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Committee selection
I Have n parties, want to select a small subset and delegate work to them

(e.g., in consensus)
I The protocol should remain reliable / secure
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Committee selection (cont.)

Typical goal:
I 20% of parties are malicious, need to elect a

committee with < 1
3 parties malicious

I some security is lost: 1
5 →

1
3
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ti =

{
1 if party i is chosen
0 otherwise

A ⊆ [n] – adversary set, want

for all A with |A| ≤ n
5

:

Pr

[∑
i∈A

ti <
1

3

n∑
i=1

ti

]
is big
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Committee selection (cont.)

Introducing weights

I the n parties have weights w1,w2, ...,wn ∈ Z≥0

I need to assign new weights t1, t2, ..., tn ∈ Z≥0

I say “party i gets ti tickets”
I new problem statement: adversary has weight

at most 20%; he must have < 1
3 tickets
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Committee selection (cont.)
Typical solution:
I select each unit of weight with probability p:

ti ∼ Binomial(wi , p)

I about 20% of selected weight will be malicious;
use tail bounds to analyze bad event

I security error 2−λ requires committee size
≈ 50λ (for 1

5 →
1
3)
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Improvements in weighted committee selection
I Take weight distribution (w1, ...,wn) into account
I Fait Accompli [GKR23]:

I selects biggest parties deterministically and others randomly
I improves committee size vs. error tradeoff

I Swiper [TF23] + others [BHS23, FMT24, DPTX25]:
I fully deterministic ⇒

for all A with
∑
i∈A

wi ≤
1

5

n∑
i=1

wi :

�
�
��S

S
SS

Pr

[ ∑
i∈A

ti <
1

3

n∑
i=1

ti

�
�
�
�@

@
@
@

]
is big

I cons: committee size Ω(n) in worst case (e.g., w1 = w2 = ... = wn = 1)
I pros: security against adaptive corruptions guaranteed
I pros: (?) deterministic committees are smaller when security parameter is large

I both show that realistic weight distributions allow small committees
6 / 20
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Objective function

Minimize the size of the committee (t1, t2, ..., tn): how to quantify?
I the total new weight:

∑n
i=1 ti

I useful when the protocol scales poorly with the weights (e.g., secret sharing)
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Problem statement

Assume 0 < α < β < 1. Given w1, ...,wn ∈ Z≥0, find t1, ..., tn ∈ Z≥0 such that
I minimize

∑n
i=1 ti

I α→ β, deterministic:

for all A with
∑
i∈A

wi ≤ α

n∑
i=1

wi :
∑
i∈A

ti < β

n∑
i=1

ti

This work extends Swiper (Tonkikh, Freitas ’24).
Adopt terminology: party i gets ti “tickets”.

I pure optimization problem
I NP-hard? – unknown
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Swiper [TF23] overview
Linear scaling:
I assignment (t1, ..., tn) = (w1, ...,wn) works, (t1, ..., tn) = 0n doesn’t
I set in-between: ti = bswi + cc (c = const)
I run binary search to find locally minimal s

that generates a valid ticket assignment
I each iteration tests one ticket assignment via dynamic programming for knapsack

Equivalently:
I define potential solutions #‰t1, #‰t2, ... with size

(
#‰tj
)
= j tickets

I find locally minimal j such that #‰tj is valid but #    ‰tj−1 is not
Swiper paper proves that when c = α, all # ‰tM ,

#       ‰tM+1, ... are valid, where

M =

⌊
α(1− α)

β − α
n + 1

⌋
= O(n).

Running time analysis:
I each search iteration: validity testing in time O

(
n ·

∑n
i=1 ti

)
≤ O

(
n ·M

)
= O

(
n2
)

I total: O
(
n2 log n

)
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Improving Swiper: super Swiper

I Replaces binary search with linear search
I j ← 1;

while #‰tj is not valid do
j ← j + 1;

return #‰tj ;
I binary search can get stuck in a “local minimum”
I linear search improves output

I reduces running time from O(n2 log n) to O(n + R2 log R),
where R ≤ O(n) is the number of tickets

∑n
i=1 ti in the output

I not worse than before
I normally, R � n =⇒ n + R2 log R � n2 log n
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Challenge 1: compute #‰tj – time O(n + R log R)
Challenge 2: test #‰tj



Testing #‰tj

I Reuse dynamic programming computations for testing ticket assignments
I generalized data structure DP:

method mutable? parameters output
.apply(w , t) mutable party’s weight wi , # tickets ti none
.get() immutable none integer

I guarantee: want to test #‰t
I call DP.apply

(
wi , (

#‰t )i
)

once for all i ∈ [n] with (
#‰t )i 6= 0 in any order

I then DP.get() returns max # tickets the adversary gets in #‰t
I time complexity

I if
∑n

i=1(
#‰t )i = T , then DP.apply

(
wi , (

#‰t )i
)

takes time O(T )
I DP.get() takes time O(1)
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Testing #‰tj (cont.)

Example: want to test #‰t = (4, 3, 3, 0) for #‰w = (90, 60, 50, 10)

_ _ _ _dp =

4 _ _ _dp =

4 _ 3 _dp =

4 3 3 _dp =

dp.apply(90, 4)

dp.apply(50, 3)

dp.apply(60, 3)

dp.get()

12 / 20
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Testing #‰tj (cont.)
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Testing #‰tj (cont.)

More interesting example: want to test #‰t = (4, 3, 3, 0) and
#‰

t ′ = (4, 4, 3, 0)

_ _ _ _

4 _ _ _

4 _ 3 _

4 3 3 _ 4 4 3 _
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Testing #‰tj (cont.)
More interesting example: want to test (2, 1, 1, 1), (2, 2, 1, 1), (2, 2, 2, 1), (2, 2, 2, 2)

_ _ _ _

_ _ 1 1

2

2 2 _ _

2

_ 1 1 1 2 _ 1 1 2 2 _ 1 2 2 2 _

2 1 1 1 2 2 1 1 2 2 2 1 2 2 2 2

4 · (log 4 + 1) = 12 applies. Generalize: can test Swiper’s #‰t1, #‰t2, ..., #        ‰tO(R) with
O(R log R) applies; each apply takes time O(R).
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Improving Swiper: super Swiper (cont.)

j ← 1;
while #‰tj is not valid do

j ← j + 1;
return #‰tj ;

I Challenge 1: compute #‰tj – time O(n + R log R)

I Challenge 2: test #‰tj – time O(R2 log R)

Total: time O(n + R2 log R)

15 / 20



Improving Swiper: super Swiper (cont.)
I linear search outputs fewer tickets
I linear search faster than binary search

16 / 20

β = 1/3 β = 1/2

α = 0.2 α = 0.25 α = 0.3 α = 0.3 α = 0.35 α = 0.4 α = 0.45

Swiper
22 85 346 23 29 95 279
1.61ms 2.07ms 1.96ms 1.40ms 1.88ms 1.80ms 1.96ms

super
Swiper

22 58 277 23 29 95 241
6.55µs 13.0µs 116µs 6.43µs 7.13µs 31.3µs 88.4µs

Table: Evaluation on the Aptos stake distribution



Improving Swiper: super Swiper (cont.)
I linear search outputs fewer tickets
I linear search faster than binary search

16 / 20

β = 1/3 β = 1/2

α = 0.2 α = 0.25 α = 0.3 α = 0.3 α = 0.35 α = 0.4 α = 0.45

Swiper
22 85 346 23 29 95 279
1.61ms 2.07ms 1.96ms 1.40ms 1.88ms 1.80ms 1.96ms

super
Swiper

22 58 277 23 29 95 241
6.55µs 13.0µs 116µs 6.43µs 7.13µs 31.3µs 88.4µs

Table: Evaluation on the Aptos stake distribution



Improving Swiper: super Swiper (cont.)
I linear search outputs fewer tickets
I linear search faster than binary search

16 / 20

β = 1/3 β = 1/2

α = 0.2 α = 0.25 α = 0.3 α = 0.3 α = 0.35 α = 0.4 α = 0.45

Swiper
235 745 22393 203 383 1203 17591
1.10s 1.22s 1.78s 1.03s 1.14s 1.19s 1.65s

super
Swiper

232 745 22384 201 383 1171 17581
75.7µs 461µs 115ms 84.5µs 202µs 1.41ms 118ms

Table: Evaluation on the Algorand stake distribution



Lower bounds

I super Swiper works great in practice, what about in theory?
I how big is output compared to optimal solution?

I our result: super Swiper, Swiper [TF23] + others [BHS23, FMT24, DPTX25] all
have approximation factor Ω(n)
I constructed an example where output is Ω(n) but OPT = O(1)
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Algorithms with better guarantees

Some progress (see paper):
I exact algorithm (approximation factor 1) with time O

(
n + R3/2eC

√
R
)

I R ≤ O(n) – size of optimal solution
I C = π

√
6/3 ≈ 2.57

I practical when R < 100

I polytime algorithm with approximation factor O
(
n/ log2 n

)
I polytime algorithm based on linear programming

I denote the smallest number of tickets by OPTα,β

I LP algorithm outputs solution of size OPTα,(1−δ)β for any constant δ > 0
(“bi-criteria approximation”)
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Numerical evaluation
I sub-exponential time exact algorithm can be practical!
I super Swiper is almost optimal in practice

β = 1/3 β = 1/2

α = 0.2 α = 0.25 α = 0.3 α = 0.3 α = 0.35 α = 0.4 α = 0.45

Swiper
22 85 346 23 29 95 279
1.61ms 2.07ms 1.96ms 1.40ms 1.88ms 1.80ms 1.96ms

super
Swiper

22 58 277 23 29 95 241
6.55µs 13.0µs 116µs 6.43µs 7.13µs 31.3µs 88.4µs

exact
22 55 23 29 91
133µs 127ms 236µs 1.08ms 45.9s

Table: Evaluation on the Aptos stake distribution
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Conclusion

I Good practical improvements
I super Swiper: better solution in less time:

O
(
n + R2 log R

)
I exact algorithm in time O(n) + 2O(

√
R) –

sometimes practical
I more theoretical work to be done

I NP-hard?
I better approximation factor in polytime

I see eprint.iacr.org/2025/1076 for
latest version

Weight reduction problem:
given w1, ...,wn ∈ Z≥0, find
t1, ..., tn ∈ Z≥0 such that
I minimize

∑n
i=1 ti

I for all A with∑
i∈A wi ≤ α

∑n
i=1 wi :∑

i∈A ti < β
∑n

i=1 ti
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