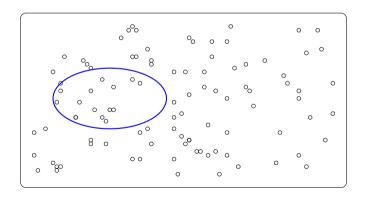
Weight reduction in distributed protocols: new algorithms and analysis

Tolik Zinovyev

Boston University

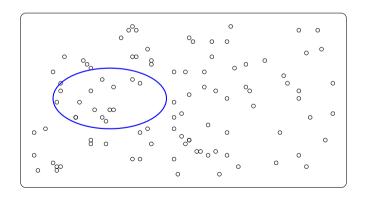
Committee selection

- ► Have *n* parties, want to select a small subset and delegate work to them (e.g., in consensus)
- ► The protocol should remain reliable / secure



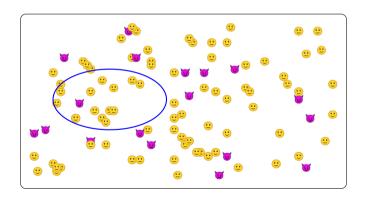
Committee selection

- ► Have *n* parties, want to select a small subset and delegate work to them (e.g., in consensus)
- ► The protocol should remain reliable / secure



Committee selection

- ► Have *n* parties, want to select a small subset and delegate work to them (e.g., in consensus)
- ► The protocol should remain reliable / secure



Typical goal:

- ▶ 20% of parties are malicious, need to elect a committee with $< \frac{1}{3}$ parties malicious
- ▶ some security is lost: $\frac{1}{5} \rightarrow \frac{1}{3}$

$$t_i = \begin{cases} 1 & \text{if party } i \text{ is chosen} \\ 0 & \text{otherwise} \end{cases}$$

 $A \subseteq [n]$ – adversary set, want

for all
$$A$$
 with $|A| \le \frac{\pi}{5}$:
$$\Pr\left[\sum_{i \in A} t_i < \frac{1}{3} \sum_{i=1}^n t_i\right] \text{ is big}$$

Typical goal:

- ▶ 20% of parties are malicious, need to elect a committee with $<\frac{1}{3}$ parties malicious
- ightharpoonup some security is lost: $\frac{1}{5} o \frac{1}{3}$

$$t_i = \begin{cases} 1 & \text{if party } i \text{ is chosen} \\ 0 & \text{otherwise} \end{cases}$$

$$A \subseteq [n]$$
 – adversary set, want

for all
$$A$$
 with $|A| \leq \frac{n}{5}$:

for all
$$A$$
 with $|A| \le \frac{n}{5}$:
$$\Pr\left[\sum_{i \in A} t_i < \frac{1}{3} \sum_{i=1}^{n} t_i\right] \text{ is big}$$

Typical goal:

- ▶ 20% of parties are malicious, need to elect a committee with $<\frac{1}{3}$ parties malicious
- **>** some security is lost: $\frac{1}{5} \rightarrow \frac{1}{3}$

$$t_i = \begin{cases} 1 & \text{if party } i \text{ is chosen} \\ 0 & \text{otherwise} \end{cases}$$

 $A \subseteq [n]$ – adversary set, want

for all
$$A$$
 with $|A| \leq \frac{n}{5}$:

for all
$$A$$
 with $|A| \le \frac{n}{5}$:
$$\Pr\left[\sum_{i \in A} t_i < \frac{1}{3} \sum_{i=1}^{n} t_i\right] \text{ is big}$$

Introducing weights

- ▶ the *n* parties have weights $w_1, w_2, ..., w_n \in \mathbb{Z}_{\geq 0}$
- ▶ need to assign new weights $t_1, t_2, ..., t_n \in \mathbb{Z}_{\geq 0}$ ▶ say "party i gets t_i tickets"
- ▶ new problem statement: adversary has weight at most 20%; he must have $<\frac{1}{3}$ tickets

for all
$$A$$
 with
$$\sum_{i \in A} w_i \le \frac{1}{5} \sum_{i=1}^n w_i :$$

$$\Pr\left[\sum_{i \in A} t_i < \frac{1}{3} \sum_{i=1}^n t_i\right] \text{ is big}$$

Introducing weights

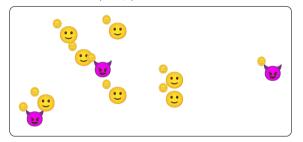
- ▶ the *n* parties have weights $w_1, w_2, ..., w_n \in \mathbb{Z}_{\geq 0}$
- ▶ need to assign new weights $t_1, t_2, ..., t_n \in \mathbb{Z}_{\geq 0}$ ▶ say "party i gets t_i tickets"
- ▶ new problem statement: adversary has weight at most 20%; he must have $<\frac{1}{3}$ tickets

for all
$$A$$
 with
$$\sum_{i \in A} w_i \le \frac{1}{5} \sum_{i=1}^n w_i :$$

$$\Pr\left[\sum_{i \in A} t_i < \frac{1}{3} \sum_{i=1}^n t_i\right] \text{ is big}$$

Typical solution:

▶ select each unit of weight with probability p: t_i ~ Binomial(w_i, p)



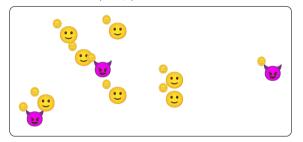
- ▶ about 20% of selected weight will be malicious; use tail bounds to analyze bad event
- ▶ security error $2^{-\lambda}$ requires committee size $\approx 50\lambda$ (for $\frac{1}{5} \rightarrow \frac{1}{3}$)

for all
$$A$$
 with
$$\sum_{i \in A} w_i \le \frac{1}{5} \sum_{i=1}^n w_i :$$

$$\Pr\left[\sum_{i \in A} t_i < \frac{1}{3} \sum_{i=1}^n t_i\right] \text{ is big}$$

Typical solution:

▶ select each unit of weight with probability p: t_i ~ Binomial(w_i, p)



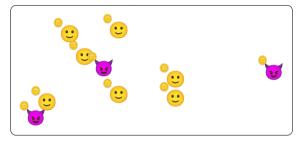
- ▶ about 20% of selected weight will be malicious; use tail bounds to analyze bad event
- ▶ security error $2^{-\lambda}$ requires committee size $\approx 50\lambda$ (for $\frac{1}{5} \rightarrow \frac{1}{3}$)

for all
$$A$$
 with
$$\sum_{i \in A} w_i \le \frac{1}{5} \sum_{i=1}^n w_i :$$

$$\Pr\left[\sum_{i \in A} t_i < \frac{1}{3} \sum_{i=1}^n t_i\right] \text{ is big}$$

Typical solution:

▶ select each unit of weight with probability p: t_i ~ Binomial(w_i, p)



- ▶ about 20% of selected weight will be malicious; use tail bounds to analyze bad event
- ▶ security error $2^{-\lambda}$ requires committee size $\approx 50\lambda$ (for $\frac{1}{5} \rightarrow \frac{1}{3}$)

for all
$$A$$
 with
$$\sum_{i \in A} w_i \le \frac{1}{5} \sum_{i=1}^n w_i :$$

$$\Pr\left[\sum_{i \in A} t_i < \frac{1}{3} \sum_{i=1}^n t_i\right] \text{ is big}$$

- ▶ Take weight distribution $(w_1, ..., w_n)$ into account
- ► Fait Accompli [GKR23]:
 - selects biggest parties deterministically and others randomly
 - improves committee size vs. error tradeoff
- ► Swiper [TF23] + others [BHS23, FMT24, DPTX25]:
 - ▶ fully deterministic ⇒

for all
$$A$$
 with $\sum_{i \in A} w_i \le \frac{1}{5} \sum_{i=1}^n w_i$: $PX \left[\sum_{i \in A} t_i < \frac{1}{3} \sum_{i=1}^n t_i \right]$ ix big

- ightharpoonup cons: committee size $\Omega(n)$ in worst case (e.g., $w_1=w_2=...=w_n=1$)
- pros: security against adaptive corruptions guaranteed
- pros: (?) deterministic committees are smaller when security parameter is large
- both show that realistic weight distributions allow small committees

- ▶ Take weight distribution $(w_1, ..., w_n)$ into account
- ► Fait Accompli [GKR23]:
 - selects biggest parties deterministically and others randomly
 - improves committee size vs. error tradeoff
- ► Swiper [TF23] + others [BHS23, FMT24, DPTX25]:
 - ▶ fully deterministic ⇒

for all
$$A$$
 with $\sum_{i \in A} w_i \le \frac{1}{5} \sum_{i=1}^n w_i$: Px $\left\{ \sum_{i \in A} t_i < \frac{1}{3} \sum_{i=1}^n t_i \right\}$ is big

- ightharpoonup cons: committee size $\Omega(n)$ in worst case (e.g., $w_1=w_2=...=w_n=1$)
- pros: security against adaptive corruptions guaranteed
- pros: (?) deterministic committees are smaller when security parameter is large
- both show that realistic weight distributions allow small committees

- ▶ Take weight distribution $(w_1, ..., w_n)$ into account
- ► Fait Accompli [GKR23]:
 - selects biggest parties deterministically and others randomly
 - improves committee size vs. error tradeoff
- ▶ Swiper [TF23] + others [BHS23, FMT24, DPTX25]:
 - ▶ fully deterministic ⇒

for all
$$A$$
 with $\sum_{i \in A} w_i \le \frac{1}{5} \sum_{i=1}^n w_i$: Px $\left(\sum_{i \in A} t_i < \frac{1}{3} \sum_{i=1}^n t_i\right)$ by big

- \triangleright cons: committee size $\Omega(n)$ in worst case (e.g., $w_1 = w_2 = ... = w_n = 1$)
- pros: security against adaptive corruptions guaranteed
- pros: (?) deterministic committees are smaller when security parameter is large
- both show that realistic weight distributions allow small committees

- ▶ Take weight distribution $(w_1, ..., w_n)$ into account
- ► Fait Accompli [GKR23]:
 - selects biggest parties deterministically and others randomly
 - improves committee size vs. error tradeoff
- ▶ Swiper [TF23] + others [BHS23, FMT24, DPTX25]:
 - ► fully deterministic ⇒

for all
$$A$$
 with $\sum_{i \in A} w_i \le \frac{1}{5} \sum_{i=1}^n w_i$: Px $\left(\sum_{i \in A} t_i < \frac{1}{3} \sum_{i=1}^n t_i\right)$ is big

- ightharpoonup cons: committee size $\Omega(n)$ in worst case (e.g., $w_1 = w_2 = ... = w_n = 1$)
- pros: security against adaptive corruptions guaranteed
- pros: (?) deterministic committees are smaller when security parameter is large
- both show that realistic weight distributions allow small committees

- ▶ Take weight distribution $(w_1, ..., w_n)$ into account
- ► Fait Accompli [GKR23]:
 - selects biggest parties deterministically and others randomly
 - improves committee size vs. error tradeoff
- ▶ Swiper [TF23] + others [BHS23, FMT24, DPTX25]:
 - ▶ fully deterministic ⇒

for all
$$A$$
 with $\sum_{i \in A} w_i \le \frac{1}{5} \sum_{i=1}^n w_i$: Proof $\sum_{i \in A} t_i < \frac{1}{3} \sum_{i=1}^n t_i$ is big

- ightharpoonup cons: committee size $\Omega(n)$ in worst case (e.g., $w_1 = w_2 = ... = w_n = 1$)
- pros: security against adaptive corruptions guaranteed
- pros: (?) deterministic committees are smaller when security parameter is large
- both show that realistic weight distributions allow small committees

Objective function

Minimize the size of the committee $(t_1, t_2, ..., t_n)$: how to quantify?

- ▶ the total new weight: $\sum_{i=1}^{n} t_i$
 - useful when the protocol scales poorly with the weights (e.g., secret sharing)

Problem statement

Assume $0 < \alpha < \beta < 1$. Given $w_1, ..., w_n \in \mathbb{Z}_{\geq 0}$, find $t_1, ..., t_n \in \mathbb{Z}_{\geq 0}$ such that

- ightharpoonup minimize $\sum_{i=1}^{n} t_i$
- $ightharpoonup \alpha
 ightarrow \beta$, deterministic:

for all
$$A$$
 with $\sum_{i \in A} w_i \le \alpha \sum_{i=1}^n w_i : \sum_{i \in A} t_i < \beta \sum_{i=1}^n t_i$

This work extends Swiper (Tonkikh, Freitas '24). Adopt terminology: party i gets t_i "tickets".

- pure optimization problem
- ► NP-hard? unknown

Problem statement

Assume $0 < \alpha < \beta < 1$. Given $w_1, ..., w_n \in \mathbb{Z}_{>0}$, find $t_1, ..., t_n \in \mathbb{Z}_{>0}$ such that

- ightharpoonup minimize $\sum_{i=1}^{n} t_i$
- $ightharpoonup \alpha
 ightarrow \beta$, deterministic:

for all
$$A$$
 with $\sum_{i \in A} w_i \le \alpha \sum_{i=1}^n w_i : \sum_{i \in A} t_i < \beta \sum_{i=1}^n t_i$

This work extends Swiper (Tonkikh, Freitas '24). Adopt terminology: party i gets t_i "tickets".

- pure optimization problem
- ► NP-hard? unknown

Problem statement

Assume $0 < \alpha < \beta < 1$. Given $w_1, ..., w_n \in \mathbb{Z}_{>0}$, find $t_1, ..., t_n \in \mathbb{Z}_{>0}$ such that

- ightharpoonup minimize $\sum_{i=1}^{n} t_i$
- $ightharpoonup \alpha
 ightarrow \beta$, deterministic:

for all
$$A$$
 with $\sum_{i \in A} w_i \le \alpha \sum_{i=1}^n w_i : \sum_{i \in A} t_i < \beta \sum_{i=1}^n t_i$

This work extends Swiper (Tonkikh, Freitas '24). Adopt terminology: party i gets t_i "tickets".

- pure optimization problem
- ► NP-hard? unknown

Linear scaling:

- assignment $(t_1, ..., t_n) = (w_1, ..., w_n)$ works, $(t_1, ..., t_n) = 0^n$ doesn't
- ▶ set in-between: $t_i = \lfloor sw_i + c \rfloor$ (c = const)
- run binary search to find locally minimal s that generates a valid ticket assignment

▶ each iteration tests one ticket assignment via dynamic programming for knapsack

Equivalently

- ightharpoonup define potential solutions $\overrightarrow{t_1}, \overrightarrow{t_2}, \dots$ with $\operatorname{size}(\overrightarrow{t_j}) = j$ tickets
- ightharpoonup find locally minimal j such that $\overrightarrow{t_j}$ is valid but $\overrightarrow{t_{j-1}}$ is not

Swiper paper proves that when c=lpha, all $t_M,t_{M+1},...$ are valid, where

$$M = \left\lfloor \frac{\alpha(1-\alpha)}{\beta-\alpha}n + 1 \right\rfloor = O(n).$$

Running time analysis:

- ▶ each search iteration: validity testing in time $O(n \cdot \sum_{i=1}^{n} t_i) \leq O(n \cdot M) = O(n^2)$
- ightharpoonup total: $O(n^2 \log n)$

Linear scaling:

- assignment $(t_1, ..., t_n) = (w_1, ..., w_n)$ works, $(t_1, ..., t_n) = 0^n$ doesn't
- \triangleright set in-between: $t_i = |sw_i + c|$ (c = const)
- run binary search to find locally minimal s that generates a valid ticket assignment

each iteration tests one ticket assignment via dynamic programming for knapsack

Equivalently:

- ▶ define potential solutions $\overrightarrow{t_1}$, $\overrightarrow{t_2}$, ... with size $(\overrightarrow{t_j}) = j$ tickets ▶ find locally minimal j such that $\overrightarrow{t_j}$ is valid but $\overrightarrow{t_{j-1}}$ is not

$$M = \left\lfloor \frac{\alpha(1-\alpha)}{\beta-\alpha}n + 1 \right\rfloor = O(n).$$

- each search iteration: validity testing in time $O(n \cdot \sum_{i=1}^{n} t_i) \leq O(n \cdot M) = O(n^2)$
- ightharpoonup total: $O(n^2 \log n)$

Linear scaling:

- assignment $(t_1, ..., t_n) = (w_1, ..., w_n)$ works, $(t_1, ..., t_n) = 0^n$ doesn't
- \triangleright set in-between: $t_i = |sw_i + c|$ (c = const)
- run binary search to find locally minimal s that generates a valid ticket assignment

each iteration tests one ticket assignment via dynamic programming for knapsack

Equivalently:

- ▶ define potential solutions $\overrightarrow{t_1}$, $\overrightarrow{t_2}$, ... with size $(\overrightarrow{t_j}) = j$ tickets ▶ find locally minimal j such that $\overrightarrow{t_j}$ is valid but $\overrightarrow{t_{j-1}}$ is not

Swiper paper proves that when $c = \alpha$, all $\overrightarrow{t_M}$, $\overrightarrow{t_{M+1}}$, ... are valid, where

$$M = \left\lfloor \frac{\alpha(1-\alpha)}{\beta-\alpha}n + 1 \right\rfloor = O(n).$$

- \triangleright each search iteration: validity testing in time $O(n \cdot \sum_{i=1}^{n} t_i) < O(n \cdot M) = O(n^2)$
- ightharpoonup total: $O(n^2 \log n)$

Linear scaling:

- assignment $(t_1, ..., t_n) = (w_1, ..., w_n)$ works, $(t_1, ..., t_n) = 0^n$ doesn't
- ightharpoonup set in-between: $t_i = |sw_i + c|$ (c = const)
- run binary search to find locally minimal s that generates a valid ticket assignment

each iteration tests one ticket assignment via dynamic programming for knapsack

Equivalently:

- ▶ define potential solutions $\overrightarrow{t_1}$, $\overrightarrow{t_2}$, ... with size $(\overrightarrow{t_j}) = j$ tickets ▶ find locally minimal j such that $\overrightarrow{t_j}$ is valid but $\overrightarrow{t_{j-1}}$ is not

Swiper paper proves that when $c = \alpha$, all $\overrightarrow{t_M}, \overrightarrow{t_{M+1}}, \dots$ are valid, where

$$M = \left| \frac{\alpha(1-\alpha)}{\beta - \alpha} n + 1 \right| = O(n).$$

Running time analysis:

- each search iteration: validity testing in time $O(n \cdot \sum_{i=1}^{n} t_i) \leq O(n \cdot M) = O(n^2)$
- ightharpoonup total: $O(n^2 \log n)$

- Replaces binary search with linear search
 - $j \leftarrow 1$; while $\vec{t_i}$ is not valid do $\downarrow j \leftarrow j+1;$ return \vec{t}_i :
 - binary search can get stuck in a "local minimum"
 - linear search improves output
- reduces running time from $O(n^2 \log n)$ to $O(n + R^2 \log R)$,
 - not worse than before
 - ightharpoonup normally, $R \ll n \Longrightarrow n + R^2 \log R \ll n^2 \log n$

- Replaces binary search with linear search

 - binary search can get stuck in a "local minimum"
 - linear search improves output
- reduces running time from $O(n^2 \log n)$ to $O(n + R^2 \log R)$, where $R \leq O(n)$ is the number of tickets $\sum_{i=1}^{n} t_i$ in the output
 - not worse than before
 - normally, $R \ll n \Longrightarrow n + R^2 \log R \ll n^2 \log n$

- Replaces binary search with linear search
 - $\begin{array}{c} j \leftarrow 1; \\ \text{while } \overrightarrow{t_j} \text{ is not valid do} \\ & \ \ \, \big\lfloor \ \, j \leftarrow \underline{j} + 1; \\ \text{return } \overrightarrow{t_j}; \end{array}$ Challenge 1: compute $\overrightarrow{t_j}$ Challenge 2: test $\overrightarrow{t_j}$
 - binary search can get stuck in a "local minimum"
 - linear search improves output
- reduces running time from $O(n^2 \log n)$ to $O(n + R^2 \log R)$, where $R \leq O(n)$ is the number of tickets $\sum_{i=1}^{n} t_i$ in the output
 - not worse than before
 - normally, $R \ll n \Longrightarrow n + R^2 \log R \ll n^2 \log n$

- Replaces binary search with linear search
 - $i \leftarrow 1$; while $\overrightarrow{t_i}$ is not valid do
 - Challenge 1: compute $\vec{t_i}$ time $O(n + R \log R)$
 - Challenge 2: test $\vec{t_i}$
 - binary search can get stuck in a "local minimum"
 - linear search improves output
- reduces running time from $O(n^2 \log n)$ to $O(n + R^2 \log R)$, where $R \leq O(n)$ is the number of tickets $\sum_{i=1}^{n} t_i$ in the output
 - not worse than before
 - ightharpoonup normally, $R \ll n \Longrightarrow n + R^2 \log R \ll n^2 \log n$

- Reuse dynamic programming computations for testing ticket assignments
- generalized data structure DP:

method	mutable?	parameters	output
.apply(w,t)	mutable	party's weight w_i , $\#$ tickets t_i	none
$.\mathtt{get}()$	immutable	none	integer

- ightharpoonup guarantee: want to test \vec{t}
 - ▶ call DP.apply $(w_i, (\overrightarrow{t})_i)$ once for all $i \in [n]$ with $(\overrightarrow{t})_i \neq 0$ in any order
 - ightharpoonup then DP.get() returns max # tickets the adversary gets in \overrightarrow{t}
- time complexity
 - ▶ if $\sum_{i=1}^{n} (\overrightarrow{t})_i = T$, then DP.apply $(w_i, (\overrightarrow{t})_i)$ takes time O(T)
 - ▶ DP.get() takes time O(1)

- ▶ Reuse dynamic programming computations for testing ticket assignments
- generalized data structure DP:

method	mutable?	parameters	output
.apply(w,t)	mutable	party's weight w_i , $\#$ tickets t_i	none
.get()	immutable	none	integer

- ightharpoonup guarantee: want to test \vec{t}
 - ▶ call DP.apply $(w_i, (\overrightarrow{t})_i)$ once for all $i \in [n]$ with $(\overrightarrow{t})_i \neq 0$ in any order
 - ightharpoonup then DP.get() returns max # tickets the adversary gets in \overrightarrow{t}
- time complexity
 - ▶ if $\sum_{i=1}^{n} (\overrightarrow{t})_i = T$, then DP.apply $(w_i, (\overrightarrow{t})_i)$ takes time O(T)
 - ▶ DP.get() takes time O(1)

- Reuse dynamic programming computations for testing ticket assignments
- generalized data structure DP:

method	mutable?	parameters	output
.apply(w,t)	mutable	party's weight w_i , $\#$ tickets t_i	none
.get()	immutable	none	integer

- ightharpoonup guarantee: want to test \overrightarrow{t}
 - ▶ call DP.apply $(w_i, (\overrightarrow{t})_i)$ once for all $i \in [n]$ with $(\overrightarrow{t})_i \neq 0$ in any order
 - ightharpoonup then DP.get() returns max # tickets the adversary gets in \overrightarrow{t}
- time complexity
 - ▶ if $\sum_{i=1}^{n} (\overrightarrow{t})_i = T$, then DP.apply $(w_i, (\overrightarrow{t})_i)$ takes time O(T)
 - ightharpoonup DP.get() takes time O(1)

- Reuse dynamic programming computations for testing ticket assignments
- generalized data structure DP:

method	mutable?	parameters	output
.apply(w,t)	mutable	party's weight w_i , $\#$ tickets t_i	none
.get()	immutable	none	integer

- ightharpoonup guarantee: want to test \overrightarrow{t}
 - ▶ call DP.apply $(w_i, (\overrightarrow{t})_i)$ once for all $i \in [n]$ with $(\overrightarrow{t})_i \neq 0$ in any order
 - then DP.get() returns max # tickets the adversary gets in \vec{t}
- time complexity
 - ▶ if $\sum_{i=1}^{n} (\overrightarrow{t})_i = T$, then DP.apply $(w_i, (\overrightarrow{t})_i)$ takes time O(T)
 - ▶ DP.get() takes time O(1)

Testing $\vec{t_j}$ (cont.)

Example: want to test $\overrightarrow{t} = (4, 3, 3, 0)$ for $\overrightarrow{w} = (90, 60, 50, 10)$

Testing $\vec{t_j}$ (cont.)

Example: want to test $\overrightarrow{t} = (4, 3, 3, 0)$ for $\overrightarrow{w} = (90, 60, 50, 10)$

$$dp = \boxed{---}$$

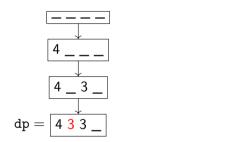
Testing $\vec{t_j}$ (cont.)

Example: want to test $\vec{t} = (4, 3, 3, 0)$ for $\vec{w} = (90, 60, 50, 10)$

Example: want to test $\vec{t} = (4, 3, 3, 0)$ for $\vec{w} = (90, 60, 50, 10)$



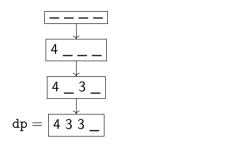
Example: want to test $\vec{t} = (4, 3, 3, 0)$ for $\vec{w} = (90, 60, 50, 10)$



dp.apply(90, 4) dp.apply(50, 3) dp.apply(60, 3)

12 / 20

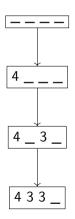
Example: want to test $\vec{t} = (4, 3, 3, 0)$ for $\vec{w} = (90, 60, 50, 10)$



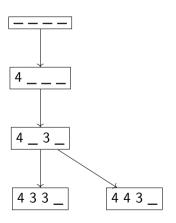
$$\begin{array}{c} \texttt{dp.apply}(90,4) \\ \texttt{dp.apply}(50,3) \\ \texttt{dp.apply}(60,3) \\ \texttt{dp.get}() \end{array}$$

More interesting example: want to test $\overrightarrow{t}=(4,3,3,0)$ and $\overrightarrow{t'}=(4,4,3,0)$

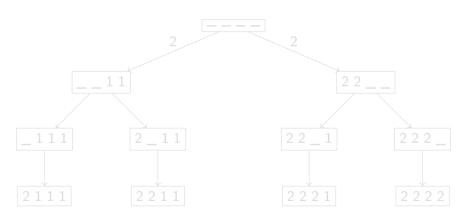
More interesting example: want to test $\overrightarrow{t}=(4,3,3,0)$ and $\overrightarrow{t'}=(4,4,3,0)$



More interesting example: want to test $\overrightarrow{t}=(4,3,3,0)$ and $\overrightarrow{t'}=(4,4,3,0)$

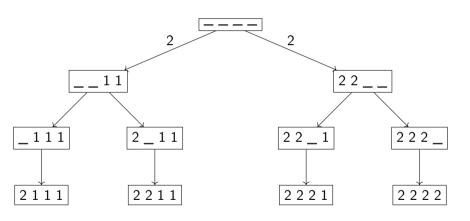


More interesting example: want to test (2,1,1,1), (2,2,1,1), (2,2,2,1), (2,2,2,2)



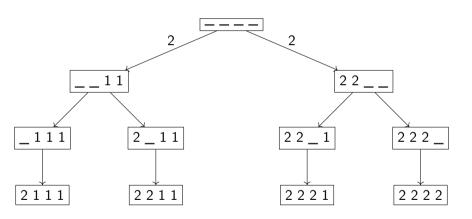
 $4 \cdot (\log 4 + 1) = 12$ applies. Generalize: can test Swiper's $\vec{t_1}, \vec{t_2}, ..., \vec{t_{O(R)}}$ with $O(R \log R)$ applies; each apply takes time O(R).

More interesting example: want to test (2,1,1,1), (2,2,1,1), (2,2,2,1), (2,2,2,2)



 $4 \cdot (\log 4 + 1) = 12$ applies. Generalize: can test Swiper's $\overline{t_1}, \overline{t_2}, ..., \overline{t_{O(R)}}$ with $O(R \log R)$ applies; each apply takes time O(R).

More interesting example: want to test (2,1,1,1), (2,2,1,1), (2,2,2,1), (2,2,2,2)



 $4 \cdot (\log 4 + 1) = 12$ applies. <u>Generalize</u>: can test Swiper's $\overrightarrow{t_1}, \overrightarrow{t_2}, ..., \overrightarrow{t_{O(R)}}$ with $O(R \log R)$ applies; each apply takes time O(R).

- ▶ linear search outputs fewer tickets
- ▶ linear search faster than binary search

	$\beta = 1/3$			$\beta = 1/2$			
	$\alpha = 0.2$	$\alpha = 0.25$	$\alpha = 0.3$	$\alpha = 0.3$	$\alpha = 0.35$	$\alpha = 0.4$	$\alpha = 0.45$
Swiper	22	85	346	23	29	95	279
Swiper	$1.61 \mathrm{ms}$	$2.07 \mathrm{ms}$	$1.96 \mathrm{ms}$	$1.40 \mathrm{ms}$	1.88ms	$1.80 \mathrm{ms}$	$1.96 \mathrm{ms}$
super	22	58	277	23	29	95	241
Swiper	$6.55 \mu s$	13.0µs	116µs	6.43µs	7.13µs	31.3µs	88.4µs

- ▶ linear search outputs fewer tickets
- ► linear search faster than binary search

	$\beta = 1/3$			eta=1/2			
	$\alpha = 0.2$	$\alpha = 0.25$	$\alpha = 0.3$	$\alpha = 0.3$	$\alpha = 0.35$	$\alpha = 0.4$	$\alpha = 0.45$
Swiper	22	85	346	23	29	95	279
Swiper	$1.61 \mathrm{ms}$	$2.07 \mathrm{ms}$	$1.96 \mathrm{ms}$	$1.40 \mathrm{ms}$	1.88ms	$1.80 \mathrm{ms}$	$1.96 \mathrm{ms}$
super	22	58	277	23	29	95	241
Swiper	$6.55 \mu s$	13.0µs	116µs	6.43µs	7.13µs	31.3µs	88.4µs

- ▶ linear search outputs fewer tickets
- linear search faster than binary search

	$\beta = 1/3$			eta=1/2			
	$\alpha = 0.2$	$\alpha = 0.25$	$\alpha = 0.3$	$\alpha = 0.3$	$\alpha = 0.35$	$\alpha = 0.4$	$\alpha = 0.45$
Swiper	235	745	22393	203	383	1203	17591
Swiper	1.10s	1.22s	1.78s	1.03s	1.14s	1.19s	1.65s
super	232	745	22384	201	383	1171	17581
Swiper	$75.7 \mu s$	461μs	$115 \mathrm{ms}$	84.5µs	202μs	1.41ms	118ms

Lower bounds

- super Swiper works great in practice, what about in theory?
 - how big is output compared to optimal solution?
- ▶ our result: super Swiper, Swiper [TF23] + others [BHS23, FMT24, DPTX25] all have approximation factor $\Omega(n)$
 - ightharpoonup constructed an example where output is $\Omega(n)$ but $\mathrm{OPT} = \mathcal{O}(1)$

Lower bounds

- super Swiper works great in practice, what about in theory?
 - how big is output compared to optimal solution?
- our result: super Swiper, Swiper [TF23] + others [BHS23, FMT24, DPTX25] all have approximation factor $\Omega(n)$
 - constructed an example where output is $\Omega(n)$ but OPT = O(1)

Algorithms with better guarantees

Some progress (see paper):

- lacktriangle exact algorithm (approximation factor 1) with time $O\left(n+R^{3/2}e^{C\sqrt{R}}\right)$
 - ▶ $R \le O(n)$ size of optimal solution
 - $C = \pi \sqrt{6}/3 \approx 2.57$
 - ightharpoonup practical when R < 100
- **b** polytime algorithm with approximation factor $O(n/\log^2 n)$
- polytime algorithm based on linear programming
 - lacktriangleright denote the smallest number of tickets by $\mathrm{OPT}_{lpha,eta}$
 - LP algorithm outputs solution of size $\mathrm{OPT}_{\alpha,(1-\delta)\beta}$ for any constant $\delta>0$ ("bi-criteria approximation")

Algorithms with better guarantees

Some progress (see paper):

- lacktriangle exact algorithm (approximation factor 1) with time $O\left(n+R^{3/2}e^{C\sqrt{R}}\right)$
 - ▶ $R \le O(n)$ size of optimal solution
 - $C = \pi \sqrt{6}/3 \approx 2.57$
 - ightharpoonup practical when R < 100
- ightharpoonup polytime algorithm with approximation factor $O(n/\log^2 n)$
- polytime algorithm based on linear programming
 - ightharpoonup denote the smallest number of tickets by $\mathrm{OPT}_{\alpha,\beta}$
 - LP algorithm outputs solution of size $\mathrm{OPT}_{\alpha,(1-\delta)\beta}$ for any constant $\delta>0$ ("bi-criteria approximation")

Algorithms with better guarantees

Some progress (see paper):

- lacktriangle exact algorithm (approximation factor 1) with time $O\left(n+R^{3/2}e^{C\sqrt{R}}\right)$
 - $ightharpoonup R \leq O(n)$ size of optimal solution
 - $C = \pi \sqrt{6}/3 \approx 2.57$
 - ightharpoonup practical when R < 100
- **>** polytime algorithm with approximation factor $O(n/\log^2 n)$
- polytime algorithm based on linear programming
 - denote the smallest number of tickets by $OPT_{\alpha,\beta}$
 - ▶ LP algorithm outputs solution of size $OPT_{\alpha,(1-\delta)\beta}$ for any constant $\delta>0$ ("bi-criteria approximation")

Numerical evaluation

- sub-exponential time exact algorithm can be practical!
- super Swiper is almost optimal in practice

	$\beta = 1/3$			$\beta = 1/2$				
	$\alpha = 0.2$	$\alpha = 0.25$	$\alpha = 0.3$	$\alpha = 0.3$	$\alpha = 0.35$	$\alpha = 0.4$	$\alpha = 0.45$	
Swiper	22	85	346	23	29	95	279	
	$1.61 \mathrm{ms}$	$2.07 \mathrm{ms}$	$1.96 \mathrm{ms}$	$1.40 \mathrm{ms}$	1.88ms	1.80ms	1.96ms	
super	22	58	277	23	29	95	241	
Swiper	$6.55 \mu s$	$13.0 \mu s$	$116 \mu s$	$6.43 \mu s$	$7.13 \mu s$	31.3µs	88.4µs	
exact	22	55		23	29	91		
CAACU	$133 \mu s$	$127 \mathrm{ms}$		236µs	1.08ms	45.9s		

Numerical evaluation

- sub-exponential time exact algorithm can be practical!
- super Swiper is almost optimal in practice

	$\beta = 1/3$			eta=1/2				
	$\alpha = 0.2$	$\alpha = 0.25$	$\alpha = 0.3$	$\alpha = 0.3$	$\alpha = 0.35$	$\alpha = 0.4$	$\alpha = 0.45$	
Swiper	22	85	346	23	29	95	279	
	$1.61 \mathrm{ms}$	$2.07 \mathrm{ms}$	$1.96 \mathrm{ms}$	$1.40 \mathrm{ms}$	1.88ms	1.80ms	1.96ms	
super	22	58	277	23	29	95	241	
Swiper	$6.55 \mu s$	13.0µs	116µs	$6.43 \mu s$	7.13µs	31.3µs	88.4µs	
exact	22	55		23	29	91		
CAACU	133µs	$127 \mathrm{ms}$		236µs	1.08ms	45.9s		

Numerical evaluation

- sub-exponential time exact algorithm can be practical!
- super Swiper is almost optimal in practice

	$\beta = 1/3$			$\beta = 1/2$				
	$\alpha = 0.2$	$\alpha = 0.25$	$\alpha = 0.3$	$\alpha = 0.3$	$\alpha = 0.35$	$\alpha = 0.4$	$\alpha = 0.45$	
Ci	22	85	346	23	29	95	279	
Swiper	$1.61 \mathrm{ms}$	$2.07 \mathrm{ms}$	$1.96 \mathrm{ms}$	$1.40 \mathrm{ms}$	1.88ms	$1.80 \mathrm{ms}$	$1.96 \mathrm{ms}$	
super	22	<u>58</u>	277	23	29	<mark>95</mark>	241	
Swiper	$6.55 \mu s$	$13.0 \mu s$	116µs	$6.43 \mu s$	7.13µs	$31.3 \mu s$	$88.4 \mu s$	
exact	22	55		23	29	91		
Exact	$133 \mu s$	$127 \mathrm{ms}$		236µs	1.08ms	45.9s		

Conclusion

- Good practical improvements
 - ▶ super Swiper. better solution in less time: $O(n + R^2 \log R)$
 - exact algorithm in time $O(n) + 2^{O(\sqrt{R})}$ sometimes practical
- more theoretical work to be done
 - ► NP-hard?
 - better approximation factor in polytime
- see eprint.iacr.org/2025/1076 for latest version

Weight reduction problem: given $w_1,...,w_n \in \mathbb{Z}_{\geq 0}$, find $t_1,...,t_n \in \mathbb{Z}_{\geq 0}$ such that

- ightharpoonup minimize $\sum_{i=1}^{n} t_i$
- ► for all A with $\sum_{i \in A} w_i \le \alpha \sum_{i=1}^n w_i :$ $\sum_{i \in A} t_i < \beta \sum_{i=1}^n t_i$

Conclusion

- Good practical improvements
 - ▶ super Swiper. better solution in less time: $O(n + R^2 \log R)$
 - exact algorithm in time $O(n) + 2^{O(\sqrt{R})}$ sometimes practical
- more theoretical work to be done
 - ► NP-hard?
 - better approximation factor in polytime
- see eprint.iacr.org/2025/1076 for latest version

Weight reduction problem: given $w_1,...,w_n \in \mathbb{Z}_{\geq 0}$, find $t_1,...,t_n \in \mathbb{Z}_{\geq 0}$ such that

- ightharpoonup minimize $\sum_{i=1}^{n} t_i$
- ► for all A with $\sum_{i \in A} w_i \le \alpha \sum_{i=1}^n w_i :$ $\sum_{i \in A} t_i < \beta \sum_{i=1}^n t_i$

Conclusion

- Good practical improvements
 - ▶ super Swiper. better solution in less time: $O(n + R^2 \log R)$
 - exact algorithm in time $O(n) + 2^{O(\sqrt{R})}$ sometimes practical
- more theoretical work to be done
 - ► NP-hard?
 - better approximation factor in polytime
- see eprint.iacr.org/2025/1076 for latest version

Weight reduction problem: given $w_1,...,w_n \in \mathbb{Z}_{\geq 0}$, find $t_1,...,t_n \in \mathbb{Z}_{\geq 0}$ such that

- ightharpoonup minimize $\sum_{i=1}^{n} t_i$
- ► for all A with $\sum_{i \in A} w_i \le \alpha \sum_{i=1}^n w_i :$ $\sum_{i \in A} t_i < \beta \sum_{i=1}^n t_i$

Fabrice Benhamouda, Shai Halevi, and Lev Stambler.

Weighted secret sharing from wiretap channels.

In Kai-Min Chung, editor, ITC 2023, volume 267 of LIPIcs, pages 8:1–8:19. Schloss Dagstuhl, June 2023.

doi:10.4230/LIPIcs.ITC.2023.8.

Sourav Das, Benny Pinkas, Alin Tomescu, and Zhuolun Xiang.

Distributed randomness using weighted VUFs.

In Serge Fehr and Pierre-Alain Fouque, editors, EUROCRYPT 2025, Part VII, volume 15607 of *LNCS*, pages 314–344. Springer, Cham. May 2025. doi:10.1007/978-3-031-91098-2 12.

Hanwen Feng, Tiancheng Mai, and Qiang Tang.

Scalable and adaptively secure any-trust distributed key generation and all-hands checkpointing.

In Bo Luo, Xiaojing Liao, Jun Xu, Engin Kirda, and David Lie. editors. ACM CCS 2024, pages 2636-2650, ACM Press, October 2024. doi:10.1145/3658644.3690253.

Peter Gazi, Aggelos Kiayias, and Alexander Russell.

Fait accompli committee selection: Improving the size-security tradeoff of stake-based committees.

In Weizhi Meng, Christian Damsgaard Jensen, Cas Cremers, and Engin Kirda, editors, *ACM CCS 2023*, pages 845–858. ACM Press, November 2023. doi:10.1145/3576915.3623194.

Andrei Tonkikh and Luciano Freitas.

Swiper: a new paradigm for efficient weighted distributed protocols.

Cryptology ePrint Archive, Report 2023/1164, 2023.

URL: https://eprint.iacr.org/2023/1164.