will be malicious; =
use tail bounds to analyze bad event e |

» security error 272 requires committee size
~ 50\ (for £ — 1)

5/20

Improvements in weighted committee selection

» Take weight distribution (wj, ..., w,) into account

6/20

Improvements in weighted committee selection

» Take weight distribution (wj, ..., w,) into account
» Fait Accompli [GKR23]:

P selects biggest parties deterministically and others randomly
P improves committee size vs. error tradeoff

6/20

Improvements in weighted committee selection

» Take weight distribution (wj, ..., w,) into account
» Fait Accompli [GKR23]:

P selects biggest parties deterministically and others randomly
P improves committee size vs. error tradeoff

» Swiper [TF23] + others [BHS23, FMT24, DPTX25]:
» fully deterministic =

forallAwichw,-glzn:W;:><[Zt;<lzn:t; ig
icA 5 i=1 icA 3 i=1

6/20

Improvements in weighted committee selection

» Take weight distribution (wj, ..., w,) into account
» Fait Accompli [GKR23]:

P selects biggest parties deterministically and others randomly
P improves committee size vs. error tradeoff

» Swiper [TF23] + others [BHS23, FMT24, DPTX25]:
» fully deterministic =

forallAwichw,-glzn:w,-:P Zt,-<lzn:t; ig
icA 5 i=1 icA 3 i=1
1)

> cons: committee size {2(n) in worst case (e.g., w; = wo = ... = w, =
P pros: security against adaptive corruptions guaranteed
» pros: (?) deterministic committees are smaller when security parameter is large

6/20

Improvements in weighted committee selection

» Take weight distribution (wj, ..., w,) into account
» Fait Accompli [GKR23]:

P selects biggest parties deterministically and others randomly
P improves committee size vs. error tradeoff

» Swiper [TF23] + others [BHS23, FMT24, DPTX25]:
» fully deterministic =

forallAwichw,-glzn:w,-:P Zt,-<lzn:t; ig
icA 5 i=1 icA 3 i=1
1)

> cons: committee size {2(n) in worst case (e.g., w; = wo = ... = w, =
P pros: security against adaptive corruptions guaranteed
» pros: (?) deterministic committees are smaller when security parameter is large

» both show that realistic weight distributions allow small committees

6/20

Objective function

Minimize the size of the committee (t1, to, ..., tp): how to quantify?
> the total new weight: >0, t;
» useful when the protocol scales poorly with the weights (e.g., secret sharing)

7/20

Problem statement

Assume 0 < av < 8 < 1. Given wy, ..., w, € Z>g, find t1, ..., t, € Z>(such that
> minimize > 1 t;

» o — 3, deterministic:

fOI'aHAWIchW, SaZW, Zt, <52t,

i€eA i€EA

8/20

Problem statement

Assume 0 < av < 8 < 1. Given wy, ..., w, € Z>g, find t1, ..., t, € Z>(such that
> minimize > 1 t;

» o — 3, deterministic:

forallAw1chW, SaZW, Zt, <BZt,

i€eA i€EA

This work extends Swiper (Tonkikh, Freitas '24).
Adopt terminology: party i gets t; “tickets”.

8/20

Problem statement

Assume 0 < av < 8 < 1. Given wy, ..., w, € Z>g, find t1, ..., t, € Z>(such that
> minimize > 1 t;

» o — 3, deterministic:

forallAw1chW, SaZW, Zt, <BZt,

i€eA i€EA

This work extends Swiper (Tonkikh, Freitas '24).

» pure optimization problem
Adopt terminology: party i gets t; “tickets”.

» NP-hard? — unknown

8/20

Swiper [TF23] overview
Linear scaling:
» assignment (ti, ..., ty) = (Wi, ..., w,) works, (ti,...,t,) = 0" doesn't
> set in-between: t; = [sw; + ¢ (¢ = const)

» run binary search to find locally minimal s D
O DD = =l mm

that generates a valid ticket assignment
P each iteration tests one ticket assignment via dynamic programming for knapsack

9/20

Swiper [TF23] overview
Linear scaling:
» assignment (ti, ..., ty) = (Wi, ..., w,) works, (ti,...,t,) = 0" doesn't
> set in-between: t; = [sw; + ¢ (¢ = const)

» run binary search to find locally minimal s D
O DD = =l mm

that generates a valid ticket assignment
P each iteration tests one ticket assignment via dynamic programming for knapsack

Equivalently:
> define potential solutions t;, t3, ... with size(?j') = j tickets
» find locally minimal j such that ¢; is valid but t;_; is not

9/20

Swiper [TF23] overview
Linear scaling:
» assignment (ti, ..., ty) = (Wi, ..., w,) works, (ti,...,t,) = 0" doesn't
> set in-between: t; = [sw; + ¢ (¢ = const)

» run binary search to find locally minimal s D
O DD = =l mm

that generates a valid ticket assignment
P each iteration tests one ticket assignment via dynamic programming for knapsack

Equivalently:
> define potential solutions t;, t3, ... with size(?j') = j tickets
» find locally minimal j such that ?f is valid but tj_,f is not
Swiper paper proves that when ¢ = o, all ty, fm, ... are valid, where

M = r(ﬁl__;’y)nJAJ = O(n).

9/20

Swiper [TF23] overview
Linear scaling:
» assignment (ti, ..., ty) = (Wi, ..., w,) works, (ti,...,t,) = 0" doesn't
> set in-between: t; = [sw; + ¢ (¢ = const)

» run binary search to find locally minimal s D
O DD = =l mm

that generates a valid ticket assignment
P each iteration tests one ticket assignment via dynamic programming for knapsack

Equivalently:
> define potential solutions t;, t3, ... with size(?j') = j tickets
» find locally minimal j such that ?f is valid but tj_,f is not
Swiper paper proves that when ¢ = o, all ty, fm, ... are valid, where

M = r(ﬁl__;’y)nJAJ = O(n).

Running time analysis:
> each search iteration: validity testing in time O(n- Y7, t;)) < O(n- M) = O(n?)
> total: O(n2 10gn)
9/20

Improving Swiper: super Swiper

DDDD = =l mm

» Replaces binary search with linear search
> 1,
while fj is not valid do
L et
return fﬁ
» binary search can get stuck in a “local minimum”
» linear search improves output

10/20

Improving Swiper: super Swiper

DDDD = =l mm

» Replaces binary search with linear search
> 1,
while fj is not valid do
L et
return ?f
» binary search can get stuck in a “local minimum”
» linear search improves output

> reduces running time from O(n?logn) to O(n + R*log R),
where R < O(n) is the number of tickets > " ; t; in the output

» not worse than before
» normally, R < n = n+ R?log R < n*logn

10/20

Improving Swiper: super Swiper

DDDD = =l mm

» Replaces binary search with linear search

while 7 is not valid do Challenge 1: compute t;
e+ Challenge 2: test t;
return t;;

» binary search can get stuck in a “local minimum”
» linear search improves output

> reduces running time from O(n?logn) to O(n + R%log R),
where R < O(n) is the number of tickets > " ; t; in the output

» not worse than before
» normally, R < n = n+ R?log R < n*logn

10/20

Improving Swiper: super Swiper

DDDD = =l mm

» Replaces binary search with linear search

> 1
Je 1 o
while is not valid do Challenge 1: compute t; —time O(n+ RlogR)
e+ Challenge 2: test t;
return t;;

» binary search can get stuck in a “local minimum”
» linear search improves output

> reduces running time from O(n?logn) to O(n + R%log R),
where R < O(n) is the number of tickets > " ; t; in the output

» not worse than before
» normally, R < n = n+ R?log R < n*logn

10/20

Testing ?f

» Reuse dynamic programming computations for testing ticket assignments

11/20

Testing ?f

» Reuse dynamic programming computations for testing ticket assignments

» generalized data structure DP:

method mutable? parameters output
.apply(w,t) | mutable party’s weight w;, # tickets t; | none
.get() immutable | none integer

11/20

Testing ?f

» Reuse dynamic programming computations for testing ticket assignments

» generalized data structure DP:

method mutable? parameters output
.apply(w,t) | mutable party’s weight w;, # tickets t; | none
.get() immutable | none integer

» guarantee: want to test T

T

> call DP.apply(w;, (f);) once for all i € [n] with (); # 0 in any order
> then DP.get() returns max # tickets the adversary gets in t

11/20

Testing ?f

» Reuse dynamic programming computations for testing ticket assignments

» generalized data structure DP:

method mutable? parameters output
.apply(w,t) | mutable party’s weight w;, # tickets t; | none
.get() immutable | none integer

» guarantee: want to test T

T

> call DP.apply(w;, (f);) once for all i € [n] with (); # 0 in any order
> then DP.get() returns max # tickets the adversary gets in t

P time complexity

> if 7 ()i = T, then DP.apply(w;, (T);) takes time O(T)
> DP.get() takes time O(1)

11/20

Testing t; (cont.)

Example: want to test £ = (4,3,3,0) for w = (90, 60, 50, 10)

12/20

Testing t; (cont.)

Example: want to test £ = (4,3,3,0) for w = (90, 60, 50, 10)

dp =[=———]

12/20

Testing t; (cont.)

Example: want to test £ = (4,3,3,0) for w = (90, 60, 50, 10)

dp.apply(90,4)

12/20

Testing t; (cont.)

Example: want to test t = (4,3, 3,0) for w = (90, 60, 50, 10)

dp.apply(90,4)
dp.apply(50,3)

12/20

Testing t; (cont.)

Example: want to test t = (4,3, 3,0) for w = (90, 60, 50, 10)

dp.apply(90,4)
dp.apply(50, 3)
dp.apply(60, 3)

12/20

Testing t; (cont.)

Example: want to test t = (4,3,3,0) for w = (90, 60, 50, 10)

dp.apply(90,4)

dp.apply(50, 3)

dp.apply(60, 3)
dp.get()

12/20

Testing t; (cont.)

More interesting example: want to test t = (4,3,3,0) and i = (4,4,3,0)

13/20

Testing t; (cont.)

More interesting example: want to test t = (4,3,3,0) and i = (4,4,3,0)

433 _

13/20

Testing t; (cont.)

More interesting example: want to test t = (4,3,3,0) and i = (4,4,3,0)

13/20

Testing t; (cont.)
More interesting example: want to test (2,1,1,1), (2,2,1,1), (2,2,2,1), (2,2,2,2)

14/20

Testing t; (cont.)
More interesting example: want to test (2,1,1,1), (2,2,1,1), (2,2,2,1), (2,2,2,2)

14/20

Testing t; (cont.)
More interesting example: want to test (2,1,1,1), (2,2,1,1), (2,2,2,1), (2,2,2,2)

2111 2211 2221 2222

4 - (log4 4 1) = 12 applies. Generalize: can test Swiper's 1, ts, ..., to(r) with
O(Rlog R) applies; each apply takes time O(R).

14/20

Improving Swiper: super Swiper (cont.)

j+ 1

while fj’ is not valid do

L et

return t;;

» Challenge 1: compute ff —time O(n+ RlogR)
> Challenge 2: test t; — time O(R?log R)

Total: time O(n + R%*log R)

15/20

Improving Swiper:

w2
2
o]
]
[

super Swiper (cont.)

B=1/3 B=1/2 3
0=02 a=025 a=03 a=03a=035 a=04 a=045
22 85 346 23 29 95 279
1.61lms | 2.07ms 1.96ms | 1.40ms | 1.88ms 1.80ms | 1.96ms
22 58 277 23 29 95 241
6.5511s 13.0ps 116ps 6.43ps | 7.13ps 31.3ps | 88.4us

Table: Evaluation on the Aptos stake distribution

16/20

Improving Swiper: super Swiper (cont.)

» linear search outputs fewer tickets

w2
2
o]
]
[

22 85 346 23 29 95 279
1.61lms | 2.07ms 1.96ms | 1.40ms | 1.88ms 1.80ms | 1.96ms
22 58 277 23 29 95 241
6.5511s 13.0ps 116ps 6.43ps | 7.13ps 31.3ps | 88.4ps

Table: Evaluation on the Aptos stake distribution

16/20

Improving Swiper: super Swiper (cont.)

» linear search outputs fewer tickets

» linear search faster than binary search

[@7]
2
o]
]
[

B=1/3 B=1/2
0=02 a=025 a=03 a=03]a=035 a=04 a=045
235 745 22393 203 383 1203 17591
1.10s 1.22s 1.78s 1.03s 1.14s 1.19s 1.65s
232 745 22384 201 383 1171 17581
75.7ns | 461ps 115ms 84.511s 202pus 1.41ms | 118ms

Table: Evaluation on the Algorand stake distribution

16/20

Lower bounds

» super Swiper works great in practice, what about in theory?
» how big is output compared to optimal solution?

17/20

Lower bounds

» super Swiper works great in practice, what about in theory?
» how big is output compared to optimal solution?

» our result: super Swiper, Swiper [TF23] + others [BHS23, FMT24, DPTX25] all
have approximation factor £2(n)

> constructed an example where output is £2(n) but OPT = O(1)

17/20

Algorithms with better guarantees

Some progress (see paper):
> exact algorithm (approximation factor 1) with time O(n + R3/2ec‘/ﬁ>

> R < O(n) — size of optimal solution
> C=my6/3~~257
» practical when R < 100

18/20

Algorithms with better guarantees

Some progress (see paper):
> exact algorithm (approximation factor 1) with time O(n + R3/2ec‘/ﬁ>

> R < O(n) — size of optimal solution
> C=my6/3~~257
» practical when R < 100

» polytime algorithm with approximation factor O(n/ log? n)

18/20

Algorithms with better guarantees

Some progress (see paper):
> exact algorithm (approximation factor 1) with time O(n + R3/2ec‘/ﬁ>

> R < O(n) — size of optimal solution

> C=rV6/3~ 257

» practical when R < 100
» polytime algorithm with approximation factor O(n/ log? n)
P polytime algorithm based on linear programming

» denote the smallest number of tickets by OPT, 3
> LP algorithm outputs solution of size OPT,, (1_5)s for any constant § > 0
(“bi-criteria approximation”)

18/20

Numerical evaluation

- B=1/3 B=1/2
a=02 =02 a=03!a=03 a«=035 a=04 a=045
o 22 85 346 23 29 95 279
! Swiper
! 1.61ms | 2.07ms 1.96ms 1.40ms 1.88ms 1.80ms 1.96ms
' super | 22 58 277 23 29 95 241
- Swiper | 6.55ps | 13.0ps 116ps | 6.43ps | 7.13ps 31.3ps | 88.4ps
o 99 55 23 29 91
' exact
! 133ps 127ms 23611s 1.08ms 45.9s

Table: Evaluation on the Aptos stake distribution

19/20

Numerical evaluation

» sub-exponential time exact algorithm can be practical!

- B=1/3 B=1/2
a=02 =02 a=03!a=03 a«=035 a=04 a=045
o 22 85 346 23 29 95 279
! Swiper
! 1.61ms | 2.07ms 1.96ms 1.40ms 1.88ms 1.80ms 1.96ms
super | 22 58 277 23 29 95 241
- Swiper | 6.55ps | 13.0ps 116ps | 6.43ps | 7.13ps 31.3ps | 88.4ps
o 29 55 23 29 91
©exact
! 133ps 127ms 23611s 1.08ms 45.9s

Table: Evaluation on the Aptos stake distribution

19/20

Numerical evaluation

» sub-exponential time exact algorithm can be practical!

» super Swiper is almost optimal in practice

- B=1/3 B=1/2
a=02 =02 a=03!a=03 =035 a=04 a=045 |
o 22 85 346 23 29 95 279
! Swiper
! 1.61ms | 2.07ms 1.96ms 1.40ms 1.88ms 1.80ms 1.96ms
super | 22 58 277 23 29 95 241
- Swiper | 6.55ps | 13.0ps 116ps | 6.43ps | 7.13ps 31.3ps | 88.4ps
o 29 55 23 29 91
" exact
! 133ps 127ms 23611s 1.08ms 45.9s

Table: Evaluation on the Aptos stake distribution

19/20

Conclusion

» Good practical improvements

» super Swiper. better solution in less time:

O(n+ R?logR)
> exact algorithm in time O(n) + 90(VR) _
sometimes practical

Weight reduction problem:

given wi,...,w, € Zx>q, find
t1,...,.th € Zzo such that
> minimize Y 1 t;
» for all A with
n .
DicaWi Sy iy W

Dieati <BY Lt

20/20

eprint.iacr.org/2025/1076

Conclusion

» Good practical improvements

» super Swiper. better solution in less time:

O(n + R?log R)
> exact algorithm in time O(n) + 20(VR) —
sometimes practical
» more theoretical work to be done
> NP-hard?
P better approximation factor in polytime

Weight reduction problem:

given wi,...,w, € Zx>q, find
t1,...,.th € Zzo such that
> minimize Y 1, t;
» for all A with
n .
DicaWi Sy iy W

Dieati < Bt

20/20

eprint.iacr.org/2025/1076

Conclusion

» Good practical improvements

» super Swiper. better solution in less time:

O(n + R?log R)
> exact algorithm in time O(n) + 20(VR) _
sometimes practical
» more theoretical work to be done
» NP-hard?
P better approximation factor in polytime
> see eprint.iacr.org/2025/1076 for
latest version

Weight reduction problem:

given wi,...,w, € Zx>q, find
t1,...,.th € Zzo such that
> minimize Y 1 t;
» for all A with
n .
DicaWi Sy iy W

Dieati < Bt

20/20

eprint.iacr.org/2025/1076

ﬁ Fabrice Benhamouda, Shai Halevi, and Lev Stambler.
Weighted secret sharing from wiretap channels.
In Kai-Min Chung, editor, ITC 2023, volume 267 of LIPIcs, pages 8:1-8:19.
Schloss Dagstuhl, June 2023.
doi:10.4230/LIPIcs.ITC.2023.8.

@ Sourav Das, Benny Pinkas, Alin Tomescu, and Zhuolun Xiang.
Distributed randomness using weighted VUFs.
In Serge Fehr and Pierre-Alain Fouque, editors, EUROCRYPT 2025, Part VII,
volume 15607 of LNCS, pages 314-344. Springer, Cham, May 2025.
doi:10.1007/978-3-031-91098-2_12.

[Hanwen Feng, Tiancheng Mai, and Qiang Tang.
Scalable and adaptively secure any-trust distributed key generation and all-hands
checkpointing.
In Bo Luo, Xiaojing Liao, Jun Xu, Engin Kirda, and David Lie, editors, ACM CCS
2024, pages 2636-2650. ACM Press, October 2024.
doi:10.1145/3658644.3690253

20/20

https://doi.org/10.4230/LIPIcs.ITC.2023.8
https://doi.org/10.1007/978-3-031-91098-2_12
https://doi.org/10.1145/3658644.3690253

[Peter Gazi, Aggelos Kiayias, and Alexander Russell.
Fait accompli committee selection: Improving the size-security tradeoff of
stake-based committees.
In Weizhi Meng, Christian Damsgaard Jensen, Cas Cremers, and Engin Kirda,
editors, ACM CCS 2023, pages 845-858. ACM Press, November 2023.
doi:10.1145/3576915.3623194.

[Andrei Tonkikh and Luciano Freitas.
Swiper: a new paradigm for efficient weighted distributed protocols.
Cryptology ePrint Archive, Report 2023/1164, 2023.
URL: https://eprint.iacr.org/2023/1164.

20/20

https://doi.org/10.1145/3576915.3623194
https://eprint.iacr.org/2023/1164

