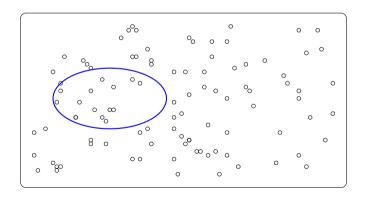
Weight reduction in distributed protocols: new algorithms and analysis

Tolik Zinovyev

Boston University

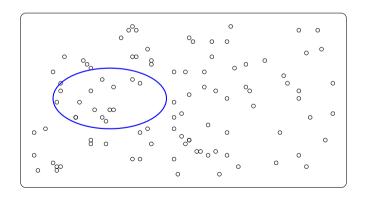
Committee selection

- ► Have *n* parties, want to select a small subset and delegate work to them (e.g., in consensus)
- ► The protocol should remain reliable / secure



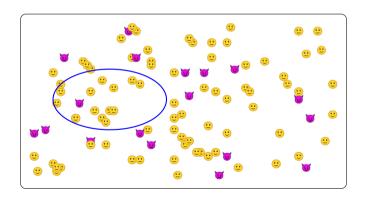
Committee selection

- ► Have *n* parties, want to select a small subset and delegate work to them (e.g., in consensus)
- ► The protocol should remain reliable / secure



Committee selection

- ► Have *n* parties, want to select a small subset and delegate work to them (e.g., in consensus)
- ► The protocol should remain reliable / secure



Typical goal:

- ▶ 20% of parties are malicious, need to elect a committee with $< \frac{1}{3}$ parties malicious
- ▶ some security is lost: $\frac{1}{5} \rightarrow \frac{1}{3}$

$$t_i = \begin{cases} 1 & \text{if party } i \text{ is chosen} \\ 0 & \text{otherwise} \end{cases}$$

for all
$$A$$
 with $|A| \le \frac{n}{5}$:
$$\Pr\left[\sum_{i \in A} t_i < \frac{1}{3} \sum_{i=1}^{n} t_i\right] \text{ is big}$$

Typical goal:

- ▶ 20% of parties are malicious, need to elect a committee with $<\frac{1}{3}$ parties malicious
- ightharpoonup some security is lost: $\frac{1}{5} o \frac{1}{3}$

$$t_i = \begin{cases} 1 & \text{if party } i \text{ is chosen} \\ 0 & \text{otherwise} \end{cases}$$

for all
$$A$$
 with $|A| \leq \frac{n}{5}$:

for all
$$A$$
 with $|A| \le \frac{n}{5}$:
$$\Pr\left[\sum_{i \in A} t_i < \frac{1}{3} \sum_{i=1}^{n} t_i\right] \text{ is big}$$

Typical goal:

- ▶ 20% of parties are malicious, need to elect a committee with $<\frac{1}{3}$ parties malicious
- **>** some security is lost: $\frac{1}{5} \rightarrow \frac{1}{3}$

$$t_i = \begin{cases} 1 & \text{if party } i \text{ is chosen} \\ 0 & \text{otherwise} \end{cases}$$

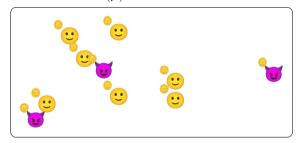
$$A \subseteq [n]$$
 – adversary set, want

for all
$$A$$
 with $|A| \leq \frac{n}{5}$:

for all
$$A$$
 with $|A| \le \frac{n}{5}$:
$$\Pr\left[\sum_{i \in A} t_i < \frac{1}{3} \sum_{i=1}^{n} t_i\right] \text{ is big}$$

Typical solution:

select each party with probability p: $t_i \sim \text{Bernoulli}(p)$



- ▶ about 20% of selected parties will be malicious;
- ightharpoonup security error $2^{-\lambda}$ requires committee size

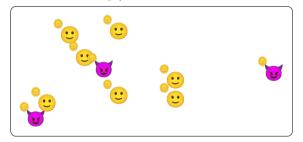
$$t_i = \begin{cases} 1 & \text{if party } i \text{ is chosen} \\ 0 & \text{otherwise} \end{cases}$$

for all
$$A$$
 with $|A| \le \frac{n}{5}$:

for all
$$A$$
 with $|A| \le \frac{n}{5}$:
$$\Pr\left[\sum_{i \in A} t_i < \frac{1}{3} \sum_{i=1}^{n} t_i\right] \text{ is big}$$

Typical solution:

select each party with probability p: $t_i \sim \text{Bernoulli}(p)$



- about 20% of selected parties will be malicious; use tail bounds to analyze bad event
- \triangleright security error $2^{-\lambda}$ requires committee size

$$t_i = \begin{cases} 1 & \text{if party } i \text{ is chosen} \\ 0 & \text{otherwise} \end{cases}$$

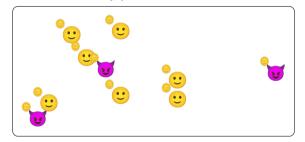
for all
$$A$$
 with $|A| \le \frac{n}{5}$

for all
$$A$$
 with $|A| \le \frac{n}{5}$:

$$\Pr\left[\sum_{i \in A} t_i < \frac{1}{3} \sum_{i=1}^{n} t_i\right] \text{ is big}$$

Typical solution:

select each party with probability p: $t_i \sim \text{Bernoulli}(p)$



- ▶ about 20% of selected parties will be malicious; use tail bounds to analyze bad event
- \triangleright security error $2^{-\lambda}$ requires committee size $\approx 50\lambda$ (for $\frac{1}{5} \rightarrow \frac{1}{3}$)

$$t_i = \begin{cases} 1 & \text{if party } i \text{ is chosen} \\ 0 & \text{otherwise} \end{cases}$$

for all
$$A$$
 with $|A| \le \frac{n}{5}$:

for all
$$A$$
 with $|A| \le \frac{n}{5}$:
$$\Pr\left[\sum_{i \in A} t_i < \frac{1}{3} \sum_{i=1}^{n} t_i\right] \text{ is big}$$

Introducing weights

- ▶ the *n* parties have weights $w_1, w_2, ..., w_n \in \mathbb{Z}_{\geq 0}$
- ▶ need to assign new weights $t_1, t_2, ..., t_n \in \mathbb{Z}_{\geq 0}$ ▶ sav "party i gets t_i tickets"
- ▶ new problem statement: adversary has weight at most 20%; he must have $<\frac{1}{3}$ tickets

for all
$$A$$
 with
$$\sum_{i \in A} w_i \le \frac{1}{5} \sum_{i=1}^n w_i :$$

$$\Pr\left[\sum_{i \in A} t_i < \frac{1}{3} \sum_{i=1}^n t_i\right] \text{ is big}$$

Introducing weights

- ▶ the *n* parties have weights $w_1, w_2, ..., w_n \in \mathbb{Z}_{>0}$
- ▶ need to assign new weights $t_1, t_2, ..., t_n \in \mathbb{Z}_{\geq 0}$ ▶ say "party i gets t_i tickets"
- ▶ new problem statement: adversary has weight at most 20%; he must have $<\frac{1}{3}$ tickets

for all
$$A$$
 with
$$\sum_{i \in A} w_i \le \frac{1}{5} \sum_{i=1}^n w_i :$$

$$\Pr\left[\sum_{i \in A} t_i < \frac{1}{3} \sum_{i=1}^n t_i\right] \text{ is big}$$

Introducing weights (cont.)

- what Algorand uses
- their solution: select each unit of weight with probability p
 - ightharpoonup equivalently, $t_i \sim \text{Binomial}(w_i, p)$;
- often want security against adaptive corruptions
 - ▶ the adversary is allowed to corrupt parties throughout the protocol execution

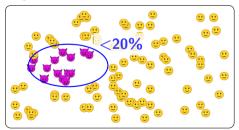
Algorand achieves it: does extra work to "hide" t_i

for all
$$A$$
 with
$$\sum_{i \in A} w_i \le \frac{1}{5} \sum_{i=1}^n w_i :$$

$$\Pr\left[\sum_{i \in A} t_i < \frac{1}{3} \sum_{i=1}^n t_i\right] \text{ is big}$$

Introducing weights (cont.)

- what Algorand uses
- their solution: select each unit of weight with probability p
 - ightharpoonup equivalently, $t_i \sim \text{Binomial}(w_i, p)$;
- often want security against adaptive corruptions
 - the adversary is allowed to corrupt parties throughout the protocol execution



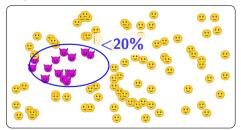
► Algorand achieves it: does extra work to "hide" t_i

for all
$$A$$
 with
$$\sum_{i \in A} w_i \le \frac{1}{5} \sum_{i=1}^n w_i :$$

$$\Pr\left[\sum_{i \in A} t_i < \frac{1}{3} \sum_{i=1}^n t_i\right] \text{ is big}$$

Introducing weights (cont.)

- what Algorand uses
- their solution: select each unit of weight with probability p
 - ightharpoonup equivalently, $t_i \sim \text{Binomial}(w_i, p)$;
- often want security against adaptive corruptions
 - the adversary is allowed to corrupt parties throughout the protocol execution



Algorand achieves it: does extra work to "hide" t_i

for all
$$A$$
 with
$$\sum_{i \in A} w_i \le \frac{1}{5} \sum_{i=1}^n w_i :$$

$$\Pr\left[\sum_{i \in A} t_i < \frac{1}{3} \sum_{i=1}^n t_i\right] \text{ is big}$$

- ▶ Take weight distribution $(w_1, ..., w_n)$ into account
- ► Fait Accompli [GKR23]:
 - > selects biggest parties deterministically and everyone else randomly as in Algorand
 - big players selected almost certainly anyway
 - ► randomly sample from less weight ⇒ less variance
 - improves committee size vs. error tradeoff
- ► Swiper [TF23] + others [BHS23, FMT24, DPTX25]:
 - ► fully deterministic ⇒

for all
$$A$$
 with $\sum_{i \in A} w_i \le \frac{1}{5} \sum_{i=1}^n w_i$: P $\left\{\sum_{i \in A} t_i < \frac{1}{3} \sum_{i=1}^n t_i\right\}$ by P

- \triangleright cons: committee size $\Omega(n)$ in worst case (e.g., $w_1 = w_2 = ... = w_n = 1$
- pros: security against adaptive corruptions guaranteecc
- pros: (?) deterministic committees are smaller when security parameter is large
- both show that realistic weight distributions allow small committees

- ▶ Take weight distribution $(w_1, ..., w_n)$ into account
- ► Fait Accompli [GKR23]:
 - selects biggest parties deterministically and everyone else randomly as in Algorand
 - big players selected almost certainly anyway
 - ▶ randomly sample from less weight ⇒ less variance
 - improves committee size vs. error tradeoff
- ► Swiper [TF23] + others [BHS23, FMT24, DPTX25]:
 - ► fully deterministic ⇒

for all
$$A$$
 with $\sum_{i \in A} w_i \le \frac{1}{5} \sum_{i=1}^n w_i$: $PX \left(\sum_{i \in A} t_i < \frac{1}{3} \sum_{i=1}^n t_i\right)$ is big

- ightharpoonup cons: committee size $\Omega(n)$ in worst case (e.g., $w_1=w_2=...=w_n=1$)
- pros: security against adaptive corruptions guaranteed
- pros: (?) deterministic committees are smaller when security parameter is large
- both show that realistic weight distributions allow small committees

- ▶ Take weight distribution $(w_1, ..., w_n)$ into account
- ► Fait Accompli [GKR23]:
 - > selects biggest parties deterministically and everyone else randomly as in Algorand
 - big players selected almost certainly anyway
 - ▶ randomly sample from less weight ⇒ less variance
 - improves committee size vs. error tradeoff
- ► Swiper [TF23] + others [BHS23, FMT24, DPTX25]:
 - ▶ fully deterministic ⇒

for all
$$A$$
 with $\sum_{i \in A} w_i \le \frac{1}{5} \sum_{i=1}^n w_i$: P

- cons: committee size $\Omega(n)$ in worst case (e.g., $w_1 = w_2 = ... = w_n = 1$)
- pros: security against adaptive corruptions guaranteed
- pros: (?) deterministic committees are smaller when security parameter is large
- both show that realistic weight distributions allow small committees

- ▶ Take weight distribution $(w_1, ..., w_n)$ into account
- ► Fait Accompli [GKR23]:
 - > selects biggest parties deterministically and everyone else randomly as in Algorand
 - big players selected almost certainly anyway
 - ► randomly sample from less weight ⇒ less variance
 - improves committee size vs. error tradeoff
- ► Swiper [TF23] + others [BHS23, FMT24, DPTX25]:
 - ► fully deterministic ⇒

for all
$$A$$
 with $\sum_{i \in A} w_i \le \frac{1}{5} \sum_{i=1}^n w_i$: Px $\left(\sum_{i \in A} t_i < \frac{1}{3} \sum_{i=1}^n t_i\right)$ big

- ightharpoonup cons: committee size $\Omega(n)$ in worst case (e.g., $w_1 = w_2 = ... = w_n = 1$)
- pros: security against adaptive corruptions guaranteed
- pros: (?) deterministic committees are smaller when security parameter is large
- both show that realistic weight distributions allow small committees

- ▶ Take weight distribution $(w_1, ..., w_n)$ into account
- ► Fait Accompli [GKR23]:
 - > selects biggest parties deterministically and everyone else randomly as in Algorand
 - big players selected almost certainly anyway
 - ► randomly sample from less weight ⇒ less variance
 - improves committee size vs. error tradeoff
- Swiper [TF23] + others [BHS23, FMT24, DPTX25]:
 - ► fully deterministic ⇒

for all
$$A$$
 with $\sum_{i \in A} w_i \le \frac{1}{5} \sum_{i=1}^n w_i$: P $\left(\sum_{i \in A} t_i < \frac{1}{3} \sum_{i=1}^n t_i\right)$ is big

- ightharpoonup cons: committee size $\Omega(n)$ in worst case (e.g., $w_1 = w_2 = ... = w_n = 1$)
- pros: security against adaptive corruptions guaranteed
- pros: (?) deterministic committees are smaller when security parameter is large
- both show that realistic weight distributions allow small committees

Minimize the size of the committee $(t_1, t_2, ..., t_n)$: how to quantify?

- option (1): number of distinct parties on the committee: the number of $i \in [n]$ with $t_i > 0$
 - useful in e.g. Algorand
- ▶ option (2) : the total new weight: $\sum_{i=1}^{n} t_i$
 - useful when the protocol scales poorly with the weights (e.g., secret sharing)

Minimize the size of the committee $(t_1, t_2, ..., t_n)$: how to quantify?

- ▶ option (1) : number of distinct parties on the committee: the number of $i \in [n]$ with $t_i > 0$
 - useful in e.g. Algorand
- ▶ option (2): the total new weight: $\sum_{i=1}^{n} t_i$
 - useful when the protocol scales poorly with the weights (e.g., secret sharing)

Minimize the size of the committee $(t_1, t_2, ..., t_n)$: how to quantify?

- ▶ option (1) : number of distinct parties on the committee: the number of $i \in [n]$ with $t_i > 0$
 - useful in e.g. Algorand
- ▶ option (2) : the total new weight: $\sum_{i=1}^{n} t_i$
 - useful when the protocol scales poorly with the weights (e.g., secret sharing)

Minimize the size of the committee $(t_1, t_2, ..., t_n)$: how to quantify?

- ▶ option (1) : number of distinct parties on the committee: the number of $i \in [n]$ with $t_i > 0$
 - useful in e.g. Algorand
- ▶ option (2) : the total new weight: $\sum_{i=1}^{n} t_i$
 - useful when the protocol scales poorly with the weights (e.g., secret sharing)

Problem statement

Assume $0 < \alpha < \beta < 1$. Given $w_1, ..., w_n \in \mathbb{Z}_{\geq 0}$, find $t_1, ..., t_n \in \mathbb{Z}_{\geq 0}$ such that

- ightharpoonup minimize $\sum_{i=1}^{n} t_i$
- $ightharpoonup \alpha
 ightarrow \beta$, deterministic:

for all
$$A$$
 with $\sum_{i \in A} w_i \le \alpha \sum_{i=1}^n w_i : \sum_{i \in A} t_i < \beta \sum_{i=1}^n t_i$

This work extends Swiper (Tonkikh, Freitas '24). Adopt terminology: party i gets t_i "tickets".

- pure optimization problem
- ► NP-hard? unknown

Problem statement

Assume $0 < \alpha < \beta < 1$. Given $w_1, ..., w_n \in \mathbb{Z}_{\geq 0}$, find $t_1, ..., t_n \in \mathbb{Z}_{\geq 0}$ such that

- ightharpoonup minimize $\sum_{i=1}^{n} t_i$
- $ightharpoonup \alpha
 ightarrow \beta$, deterministic:

for all
$$A$$
 with $\sum_{i \in A} w_i \le \alpha \sum_{i=1}^n w_i : \sum_{i \in A} t_i < \beta \sum_{i=1}^n t_i$

This work extends Swiper (Tonkikh, Freitas '24). Adopt terminology: party i gets t_i "tickets".

- pure optimization problem
- ► NP-hard? unknown

Problem statement

Assume $0 < \alpha < \beta < 1$. Given $w_1, ..., w_n \in \mathbb{Z}_{>0}$, find $t_1, ..., t_n \in \mathbb{Z}_{>0}$ such that

- ightharpoonup minimize $\sum_{i=1}^{n} t_i$
- $ightharpoonup \alpha
 ightarrow \beta$, deterministic:

for all
$$A$$
 with $\sum_{i \in A} w_i \le \alpha \sum_{i=1}^n w_i : \sum_{i \in A} t_i < \beta \sum_{i=1}^n t_i$

This work extends Swiper (Tonkikh, Freitas '24). Adopt terminology: party i gets t_i "tickets".

- pure optimization problem
- ► NP-hard? unknown

Coming next...

✓ Problem statement□ Swiper overview□□□

Swiper [TF23] overview: verifying a solution

Input: $(w_1, t_1), ..., (w_n, t_n) \in \mathbb{Z}^2_{\geq 0}$

Output: True/False – test if the solution $(t_1, ..., t_n)$ is valid; need to check

for all
$$A$$
 with $\sum_{i \in A} w_i \le \alpha \sum_{i=1}^n w_i : \sum_{i \in A} t_i < \beta \sum_{i=1}^n t_i$.

Swiper: knapsack problem, dynamic programming solution in time $O(n \cdot T)$, where $T = \sum_{i=1}^{n} t_i$.

for $k \in [n]$ do for $t \in \{0, 1, ..., T\}$ do compute min weight

impute min weight the adversary has to corrupt hom [k] to get t tienet

$$dp[t] = \min_{S} \sum_{i \in S} w_i$$
 subject to $S \subseteq [k]$ and $\sum_{i \in S} t_i = \sum_{i \in S} c_i$

return $\neg \exists t \text{ s.t. } t \geq \beta \sum_{i=1}^n t_i \wedge \text{dp}[t] \leq \alpha \sum_{i=1}^n w_i$

Swiper [TF23] overview: verifying a solution

Input: $(w_1, t_1), ..., (w_n, t_n) \in \mathbb{Z}^2_{\geq 0}$

Output: True/False – test if the solution $(t_1, ..., t_n)$ is valid; need to check

for all
$$A$$
 with $\sum_{i \in A} w_i \leq \alpha \sum_{i=1}^n w_i : \sum_{i \in A} t_i < \beta \sum_{i=1}^n t_i$.

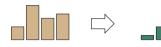
Swiper: knapsack problem, dynamic programming solution in time $O(n \cdot T)$, where $T = \sum_{i=1}^{n} t_i$.

$$\begin{array}{c|c} \textbf{for } k \in [n] \ \textbf{do} \\ \hline \textbf{for } t \in \{0,1,...,T\} \ \textbf{do} \\ \hline & \text{compute min weight the adversary has to corrupt from } [k] \ \textbf{to get } t \ \textbf{tickets total:} \\ \hline & \texttt{dp}[t] = \min_{S} \sum_{i \in S} w_i \ \text{subject to } S \subseteq [k] \ \text{and } \sum_{i \in S} t_i = t \end{array}$$

return $\neg \exists t \text{ s.t. } t \geq \beta \sum_{i=1}^{n} t_i \wedge dp[t] \leq \alpha \sum_{i=1}^{n} w_i;$

Linear scaling:

- assignment $(t_1, ..., t_n) = (w_1, ..., w_n)$ works, $(t_1, ..., t_n) = 0^n$ doesn't
- ▶ set in-between: $t_i = \lfloor sw_i + c \rfloor$ (c = const)
- run binary search to find locally minimal s that generates a valid ticket assignment
 - validity testing described in previous slide



Equivalently

- $lackbox{lack}$ define potential solutions $\overrightarrow{t_1}, \overrightarrow{t_2}, ...$ with $\operatorname{size}(\overrightarrow{t_j}) = j$ tickets
- ightharpoonup find locally minimal j such that $\overrightarrow{t_j}$ is valid but $\overrightarrow{t_{j-1}}$ is not

Swiper paper proves that when $c = \alpha$, all $t_M, t_{M+1}, ...$ are valid, where

$$M = \left\lfloor \frac{\alpha(1-\alpha)}{\beta-\alpha}n + 1 \right\rfloor = O(n).$$

Running time analysis

- ▶ each search iteration: validity testing in time $O(n \cdot \sum_{i=1}^{n} t_i) \leq O(n \cdot M) = O(n^2)$
- ightharpoonup total: $O(n^2 \log n)$

Linear scaling:

- assignment $(t_1, ..., t_n) = (w_1, ..., w_n)$ works, $(t_1, ..., t_n) = 0^n$ doesn't
- \triangleright set in-between: $t_i = |sw_i + c|$ (c = const)
- run binary search to find locally minimal s that generates a valid ticket assignment
 - validity testing described in previous slide

Equivalently:

- ▶ define potential solutions $\overrightarrow{t_1}$, $\overrightarrow{t_2}$, ... with size $(\overrightarrow{t_j}) = j$ tickets ▶ find locally minimal j such that $\overrightarrow{t_j}$ is valid but $\overrightarrow{t_{j-1}}$ is not

$$M = \left\lfloor \frac{\alpha(1-\alpha)}{\beta-\alpha}n + 1 \right\rfloor = O(n).$$

- each search iteration: validity testing in time $O(n \cdot \sum_{i=1}^{n} t_i) \leq O(n \cdot M) = O(n^2)$
- ightharpoonup total: $O(n^2 \log n)$

Linear scaling:

- assignment $(t_1, ..., t_n) = (w_1, ..., w_n)$ works, $(t_1, ..., t_n) = 0^n$ doesn't
- \triangleright set in-between: $t_i = |sw_i + c|$ (c = const)
- run binary search to find locally minimal s that generates a valid ticket assignment
 - validity testing described in previous slide

Equivalently:

- ▶ define potential solutions $\overrightarrow{t_1}$, $\overrightarrow{t_2}$, ... with size $(\overrightarrow{t_j}) = j$ tickets ▶ find locally minimal j such that $\overrightarrow{t_j}$ is valid but $\overrightarrow{t_{j-1}}$ is not

Swiper paper proves that when $c = \alpha$, all $\overrightarrow{t_M}$, $\overrightarrow{t_{M+1}}$, ... are valid, where

$$M = \left\lfloor \frac{\alpha(1-\alpha)}{\beta-\alpha}n + 1 \right\rfloor = O(n).$$

- ▶ each search iteration: validity testing in time $O(n \cdot \sum_{i=1}^{n} t_i) \leq O(n \cdot M) = O(n^2)$
- ightharpoonup total: $O(n^2 \log n)$

Linear scaling:

- assignment $(t_1, ..., t_n) = (w_1, ..., w_n)$ works, $(t_1, ..., t_n) = 0^n$ doesn't
- \triangleright set in-between: $t_i = |sw_i + c|$ (c = const)
- run binary search to find locally minimal s that generates a valid ticket assignment
 - validity testing described in previous slide

Equivalently:

- ▶ define potential solutions $\overrightarrow{t_1}$, $\overrightarrow{t_2}$, ... with size $(\overrightarrow{t_j}) = j$ tickets ▶ find locally minimal j such that $\overrightarrow{t_j}$ is valid but $\overrightarrow{t_{j-1}}$ is not

Swiper paper proves that when $c = \alpha$, all $\overrightarrow{t_M}$, $\overrightarrow{t_{M+1}}$, ... are valid, where

$$M = \left| \frac{\alpha(1-\alpha)}{\beta-\alpha} n + 1 \right| = O(n).$$

Running time analysis:

- each search iteration: validity testing in time $O(n \cdot \sum_{i=1}^{n} t_i) \leq O(n \cdot M) = O(n^2)$
- ightharpoonup total: $O(n^2 \log n)$

Coming next...

- ✓ Problem statement
- ✓ Swiper overview
- □ Contribution 1: improving Swiper

Improving Swiper: super Swiper

- Replaces binary search with linear search
 - $j \leftarrow 1$; while $\vec{t_i}$ is not valid do $\downarrow j \leftarrow j + 1;$ return \vec{t}_i :
 - binary search can get stuck in a "local minimum"
 - linear search improves output
- reduces running time from $O(n^2 \log n)$ to $O(n + R^2 \log R)$,
 - not worse than before
 - ightharpoonup normally, $R \ll n \Longrightarrow n + R^2 \log R \ll n^2 \log n$

Improving Swiper: super Swiper

- ▶ Replaces binary search with linear search

 - binary search can get stuck in a "local minimum"
 - linear search improves output
- reduces running time from $O(n^2 \log n)$ to $O(n + R^2 \log R)$, where $R \leq O(n)$ is the number of tickets $\sum_{i=1}^{n} t_i$ in the output
 - not worse than before
 - normally, $R \ll n \Longrightarrow n + R^2 \log R \ll n^2 \log n$

Improving Swiper: super Swiper

- Replaces binary search with linear search

 - binary search can get stuck in a "local minimum"
 - linear search improves output
- reduces running time from $O(n^2 \log n)$ to $O(n + R^2 \log R)$, where $R \leq O(n)$ is the number of tickets $\sum_{i=1}^{n} t_i$ in the output
 - not worse than before
 - normally, $R \ll n \Longrightarrow n + R^2 \log R \ll n^2 \log n$

$$\overrightarrow{t} = \lfloor s\overrightarrow{w} + c \rfloor$$

- ► Challenge: how to compute $\overrightarrow{t_1}, ..., \overrightarrow{t_R}$?
- ightharpoonup assume $w_1 \geq w_2 \geq ... \geq w_n$, produce sorted $\overrightarrow{t_i}$

- $lackbox{ observation: } \overrightarrow{t_{j+1}} = \overrightarrow{t_j} + (...,0,0,1,0,0,...) -$
- "slowly" increase s and see which indices increase
 - ightharpoonup for index i, store next s that increments t_i
 - ightharpoonup each iteation: find minimum s, increment t_i
 - computing $\overrightarrow{t_1}$ $\overrightarrow{t_R}$ takes time $O(R \log R)$

weights \vec{w} :

t = 1/9 xt s:

$$\vec{t} = \lfloor s\vec{w} + c \rfloor$$

- ► Challenge: how to compute $\overrightarrow{t_1}, ..., \overrightarrow{t_R}$?
- ightharpoonup assume $w_1 \ge w_2 \ge ... \ge w_n$, produce sorted $\overrightarrow{t_i}$

- ▶ observation: $\overrightarrow{t_{j+1}} = \overrightarrow{t_j} + (..., 0, 0, 1, 0, 0, ...) -$ calculate index to increment
- "slowly" increase s and see which indices increase
 - ightharpoonup for index i, store next s that increments t_i
 - \triangleright each iteation: find minimum s, increment t_i
 - ightharpoonup using binary heap: j-th query takes time $O(\log j)$
- computing $\vec{t_1}, ..., \vec{t_R}$ takes time $O(R \log R)$

weights \vec{w} :

xt s: 1/9

$$\vec{t} = \lfloor s\vec{w} + c \rfloor$$

- ► Challenge: how to compute $\overrightarrow{t_1}, ..., \overrightarrow{t_R}$?
- assume $w_1 \geq w_2 \geq ... \geq w_n$, produce sorted $\overrightarrow{t_i}$

- observation: $\overrightarrow{t_{i+1}} = \overrightarrow{t_i} + (..., 0, 0, 1, 0, 0, ...)$ calculate index to increment.
- "slowly" increase s and see which indices increase
 - \triangleright for index i, store next s that increments t_i
 - \triangleright each iteation: find minimum s, increment t_i

tickets
$$\vec{t}$$
: 0 0

$$\vec{t} = \lfloor s\vec{w} + c \rfloor$$

- ► Challenge: how to compute $\vec{t_1}, ..., \vec{t_R}$?
- ▶ assume $w_1 \ge w_2 \ge ... \ge w_n$, produce sorted $\overrightarrow{t_i}$

- observation: $\overrightarrow{t_{j+1}} = \overrightarrow{t_j} + (..., 0, 0, 1, 0, 0, ...) -$ calculate index to increment
- "slowly" increase s and see which indices increase
 - \blacktriangleright for index i, store next s that increments t_i
 - each iteation: find minimum s, increment t_i
 - using binary heap: j-th query takes time $O(\log j)$
- ightharpoonup computing $\overrightarrow{t_1},...,\overrightarrow{t_R}$ takes time $O(R \log R)$

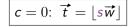
weights \vec{w} :

tickets t: 0

$$\vec{t} = \lfloor s\vec{w} + c \rfloor$$

- ► Challenge: how to compute $\vec{t_1}, ..., \vec{t_R}$?
- assume $w_1 \geq w_2 \geq ... \geq w_n$, produce sorted $\vec{t_i}$

- observation: $\overrightarrow{t_{i+1}} = \overrightarrow{t_i} + (..., 0, 0, 1, 0, 0, ...)$ calculate index to increment.
- "slowly" increase s and see which indices increase
 - for index i, store next s that increments ti
 - each iteation: find minimum s. increment ti
 - \triangleright using binary heap: *i*-th query takes time $O(\log i)$
- ightharpoonup computing $\overrightarrow{t_1}, ..., \overrightarrow{t_R}$ takes time $O(R \log R)$

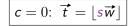


tickets \vec{t} : 0

$$\vec{t} = \lfloor s\vec{w} + c \rfloor$$

- ► Challenge: how to compute $\overrightarrow{t_1}, ..., \overrightarrow{t_R}$?
- ▶ assume $w_1 \ge w_2 \ge ... \ge w_n$, produce sorted $\overrightarrow{t_i}$

- ▶ observation: $\overrightarrow{t_{j+1}} = \overrightarrow{t_j} + (..., 0, 0, 1, 0, 0, ...) -$ calculate index to increment
- "slowly" increase s and see which indices increase
 - \blacktriangleright for index i, store next s that increments t_i
 - each iteation: find minimum s, increment t_i
 - using binary heap: j-th query takes time $O(\log j)$
- ightharpoonup computing $\overrightarrow{t_1},...,\overrightarrow{t_R}$ takes time $O(R \log R)$



weights \vec{w} :

tickets \vec{t} :

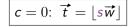
0 0

next s:

$$\vec{t} = \lfloor s\vec{w} + c \rfloor$$

- ► Challenge: how to compute $\vec{t_1}, ..., \vec{t_R}$?
- assume $w_1 \geq w_2 \geq ... \geq w_n$, produce sorted $\vec{t_i}$

- observation: $\overrightarrow{t_{i+1}} = \overrightarrow{t_i} + (..., 0, 0, 1, 0, 0, ...)$ calculate index to increment.
- "slowly" increase s and see which indices increase
 - for index i, store next s that increments ti
 - each iteation: find minimum s. increment ti
 - \triangleright using binary heap: *i*-th query takes time $O(\log i)$
- ightharpoonup computing $\overrightarrow{t_1}, ..., \overrightarrow{t_R}$ takes time $O(R \log R)$

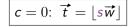


tickets \vec{t} :

$$\vec{t} = \lfloor s\vec{w} + c \rfloor$$

- ► Challenge: how to compute $\overrightarrow{t_1}, ..., \overrightarrow{t_R}$?
- assume $w_1 \geq w_2 \geq ... \geq w_n$, produce sorted $\vec{t_i}$

- observation: $\overrightarrow{t_{i+1}} = \overrightarrow{t_i} + (..., 0, 0, 1, 0, 0, ...)$ calculate index to increment.
- "slowly" increase s and see which indices increase
 - for index i, store next s that increments ti
 - each iteation: find minimum s, increment ti
 - \triangleright using binary heap: *i*-th query takes time $O(\log i)$
- ightharpoonup computing $\overrightarrow{t_1}, ..., \overrightarrow{t_R}$ takes time $O(R \log R)$



tickets \overrightarrow{t} : $\underline{1}$ 0

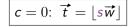
2/9 1/5

next s:

$$\vec{t} = \lfloor s\vec{w} + c \rfloor$$

- ► Challenge: how to compute $\overrightarrow{t_1}, ..., \overrightarrow{t_R}$?
- assume $w_1 \geq w_2 \geq ... \geq w_n$, produce sorted $\vec{t_i}$

- observation: $\overrightarrow{t_{i+1}} = \overrightarrow{t_i} + (..., 0, 0, 1, 0, 0, ...)$ calculate index to increment.
- "slowly" increase s and see which indices increase
 - for index i, store next s that increments ti
 - each iteation: find minimum s, increment ti
 - \triangleright using binary heap: *i*-th query takes time $O(\log i)$
- ightharpoonup computing $\overrightarrow{t_1}, ..., \overrightarrow{t_R}$ takes time $O(R \log R)$



tickets \vec{t} : 1

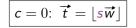
2/9 1/5

next s:

$$\vec{t} = \lfloor s\vec{w} + c \rfloor$$

- ► Challenge: how to compute $\vec{t_1}, ..., \vec{t_R}$?
- ▶ assume $w_1 \ge w_2 \ge ... \ge w_n$, produce sorted $\overrightarrow{t_i}$

- ▶ observation: $\overrightarrow{t_{j+1}} = \overrightarrow{t_j} + (..., 0, 0, 1, 0, 0, ...) -$ calculate index to increment
- "slowly" increase s and see which indices increase
 - \blacktriangleright for index i, store next s that increments t_i
 - each iteation: find minimum s, increment t_i
 - using binary heap: j-th query takes time $O(\log j)$
- ightharpoonup computing $\overrightarrow{t_1},...,\overrightarrow{t_R}$ takes time $O(R \log R)$



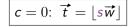
weights \vec{w} :

tickets \vec{t} : $\frac{1}{t}$ $\frac{1}{t}$ $\frac{1}{t}$

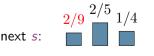
$$\vec{t} = \lfloor s\vec{w} + c \rfloor$$

- ► Challenge: how to compute $\overrightarrow{t_1}, ..., \overrightarrow{t_R}$?
- assume $w_1 \geq w_2 \geq ... \geq w_n$, produce sorted $\vec{t_i}$

- observation: $\overrightarrow{t_{i+1}} = \overrightarrow{t_i} + (..., 0, 0, 1, 0, 0, ...)$ calculate index to increment.
- "slowly" increase s and see which indices increase
 - for index i, store next s that increments ti
 - each iteation: find minimum s, increment ti
 - \triangleright using binary heap: *i*-th query takes time $O(\log i)$
- ightharpoonup computing $\overrightarrow{t_1}, ..., \overrightarrow{t_R}$ takes time $O(R \log R)$



tickets \vec{t} : $\underline{1}$ $\underline{1}$ 0

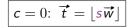


15 / 40

$$\vec{t} = \lfloor s\vec{w} + c \rfloor$$

- ► Challenge: how to compute $\overrightarrow{t_1}, ..., \overrightarrow{t_R}$?
- assume $w_1 \geq w_2 \geq ... \geq w_n$, produce sorted $\vec{t_i}$

- observation: $\overrightarrow{t_{i+1}} = \overrightarrow{t_i} + (..., 0, 0, 1, 0, 0, ...)$ calculate index to increment.
- "slowly" increase s and see which indices increase
 - for index i, store next s that increments ti
 - each iteation: find minimum s, increment ti
 - \triangleright using binary heap: *i*-th query takes time $O(\log i)$
- ightharpoonup computing $\overrightarrow{t_1}, ..., \overrightarrow{t_R}$ takes time $O(R \log R)$

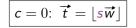


tickets \overrightarrow{t} : $\frac{2}{1}$ 1 0

$$\vec{t} = \lfloor s\vec{w} + c \rfloor$$

- ► Challenge: how to compute $\overrightarrow{t_1}, ..., \overrightarrow{t_R}$?
- assume $w_1 \geq w_2 \geq ... \geq w_n$, produce sorted $\vec{t_i}$

- observation: $\overrightarrow{t_{i+1}} = \overrightarrow{t_i} + (..., 0, 0, 1, 0, 0, ...)$ calculate index to increment.
- "slowly" increase s and see which indices increase
 - for index i, store next s that increments ti
 - each iteation: find minimum s, increment ti
 - \triangleright using binary heap: *i*-th query takes time $O(\log i)$
- ightharpoonup computing $\overrightarrow{t_1}, ..., \overrightarrow{t_R}$ takes time $O(R \log R)$

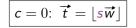


tickets \vec{t} : $\frac{2}{1}$ 0

$$\vec{t} = \lfloor s\vec{w} + c \rfloor$$

- ► Challenge: how to compute $\overrightarrow{t_1}, ..., \overrightarrow{t_R}$?
- assume $w_1 \geq w_2 \geq ... \geq w_n$, produce sorted $\vec{t_i}$

- observation: $\overrightarrow{t_{i+1}} = \overrightarrow{t_i} + (..., 0, 0, 1, 0, 0, ...)$ calculate index to increment.
- "slowly" increase s and see which indices increase
 - for index i, store next s that increments ti
 - each iteation: find minimum s, increment ti
 - \triangleright using binary heap: *i*-th query takes time $O(\log i)$
- ightharpoonup computing $\overrightarrow{t_1}, ..., \overrightarrow{t_R}$ takes time $O(R \log R)$

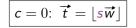


tickets \vec{t} : $\frac{2}{1}$ 0

$$\vec{t} = \lfloor s\vec{w} + c \rfloor$$

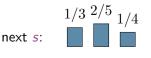
- ► Challenge: how to compute $\vec{t_1}, ..., \vec{t_R}$?
- ▶ assume $w_1 \ge w_2 \ge ... \ge w_n$, produce sorted $\overrightarrow{t_i}$

- observation: $\overrightarrow{t_{j+1}} = \overrightarrow{t_j} + (..., 0, 0, 1, 0, 0, ...) -$ calculate index to increment
- "slowly" increase s and see which indices increase
 - \blacktriangleright for index i, store next s that increments t_i
 - each iteation: find minimum s, increment t_i
 - using binary heap: j-th query takes time $O(\log j)$
- ightharpoonup computing $\overrightarrow{t_1},...,\overrightarrow{t_R}$ takes time $O(R \log R)$



weights \vec{w} :

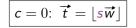
tickets \vec{t} : $\begin{bmatrix} 2 \\ 1 \end{bmatrix}$



$$\vec{t} = \lfloor s\vec{w} + c \rfloor$$

- ► Challenge: how to compute $\overrightarrow{t_1}, ..., \overrightarrow{t_R}$?
- ▶ assume $w_1 \ge w_2 \ge ... \ge w_n$, produce sorted $\overrightarrow{t_i}$

- observation: $\overrightarrow{t_{j+1}} = \overrightarrow{t_j} + (..., 0, 0, 1, 0, 0, ...) -$ calculate index to increment
- "slowly" increase s and see which indices increase
 - \blacktriangleright for index i, store next s that increments t_i
 - each iteation: find minimum s, increment t_i
 - using binary heap: j-th query takes time $O(\log j)$
- ightharpoonup computing $\overrightarrow{t_1},...,\overrightarrow{t_R}$ takes time $O(R \log R)$



weights \vec{w} :

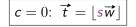
tickets \vec{t} : $\frac{2}{1}$ $\frac{1}{1}$

 $1/3 \ \frac{2/5}{1}$ next s:

$$\vec{t} = \lfloor s\vec{w} + c \rfloor$$

- ► Challenge: how to compute $\overrightarrow{t_1}, ..., \overrightarrow{t_R}$?
- assume $w_1 \geq w_2 \geq ... \geq w_n$, produce sorted $\vec{t_i}$

- observation: $\overrightarrow{t_{i+1}} = \overrightarrow{t_i} + (..., 0, 0, 1, 0, 0, ...)$ calculate index to increment.
- "slowly" increase s and see which indices increase
 - for index i, store next s that increments ti
 - \triangleright each iteation: find minimum s, increment t_i
 - using binary heap: j-th query takes time $O(\log j)$
- ightharpoonup computing $\overrightarrow{t_1}, ..., \overrightarrow{t_R}$ takes time $O(R \log R)$



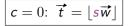
tickets \vec{t} : $\frac{2}{t}$ 1 1

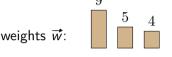
 $1/3 \ 2/5 \frac{1}{1}$ next s:

$$\vec{t} = \lfloor s\vec{w} + c \rfloor$$

- ► Challenge: how to compute $\vec{t_1}, ..., \vec{t_R}$?
- assume $w_1 \geq w_2 \geq ... \geq w_n$, produce sorted $\vec{t_i}$

- observation: $\overrightarrow{t_{i+1}} = \overrightarrow{t_i} + (..., 0, 0, 1, 0, 0, ...)$ calculate index to increment.
- "slowly" increase s and see which indices increase
 - for index i, store next s that increments t_i
 - each iteation: find minimum s, increment ti • using binary heap: j-th query takes time $O(\log j)$
- ightharpoonup computing $\overrightarrow{t_1}, ..., \overrightarrow{t_R}$ takes time $O(R \log R)$





Improving Swiper: super Swiper (cont.)

```
j \leftarrow 1; while \overrightarrow{t_j} is not valid do \downarrow j \leftarrow j+1; return \overrightarrow{t_j}; \downarrow Challenge 1: compu
```

- ▶ Challenge 1: compute $\vec{t_j}$ time $O(R \log R)$
 - ► $O(n + R \log R)$ if \vec{w} is unordered
- ► Challenge 2: test $\vec{t_j}$?

- ▶ Reuse dynamic programming computations for testing ticket assignments
- generalized data structure DP:

method	mutable?	parameters	output
.apply(w,t)	mutable	party's weight w_i , # tickets t_i	none
.get()	immutable	none	integer

- ightharpoonup guarantee: want to test \vec{t}
 - ▶ call DP.apply $(w_i, (\overrightarrow{t})_i)$ once for all $i \in [n]$ with $(\overrightarrow{t})_i \neq 0$ in any order
 - ightharpoonup then DP.get() returns max # tickets the adversary gets in \overrightarrow{t}
- ightharpoonup example: want to test $\overrightarrow{t}=(4,3,3,0)$ for $\overrightarrow{w}=(90,60,50,10)$

- ▶ Reuse dynamic programming computations for testing ticket assignments
- generalized data structure DP:

method	mutable?	parameters	output
$. \mathtt{apply}(w, t)$	mutable	party's weight w_i , $\#$ tickets t_i	none
$.\mathtt{get}()$	immutable	none	integer

- ightharpoonup guarantee: want to test \vec{t}
 - ▶ call DP.apply $(w_i, (\overrightarrow{t})_i)$ once for all $i \in [n]$ with $(\overrightarrow{t})_i \neq 0$ in any order
 - ightharpoonup then DP.get() returns max # tickets the adversary gets in \vec{t}
- ightharpoonup example: want to test $\overrightarrow{t}=(4,3,3,0)$ for $\overrightarrow{w}=(90,60,50,10)$

- Reuse dynamic programming computations for testing ticket assignments
- generalized data structure DP:

method	mutable?	parameters	output
.apply(w,t)	mutable	party's weight w_i , $\#$ tickets t_i	none
$.\mathtt{get}()$	immutable	none	integer

- ightharpoonup guarantee: want to test \overrightarrow{t}
 - ▶ call DP.apply $(w_i, (\overrightarrow{t})_i)$ once for all $i \in [n]$ with $(\overrightarrow{t})_i \neq 0$ in any order
 - then DP get() returns max # tickets the adversary gets in \vec{t}
- example: want to test $\vec{t} = (4, 3, 3, 0)$ for $\vec{w} = (90, 60, 50, 10)$

- ▶ Reuse dynamic programming computations for testing ticket assignments
- generalized data structure DP:

method	mutable?	parameters	output
$. \mathtt{apply}(w, t)$	mutable	party's weight w_i , $\#$ tickets t_i	none
.get()	immutable	none	integer

- ightharpoonup guarantee: want to test \vec{t}
 - ▶ call DP.apply $(w_i, (\overrightarrow{t})_i)$ once for all $i \in [n]$ with $(\overrightarrow{t})_i \neq 0$ in any order
 - then DP.get() returns max # tickets the adversary gets in \vec{t}
- example: want to test $\vec{t} = (4, 3, 3, 0)$ for $\vec{w} = (90, 60, 50, 10)$

- Reuse dynamic programming computations for testing ticket assignments
- generalized data structure DP:

method	mutable?	parameters	output
$. \mathtt{apply}(w, t)$	mutable	party's weight w_i , $\#$ tickets t_i	none
.get()	immutable	none	integer

- ightharpoonup guarantee: want to test \overrightarrow{t}
 - ▶ call DP.apply $(w_i, (\overrightarrow{t})_i)$ once for all $i \in [n]$ with $(\overrightarrow{t})_i \neq 0$ in any order
 - then DP.get() returns max # tickets the adversary gets in \vec{t}
- \blacktriangleright example: want to test $\overrightarrow{t}=(4,3,3,0)$ for $\overrightarrow{\textit{w}}=(90,60,50,10)$

$$dp = \boxed{---}$$

- Reuse dynamic programming computations for testing ticket assignments
- generalized data structure DP:

method	mutable?	parameters	output
$. \mathtt{apply}(w, t)$	mutable	party's weight w_i , $\#$ tickets t_i	none
.get()	immutable	none	integer

- ightharpoonup guarantee: want to test \overrightarrow{t}
 - ▶ call DP.apply $(w_i, (\overrightarrow{t})_i)$ once for all $i \in [n]$ with $(\overrightarrow{t})_i \neq 0$ in any order
 - then DP.get() returns max # tickets the adversary gets in \vec{t}
- example: want to test $\vec{t} = (4, 3, 3, 0)$ for $\vec{w} = (90, 60, 50, 10)$

$$\begin{array}{c|c} \hline ---- \\ \hline \\ \mathtt{dp} = \boxed{ \begin{array}{c} \mathtt{4} \\ --- \end{array} } \end{array} \qquad \text{dp.apply} (90,4)$$

- Reuse dynamic programming computations for testing ticket assignments
- generalized data structure DP:

method	mutable?	parameters	output
$. \mathtt{apply}(w, t)$	mutable	party's weight w_i , $\#$ tickets t_i	none
.get()	immutable	none	integer

- ightharpoonup guarantee: want to test \overrightarrow{t}
 - ▶ call DP.apply $(w_i, (\overrightarrow{t})_i)$ once for all $i \in [n]$ with $(\overrightarrow{t})_i \neq 0$ in any order
 - then DP.get() returns max # tickets the adversary gets in \overrightarrow{t}
- example: want to test $\vec{t} = (4, 3, 3, 0)$ for $\vec{w} = (90, 60, 50, 10)$

- ▶ Reuse dynamic programming computations for testing ticket assignments
- generalized data structure DP:

method	mutable?	parameters	output
$. \mathtt{apply}(w, t)$	mutable	party's weight w_i , $\#$ tickets t_i	none
.get()	immutable	none	integer

- ightharpoonup guarantee: want to test \overrightarrow{t}
 - lacktriangledown call DP.apply $\left(w_i, (\overrightarrow{t})_i\right)$ once for all $i \in [n]$ with $(\overrightarrow{t})_i \neq 0$ in any order
 - then DP.get() returns max # tickets the adversary gets in \overrightarrow{t}
- example: want to test $\vec{t} = (4, 3, 3, 0)$ for $\vec{w} = (90, 60, 50, 10)$

- ▶ Reuse dynamic programming computations for testing ticket assignments
- generalized data structure DP:

method	mutable?	parameters	output
.apply(w,t)	mutable	party's weight w_i , $\#$ tickets t_i	none
.get()	immutable	none	integer

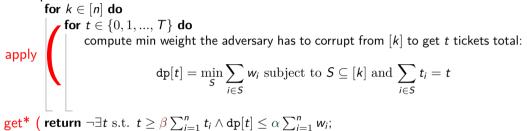
- ightharpoonup guarantee: want to test \overrightarrow{t}
 - ightharpoonup call DP.apply $(w_i, (\overrightarrow{t})_i)$ once for all $i \in [n]$ with $(\overrightarrow{t})_i \neq 0$ in any order
 - then DP.get() returns max # tickets the adversary gets in \overrightarrow{t}
- example: want to test $\vec{t} = (4, 3, 3, 0)$ for $\vec{w} = (90, 60, 50, 10)$

► To implement DP:

```
for k \in [n] do for t \in \{0, 1, ..., T\} do compute min weight the adversary has to corrupt from [k] to get t tickets total: \mathrm{dp}[t] = \min_{S} \sum_{i \in S} w_i \text{ subject to } S \subseteq [k] \text{ and } \sum_{i \in S} t_i = t get* (return \neg \exists t \text{ s.t. } t \geq \beta \sum_{i=1}^n t_i \wedge \mathrm{dp}[t] \leq \alpha \sum_{i=1}^n w_i;
```

- time complexity
 - ▶ if $\sum_{i=1}^{n} (\overrightarrow{t})_i = T$, then DP.apply $(w_i, (\overrightarrow{t})_i)$ takes time O(T)
 - ▶ DP.get() takes time O(1)

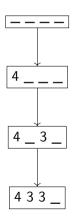
► To implement DP:



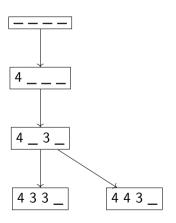
- time complexity
 - $lackbox{ if } \sum_{i=1}^n (\overrightarrow{t})_i = T$, then DP.apply $ig(w_i, (\overrightarrow{t})_iig)$ takes time O(T)
 - ▶ DP.get() takes time O(1)

More interesting example: want to test $\overrightarrow{t}=(4,3,3,0)$ and $\overrightarrow{t'}=(4,4,3,0)$

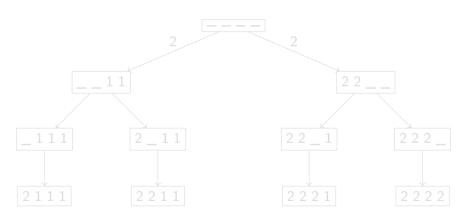
More interesting example: want to test $\overrightarrow{t}=(4,3,3,0)$ and $\overrightarrow{t'}=(4,4,3,0)$



More interesting example: want to test $\overrightarrow{t}=(4,3,3,0)$ and $\overrightarrow{t'}=(4,4,3,0)$



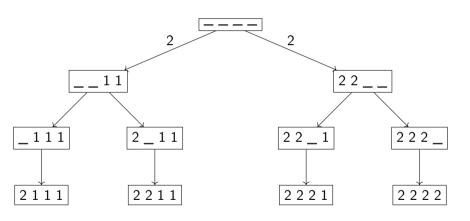
More interesting example: want to test (2,1,1,1), (2,2,1,1), (2,2,2,1), (2,2,2,2)



 $4 \cdot (\log 4 + 1) = 12$ applies. Generalize: can test Swiper's $\overline{t_1}, \overline{t_2}, ..., \overline{t_{O(R)}}$ with $O(R \log R)$ applies; each apply takes time O(R).

Testing $\vec{t_j}$ (cont.)

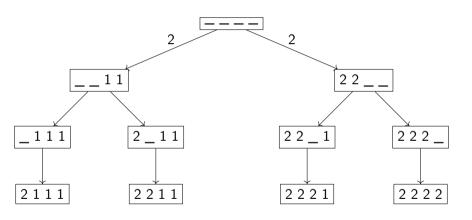
More interesting example: want to test (2,1,1,1), (2,2,1,1), (2,2,2,1), (2,2,2,2)



 $4 \cdot (\log 4 + 1) = 12$ applies. Generalize: can test Swiper's $\vec{t_1}, \vec{t_2}, ..., \vec{t_{O(R)}}$ with $O(R \log R)$ applies; each apply takes time O(R).

Testing $\vec{t_j}$ (cont.)

More interesting example: want to test (2,1,1,1), (2,2,1,1), (2,2,2,1), (2,2,2,2)



 $4 \cdot (\log 4 + 1) = 12$ applies. Generalize: can test Swiper's $\overrightarrow{t_1}, \overrightarrow{t_2}, ..., \overrightarrow{t_{O(R)}}$ with $O(R \log R)$ applies; each apply takes time O(R).

- ▶ linear search outputs fewer tickets
- ▶ linear search faster than binary search

	$\beta = 1/3$			eta=1/2				
	$\alpha = 0.2$	$\alpha = 0.25$	$\alpha = 0.3$	$\alpha = 0.3$	$\alpha = 0.35$	$\alpha = 0.4$	$\alpha = 0.45$	
Swiper	22	85	346	23	29	95	279	
Swiper	$1.61 \mathrm{ms}$	$2.07 \mathrm{ms}$	$1.96 \mathrm{ms}$	$1.40 \mathrm{ms}$	1.88ms	$1.80 \mathrm{ms}$	$1.96 \mathrm{ms}$	
super	22	58	277	23	29	95	241	
Swiper	6.98µs	14.1µs	121µs	7.21µs	7.74µs	33.2µs	99.9µs	

- ▶ linear search outputs fewer tickets
- ▶ linear search faster than binary search

	$\beta = 1/3$			$\beta = 1/2$			
	$\alpha = 0.2$	$\alpha = 0.25$	$\alpha = 0.3$	$\alpha = 0.3$	$\alpha = 0.35$	$\alpha = 0.4$	$\alpha = 0.45$
Swiper	22	85	346	23	29	95	279
Swiper	$1.61 \mathrm{ms}$	$2.07 \mathrm{ms}$	$1.96 \mathrm{ms}$	$1.40 \mathrm{ms}$	1.88ms	$1.80 \mathrm{ms}$	$1.96 \mathrm{ms}$
super	22	58	277	23	29	95	241
Swiper	6.98µs	14.1µs	121µs	7.21µs	7.74µs	33.2µs	99.9µs

- ▶ linear search outputs fewer tickets
- ▶ linear search faster than binary search

	$\beta = 1/3$			$\beta = 1/2$			
	$\alpha = 0.2$	$\alpha = 0.25$	$\alpha = 0.3$	$\alpha = 0.3$	$\alpha = 0.35$	$\alpha = 0.4$	$\alpha = 0.45$
Swiper	235	745	22393	203	383	1203	17591
Swiper	1.10s	1.22s	1.78s	1.03s	1.14s	1.19s	1.65s
super	232	745	22384	201	383	1171	17581
Swiper	81.5μs	485μs	$129 \mathrm{ms}$	88.0µs	215μs	1.54ms	140ms

Coming next...

- ✓ Problem statement
- ✓ Swiper overview
- ✓ Contribution 1: super Swiper linear search in time $O(n + R^2 \log R)$
- ☐ Contribution 2: lower bounds
- П

Lower bounds

- super Swiper works great in practice, what about in theory?
- want to know worst case approximation factor
 - how big is output compared to optimal solution?
- ightharpoonup our result: *super Swiper*, Swiper [TF23] + others [BHS23, FMT24, DPTX25] all have approximation factor $\Omega(n)$
 - constructed an example where output is $\Omega(n)$ but OPT = O(1)

Lower bounds

- super Swiper works great in practice, what about in theory?
- want to know worst case approximation factor
 - how big is output compared to optimal solution?
- our result: *super Swiper*, Swiper [TF23] + others [BHS23, FMT24, DPTX25] all have approximation factor $\Omega(n)$
 - constructed an example where output is $\Omega(n)$ but OPT = O(1)

Lower bounds

- super Swiper works great in practice, what about in theory?
- want to know worst case approximation factor
 - how big is output compared to optimal solution?
- our result: *super Swiper*, Swiper [TF23] + others [BHS23, FMT24, DPTX25] all have approximation factor $\Omega(n)$
 - constructed an example where output is $\Omega(n)$ but OPT = O(1)

Coming next...

- ✓ Problem statement
- ✓ Swiper overview
- \checkmark Contribution 2: $\Omega(n)$ approximation factor lower bound
- □ Contribution 3: algorithms with better guarantees

- Would like algorithms with good approximation factor; made some progress
- ▶ useful fact: assuming $w_1 \ge w_2 \ge ... \ge w_n$, ∃ an optimal solution with $t_1 \ge t_2 \ge ... \ge t_n$
 - ightharpoonup take an optimal solution $(t_1,...,t_i,...t_j,...,t_n)$ with $t_i < t_j$
 - ightharpoonup swap t_i and t_j
- ▶ bruteforcing sorted ticket assignment gives exact solution (approximation factor 1), takes time

$$O\left(n+R^{3/2}e^{C\sqrt{R}}\right)$$

- $ightharpoonup R \leq O(n)$ size of optimal solution
- $C = \pi \sqrt{6}/3 \approx 2.57$
- ightharpoonup practical when R < 100
- ightharpoonup corollary: polytime algorithm with approximation factor $O\left(n/\log^2 n\right)$

- Would like algorithms with good approximation factor; made some progress
- ▶ useful fact: assuming $w_1 \ge w_2 \ge ... \ge w_n$, ∃ an optimal solution with $t_1 \ge t_2 \ge ... \ge t_n$
 - ▶ take an optimal solution $(t_1,...,t_i,...t_j,...,t_n)$ with $t_i < t_j$
 - ightharpoonup swap t_i and t_j
- ▶ bruteforcing sorted ticket assignment gives exact solution (approximation factor 1), takes time

$$O\left(n+R^{3/2}e^{C\sqrt{R}}\right)$$

- $ightharpoonup R \leq O(n)$ size of optimal solution
- $C = \pi \sqrt{6}/3 \approx 2.57$
- ightharpoonup practical when R < 100
- ightharpoonup corollary: polytime algorithm with approximation factor $O\left(n/\log^2 n\right)$

- Would like algorithms with good approximation factor; made some progress
- ▶ useful fact: assuming $w_1 \ge w_2 \ge ... \ge w_n$, ∃ an optimal solution with $t_1 \ge t_2 \ge ... \ge t_n$
 - ightharpoonup take an optimal solution $(t_1,...,t_i,...t_j,...,t_n)$ with $t_i < t_j$
 - ightharpoonup swap t_i and t_j
- bruteforcing sorted ticket assignment gives exact solution (approximation factor 1), takes time

$$O\left(n + R^{3/2}e^{C\sqrt{R}}\right)$$

- $ightharpoonup R \leq O(n)$ size of optimal solution
- $C = \pi \sqrt{6}/3 \approx 2.57$
- ightharpoonup practical when R < 100
- ightharpoonup corollary: polytime algorithm with approximation factor $O(n/\log^2 n)$

- Would like algorithms with good approximation factor; made some progress
- ▶ useful fact: assuming $w_1 \ge w_2 \ge ... \ge w_n$, ∃ an optimal solution with $t_1 \ge t_2 \ge ... \ge t_n$
 - ightharpoonup take an optimal solution $(t_1,...,t_i,...t_j,...,t_n)$ with $t_i < t_j$
 - ightharpoonup swap t_i and t_j
- bruteforcing sorted ticket assignment gives exact solution (approximation factor 1), takes time

$$O\left(n + R^{3/2}e^{C\sqrt{R}}\right)$$

- $ightharpoonup R \leq O(n)$ size of optimal solution
- $C = \pi \sqrt{6}/3 \approx 2.57$
- ightharpoonup practical when R < 100
- lacktriangle corollary: polytime algorithm with approximation factor $O\!\left(n/\log^2 n
 ight)$

Coming next...

- ✓ Problem statement
- ✓ Swiper overview
- \checkmark Contribution 2: $\Omega(n)$ approximation factor lower bound
- ✓ Contribution 3: sub-expontential exact algorithm and polytime approx. algorithm
- ☐ Contribution 4: LP based algorithm

Weight reduction can be formulated as an integer linear program

$$\begin{array}{ll} \text{minimize} & \sum_{i=1}^n t_i \\ \text{subject to} & \sum_{i\in A} t_i < \beta \sum_{i=1}^n t_i \quad \forall A\subseteq [n] \text{ s.t. } \sum_{i\in A} w_i \leq \alpha \sum_{i=1}^n w_i \\ & t_i \in \mathbb{Z}_{\geq 0} \qquad \forall i\in [n] \end{array}$$

- relax to (fractional) LP, run ellipsoid method, round output to an integer solution
 - polynomial time algorithm

Weight reduction can be formulated as an integer linear program

minimize
$$\sum_{i=1}^{n} t_{i}$$
subject to
$$\sum_{i \in A} t_{i} < \beta \sum_{i=1}^{n} t_{i} \quad \forall A \subseteq [n] \text{ s.t. } \sum_{i \in A} w_{i} \leq \alpha \sum_{i=1}^{n} w_{i}$$

$$t_{i} \in \mathbb{Z}_{\geq 0} \qquad \forall i \in [n]$$

- relax to (fractional) LP, run ellipsoid method, round output to an integer solution
 - polynomial time algorithm

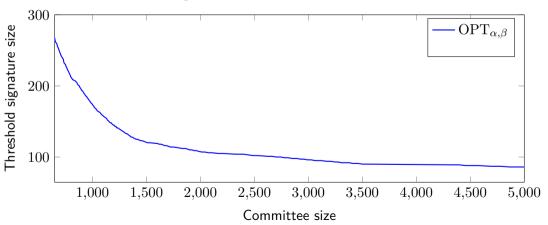
- Let $OPT_{\alpha,\beta}$ denote the smallest number of tickets
- ightharpoonup solution of size $\mathrm{OPT}_{\alpha,(1-\delta)\beta}$ in polynomial time for any constant $\delta>0$
 - lacktriangle example: security $lpha=rac{1}{5} oeta=rac{1}{3}$, size optimal for $lpha=rac{1}{5} o(1-\delta)eta=rac{3}{10}$
- ▶ $OPT_{\alpha,(1-\delta)\beta}/OPT_{\alpha,\beta}$ can be $\Omega(n)$;

- Let $OPT_{\alpha,\beta}$ denote the smallest number of tickets
- ▶ solution of size $OPT_{\alpha,(1-\delta)\beta}$ in polynomial time for any constant $\delta > 0$
 - lacktriangle example: security $lpha=rac{1}{5} oeta=rac{1}{3}$, size optimal for $lpha=rac{1}{5} o(1-\delta)eta=rac{3}{10}$
- ▶ $OPT_{\alpha,(1-\delta)\beta}/OPT_{\alpha,\beta}$ can be $\Omega(n)$;

- Let $OPT_{\alpha,\beta}$ denote the smallest number of tickets
- ightharpoonup solution of size $OPT_{\alpha,(1-\delta)\beta}$ in polynomial time for any constant $\delta > 0$
 - example: security $\alpha=\frac{1}{5}\to\beta=\frac{1}{3}$, size optimal for $\alpha=\frac{1}{5}\to(1-\delta)\beta=\frac{3}{10}$
- ▶ $OPT_{\alpha,(1-\delta)\beta}/OPT_{\alpha,\beta}$ can be $\Omega(n)$;

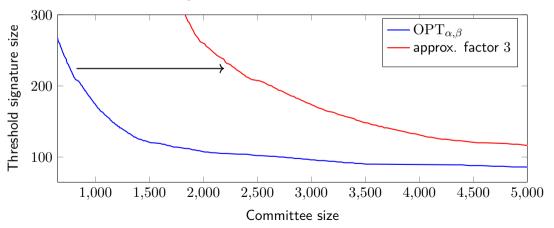
 $\mathrm{OPT}_{\alpha,(1-\delta)\beta}$ can be useful anyway:

 ex.: Approximate Lower Bound Arguments [CKRZ24] yields decentralized threshold signatures



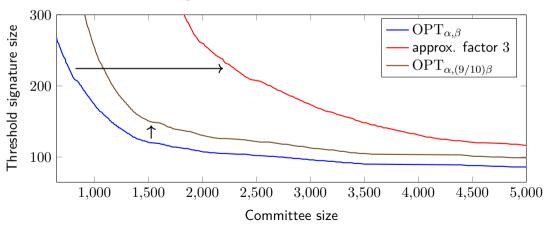
 $\mathrm{OPT}_{\alpha,(1-\delta)\beta}$ can be useful anyway:

 ex.: Approximate Lower Bound Arguments [CKRZ24] yields decentralized threshold signatures



 $\mathrm{OPT}_{\alpha,(1-\delta)\beta}$ can be useful anyway:

 ex.: Approximate Lower Bound Arguments [CKRZ24] yields decentralized threshold signatures



- ► LP algorithm is impractical
- ightharpoonup time complexity $\Omega(\mathit{n}^{10})$ for reasonable parameters

Coming next...

- ✓ Problem statement
- ✓ Swiper overview
- \checkmark Contribution 1: super Swiper linear search in time $O(n + R^2 \log R)$
- \checkmark Contribution 2: $\Omega(n)$ approximation factor lower bound
- ✓ Contribution 3: sub-expontential exact algorithm and polytime approx. algorithm
- ✓ Contribution 4: LP based algorithm
- Numerical evaluation

Numerical evaluation

- sub-exponential time exact algorithm can be practical!
- super Swiper is almost optimal in practice

	$\beta = 1/3$			$\beta = 1/2$				
	$\alpha = 0.2$	$\alpha = 0.25$	$\alpha = 0.3$	$\alpha = 0.3$	$\alpha = 0.35$	$\alpha = 0.4$	$\alpha = 0.45$	
Swiper	22	85	346	23	29	95	279	
Swiper	$1.61 \mathrm{ms}$	$2.07 \mathrm{ms}$	$1.96 \mathrm{ms}$	1.40ms	1.88ms	$1.80 \mathrm{ms}$	$1.96 \mathrm{ms}$	
super	22	58	277	23	29	95	241	
Swiper	$6.98 \mu s$	$14.1 \mu s$	121µs	$7.21 \mu s$	$7.74 \mu s$	$33.2 \mu s$	99.9µs	
exact	22	55		23	29	91		
Exact	$133 \mu s$	$127 \mathrm{ms}$		236µs	1.08ms	45.9s		

Numerical evaluation

- sub-exponential time exact algorithm can be practical!
- super Swiper is almost optimal in practice

	$\beta = 1/3$			$\beta = 1/2$				
	$\alpha = 0.2$	$\alpha = 0.25$	$\alpha = 0.3$	$\alpha = 0.3$	$\alpha = 0.35$	$\alpha = 0.4$	$\alpha = 0.45$	
Swiper	22	85	346	23	29	95	279	
	$1.61 \mathrm{ms}$	$2.07 \mathrm{ms}$	$1.96 \mathrm{ms}$	$1.40 \mathrm{ms}$	1.88ms	1.80ms	1.96ms	
super	22	58	277	23	29	95	241	
Swiper	$6.98 \mu s$	14.1µs	121µs	7.21µs	7.74µs	33.2μs	99.9μs	
exact	22	55		23	29	91		
CARCU	133µs	$127 \mathrm{ms}$		236µs	1.08ms	45.9s		

Numerical evaluation

- sub-exponential time exact algorithm can be practical!
- super Swiper is almost optimal in practice

	$\beta = 1/3$			$\beta = 1/2$			
	$\alpha = 0.2$	$\alpha = 0.25$	$\alpha = 0.3$	$\alpha = 0.3$	$\alpha = 0.35$	$\alpha = 0.4$	$\alpha = 0.45$
C	22	85	346	23	29	95	279
Swiper	$1.61 \mathrm{ms}$	$2.07 \mathrm{ms}$	$1.96 \mathrm{ms}$	$1.40 \mathrm{ms}$	$1.88 \mathrm{ms}$	$1.80 \mathrm{ms}$	$1.96 \mathrm{ms}$
super	22	<u>58</u>	277	23	29	95	241
Swiper	$6.98 \mu s$	14.1µs	121µs	7.21µs	$7.74 \mu s$	$33.2 \mu s$	99.9µs
exact	22	55		23	29	91	
L	133µs	127ms		236µs	$1.08 \mathrm{ms}$	45.9s	

- Good practical improvements
 - ▶ super Swiper: linear search in time $O(n + R^2 \log R)$
 - exact algorithm in time $O(n) + 2^{O(\sqrt{R})}$ sometimes practical
- more theoretical work to be done
 - ► NP-hard?
 - better approximation factor in polytime
- ▶ to appear in DISC 2025
- hanks go to:
 - Leo Reyzin for help with paper & presentation
 - Nathan Klein for ideas & rounding class

Weight reduction problem: given $w_1,...,w_n \in \mathbb{Z}_{\geq 0}$, find $t_1,...,t_n \in \mathbb{Z}_{\geq 0}$ such that

- ightharpoonup minimize $\sum_{i=1}^{n} t_i$
- for all A with $\sum_{i \in A} w_i \le \alpha \sum_{i=1}^n w_i :$ $\sum_{i \in A} t_i < \beta \sum_{i=1}^n t_i$

- Good practical improvements
 - ▶ super Swiper: linear search in time $O(n + R^2 \log R)$
 - exact algorithm in time $O(n) + 2^{O(\sqrt{R})}$ sometimes practical
- more theoretical work to be done
 - ▶ NP-hard?
 - better approximation factor in polytime
- ▶ to appear in DISC 2025
- hanks go to:
 - Leo Reyzin for help with paper & presentation
 - Nathan Klein for ideas & rounding class

$\frac{\text{Weight reduction problem:}}{\text{given } w_1,...,w_n \in \mathbb{Z}_{\geq 0}, \text{ find } t_1,...,t_n \in \mathbb{Z}_{\geq 0} \text{ such that }}$

- ightharpoonup minimize $\sum_{i=1}^{n} t_i$
- for all A with $\sum_{i \in A} w_i \le \alpha \sum_{i=1}^n w_i :$ $\sum_{i \in A} t_i < \beta \sum_{i=1}^n t_i$

- Good practical improvements
 - ▶ super Swiper: linear search in time $O(n + R^2 \log R)$
 - exact algorithm in time $O(n) + 2^{O(\sqrt{R})}$ sometimes practical
- more theoretical work to be done
 - ▶ NP-hard?
 - better approximation factor in polytime
- ▶ to appear in DISC 2025
- thanks go to:
 - Leo Reyzin for help with paper & presentation
 - Nathan Klein for ideas & rounding class

$\begin{array}{lll} \underline{\text{Weight reduction problem:}} \\ \underline{\text{given } w_1,...,w_n \in \mathbb{Z}_{\geq 0}}, & \text{find} \\ t_1,...,t_n \in \mathbb{Z}_{\geq 0} & \text{such that} \end{array}$

- ightharpoonup minimize $\sum_{i=1}^{n} t_i$
- for all A with $\sum_{i \in A} w_i \le \alpha \sum_{i=1}^n w_i :$ $\sum_{i \in A} t_i < \beta \sum_{i=1}^n t_i$

- Good practical improvements
 - ▶ super Swiper: linear search in time $O(n + R^2 \log R)$
 - exact algorithm in time $O(n) + 2^{O(\sqrt{R})}$ sometimes practical
- more theoretical work to be done
 - ► NP-hard?
 - better approximation factor in polytime
- ▶ to appear in DISC 2025
- thanks go to:
 - Leo Reyzin for help with paper & presentation
 - ► Nathan Klein for ideas & rounding class

 $\frac{\text{Weight reduction problem:}}{\text{given } w_1,...,w_n \in \mathbb{Z}_{\geq 0}, \text{ find } t_1,...,t_n \in \mathbb{Z}_{\geq 0} \text{ such that }}$

- ightharpoonup minimize $\sum_{i=1}^{n} t_i$
- ► for all A with $\sum_{i \in A} w_i \le \alpha \sum_{i=1}^n w_i :$ $\sum_{i \in A} t_i < \beta \sum_{i=1}^n t_i$

Additional slides

Super Swiper

- \blacktriangleright test $\vec{t_1}, \vec{t_2}, \vec{t_3}, ...$ in batches
- ▶ batch $k \ge 0$ tests $\overrightarrow{t_j}$ for $j \in (j_k, j_{k+1}]$
- $j_0 = 0, j_{k+1} = j_k + 2^k$ (batches grow)
- ▶ batch k takes time $O(k \cdot 2^{2k})$
- ▶ total time dominated by last batch: $O(R^2 \log R)$

Super Swiper

- \blacktriangleright test $\overrightarrow{t_1}$, $\overrightarrow{t_2}$, $\overrightarrow{t_3}$, ... in batches
- ▶ batch $k \ge 0$ tests $\overrightarrow{t_j}$ for $j \in (j_k, j_{k+1}]$
- $j_0 = 0, j_{k+1} = j_k + 2^k$ (batches grow)
- ▶ batch k takes time $O(k \cdot 2^{2k})$
- ▶ total time dominated by last batch: $O(R^2 \log R)$

- lacktriangle goal: test $\vec{t_j}$ for $j \in (I, r]$, $I = 2^k 1$, $r = 2^{k+1} 1$, in time $O(k \cdot 2^{2k})$
- ▶ create array deltas: indices to increment (in $\overrightarrow{t_l}$) that generate $\overrightarrow{t_{l+1}}, \overrightarrow{t_{l+2}}, ..., \overrightarrow{t_r}$ ▶ $|\text{deltas}| = 2^k$
- lacktriangledown create dp_head: DP and call dp_head.apply $\left(w_i,(\overrightarrow{t_I})_i\right)$ for $i\notin$ deltas
 - ightharpoonup takes time $O(2^{2k})$
- ▶ observation: could test $\overrightarrow{t_{l+1}},...,\overrightarrow{t_r}$ and save $\approx 50\%$ of CPU cycles
 - ightharpoonup for each $\overrightarrow{t_j}$ only apply indices $i \in \text{deltas}$
- ▶ invoke ProcessBatchRecursive($\vec{t_l}$, deltas, dp_head)
 - ightharpoonup takes time $O(k \cdot 2^{2k})$

- lacktriangle goal: test $\vec{t_j}$ for $j \in (I, r]$, $I = 2^k 1$, $r = 2^{k+1} 1$, in time $O(k \cdot 2^{2k})$
- ▶ create array deltas: indices to increment (in $\overrightarrow{t_l}$) that generate $\overrightarrow{t_{l+1}}, \overrightarrow{t_{l+2}}, ..., \overrightarrow{t_r}$ ▶ $|\text{deltas}| = 2^k$
- ▶ create dp_head: DP and call dp_head.apply $(w_i, (\overrightarrow{t_l})_i)$ for $i \notin deltas$
 - ightharpoonup takes time $O(2^{2k})$
- ▶ observation: could test $\overrightarrow{t_{l+1}},...,\overrightarrow{t_r}$ and save $\approx 50\%$ of CPU cycles
 - ightharpoonup for each $\overrightarrow{t_j}$ only apply indices $i\in \mathtt{deltas}$
- ightharpoonup invoke ProcessBatchRecursive($\vec{t_l}$, deltas, dp_head)
 - ightharpoonup takes time $O(k \cdot 2^{2k})$

- lacktriangle goal: test $\overrightarrow{t_j}$ for $j \in (I, r]$, $I = 2^k 1$, $r = 2^{k+1} 1$, in time $O(k \cdot 2^{2k})$
- reate array deltas: indices to increment (in $\overrightarrow{t_l}$) that generate $\overrightarrow{t_{l+1}}, \overrightarrow{t_{l+2}}, ..., \overrightarrow{t_r}$ |deltas| = 2^k
- lacktriangle create dp_head: DP and call dp_head.apply $ig(w_i,(\overrightarrow{t_I})_iig)$ for i
 otin deltas
 - ightharpoonup takes time $O(2^{2k})$
- ▶ observation: could test $\overrightarrow{t_{l+1}},...,\overrightarrow{t_r}$ and save $\approx 50\%$ of CPU cycles
 - ▶ for each $\overrightarrow{t_j}$ only apply indices $i \in \text{deltas}$
- ightharpoonup invoke ProcessBatchRecursive($\vec{t_l}$, deltas, dp_head)
 - ightharpoonup takes time $O(k \cdot 2^{2k})$

- lacktriangle goal: test $\vec{t_j}$ for $j \in (I, r]$, $I = 2^k 1$, $r = 2^{k+1} 1$, in time $O(k \cdot 2^{2k})$
- ▶ create array deltas: indices to increment (in $\overrightarrow{t_l}$) that generate $\overrightarrow{t_{l+1}}, \overrightarrow{t_{l+2}}, ..., \overrightarrow{t_r}$ ▶ $|\text{deltas}| = 2^k$
- ▶ create dp_head: DP and call dp_head.apply $(w_i, (\overrightarrow{t_l})_i)$ for $i \notin deltas$
 - ightharpoonup takes time $O(2^{2k})$
- observation: could test $\overrightarrow{t_{l+1}},...,\overrightarrow{t_r}$ and save $\approx 50\%$ of CPU cycles
 - ightharpoonup for each $\overrightarrow{t_j}$ only apply indices $i\in \mathtt{deltas}$
- ightharpoonup invoke ProcessBatchRecursive($\vec{t_l}$, deltas, dp_head)
 - ightharpoonup takes time $O(k \cdot 2^{2k})$

- lacktriangle goal: test $\vec{t_j}$ for $j \in (I, r]$, $I = 2^k 1$, $r = 2^{k+1} 1$, in time $O(k \cdot 2^{2k})$
- ▶ create array deltas: indices to increment (in $\overrightarrow{t_l}$) that generate $\overrightarrow{t_{l+1}}, \overrightarrow{t_{l+2}}, ..., \overrightarrow{t_r}$ ▶ $|\text{deltas}| = 2^k$
- lacktriangledown create dp_head: DP and call dp_head.apply $ig(w_i,(\overrightarrow{t_I})_iig)$ for i
 otin deltas
 - ightharpoonup takes time $O(2^{2k})$
- observation: could test $\overrightarrow{t_{l+1}},...,\overrightarrow{t_r}$ and save $\approx 50\%$ of CPU cycles
 - ▶ for each $\overrightarrow{t_j}$ only apply indices $i \in \text{deltas}$
- ightharpoonup invoke PROCESSBATCHRECURSIVE($\vec{t_l}$, deltas, dp_head)
 - ▶ takes time $O(k \cdot 2^{2k})$

Divide and conquer

Base case. If |deltas| = 1:

- ▶ call dp_head.apply $(w_i, (\overrightarrow{t_{j+1}})_i)$ where $i \in \text{deltas}$
- check dp_head.get()

- ► Input:
 - ightharpoonup: a ticket assignment
 - deltas: an array of indices that generate $\overrightarrow{t_{j+1}}, \overrightarrow{t_{j+2}}, ..., \overrightarrow{t_{j+|\text{deltas}|}}$
 - ▶ dp_head: DP data structure where $(w_i, (\overrightarrow{t_j})_i)$ are applied exactly for $i \notin deltas$
- Output:
 - the smallest valid ticket assignment $\overrightarrow{t_{j'}}$ where $j < j' \le j + |\mathtt{deltas}|$, or \bot if no such solution exists

Divide and conquer

Base case. If |deltas| = 1:

- ▶ call dp_head.apply $(w_i, (\overrightarrow{t_{j+1}})_i)$ where $i \in \text{deltas}$
- check dp_head.get()

- ► Input:
 - $ightharpoonup \vec{t_j}$: a ticket assignment
 - deltas: an array of indices that generate $\overrightarrow{t_{j+1}}, \overrightarrow{t_{j+2}}, ..., \overrightarrow{t_{i+|\text{deltas}|}}$
 - ▶ dp_head: DP data structure where $(w_i, (\vec{t_j})_i)$ are applied exactly for $i \notin deltas$
- Output:
 - the smallest valid ticket assignment $\overrightarrow{t_{j'}}$ where $j < j' \le j + |\mathtt{deltas}|$, or \bot if no such solution exists

Recursive case. If |deltas| > 1:

- ► split deltas into two halves
 - deltas_l, deltas_r
- to test left half:

 - ▶ call dp_l.apply $(w_i, (\vec{t_j})_i)$ for $i \in \text{deltas}_r \setminus \text{deltas}_1$
 - ► call PROCESSBATCHRECURSIVE($\vec{t_j}$, deltas_1, dp_1)
- to test right half:
 - $m \leftarrow j + |\text{deltas}_1|$
 - $ightharpoonup dp_r \leftarrow dp_head$
 - ▶ call dp_r.apply $(w_i, (\overrightarrow{t_m})_i)$ for $i \in \text{deltas}_1 \setminus \text{deltas}_r$
 - ► call PROCESSBATCHRECUR-SIVE $(\overrightarrow{t_m}, \text{deltas_r}, \text{dp_r})$

- ► Input:
 - $ightharpoonup \vec{t_j}$: a ticket assignment
 - deltas: an array of indices that generate $\overrightarrow{t_{j+1}}, \overrightarrow{t_{j+2}}, ..., \overrightarrow{t_{j+|\text{deltas}|}}$
 - ▶ dp_head: DP data structure where $(w_i, (\vec{t_j})_i)$ are applied exactly for $i \notin deltas$
- Output:
 - ▶ the smallest valid ticket assignment $\overrightarrow{t_{j'}}$ where $j < j' \le j + |\texttt{deltas}|$, or \bot if no such solution exists

Recursive case. If |deltas| > 1:

- split deltas into two halves
 - deltas_1, deltas_r
- to test left half:

 - ▶ call dp_l.apply $(w_i, (\vec{t_j})_i)$ for $i \in \text{deltas}_r \setminus \text{deltas}_1$
 - ► call PROCESSBATCHRECURSIVE($\vec{t_j}$, deltas_1, dp_1)
- to test right half:
 - $m \leftarrow j + |\text{deltas_l}|$

 - ▶ call dp_r.apply $(w_i, (\overrightarrow{t_m})_i)$ for $i \in \text{deltas}_1 \setminus \text{deltas}_r$
 - ► call PROCESSBATCHRECURSIVE($\overrightarrow{t_m}$, deltas_r, dp_r)

- ► Input:
 - $ightharpoonup \vec{t_j}$: a ticket assignment
 - deltas: an array of indices that generate $\overrightarrow{t_{j+1}}, \overrightarrow{t_{j+2}}, ..., \overrightarrow{t_{j+|\text{deltas}|}}$
 - ▶ dp_head: DP data structure where $(w_i, (\vec{t_j})_i)$ are applied exactly for $i \notin deltas$
- Output:
 - ▶ the smallest valid ticket assignment $\overrightarrow{t_{j'}}$ where $j < j' \le j + |\texttt{deltas}|$, or \bot if no such solution exists

Recursive case. If |deltas| > 1:

- split deltas into two halves
 - deltas_1, deltas_r
- ▶ to test left half:
 - $\blacktriangleright \ dp_1 \leftarrow dp_head$
 - ▶ call dp_l.apply $(w_i, (\vec{t_j})_i)$ for $i \in \text{deltas}_r \setminus \text{deltas}_1$
 - ► call PROCESSBATCHRECURSIVE($\overrightarrow{t_j}$, deltas_1, dp_1)
- to test right half:
 - $m \leftarrow j + |\text{deltas}_1|$

 - ▶ call dp_r.apply $(w_i, (\overrightarrow{t_m})_i)$ for $i \in \text{deltas}_1 \setminus \text{deltas}_r$
 - ► call PROCESSBATCHRECUR-SIVE $(\overrightarrow{t_m}, \text{deltas}_r, \text{dp}_r)$

- ► Input:
 - $ightharpoonup \vec{t_j}$: a ticket assignment
 - deltas: an array of indices that generate $\overrightarrow{t_{j+1}}, \overrightarrow{t_{j+2}}, ..., \overrightarrow{t_{j+|\text{deltas}|}}$
 - ▶ dp_head: DP data structure where $(w_i, (\vec{t_j})_i)$ are applied exactly for $i \notin deltas$
- Output:
 - the smallest valid ticket assignment $\overrightarrow{t_{j'}}$ where $j < j' \le j + |\mathtt{deltas}|$, or \bot if no such solution exists

Recursive case. If |deltas| > 1:

- split deltas into two halves
 - deltas_1, deltas_r
- ▶ to test left half:
 - ▶ $dp_1 \leftarrow dp_head$
 - ▶ call dp_l.apply $(w_i, (\overrightarrow{t_j})_i)$ for $i \in \text{deltas}_r \setminus \text{deltas}_1$
 - ► call PROCESSBATCHRECURSIVE($\overrightarrow{t_j}$, deltas_1, dp_1)
- to test right half:
 - $ightharpoonup m \leftarrow j + |\text{deltas}_1|$

 - ▶ call dp_r.apply $(w_i, (\overrightarrow{t_m})_i)$ for $i \in \text{deltas}_1 \setminus \text{deltas}_r$
 - ► call PROCESSBATCHRECUR-SIVE($\overrightarrow{t_m}$, deltas_r, dp_r)

- ► Input:
 - $ightharpoonup \vec{t_j}$: a ticket assignment
 - deltas: an array of indices that generate $\overrightarrow{t_{j+1}}, \overrightarrow{t_{j+2}}, ..., \overrightarrow{t_{j+|\text{deltas}|}}$
 - ▶ dp_head: DP data structure where $(w_i, (\overrightarrow{t_j})_i)$ are applied exactly for $i \notin \text{deltas}$
- Output:
 - ▶ the smallest valid ticket assignment $\overrightarrow{t_{j'}}$ where $j < j' \le j + |\texttt{deltas}|$, or \bot if no such solution exists

Back to batch algorithm

poal: test $\overrightarrow{t_j}$ for $j \in (l, r]$, $l = 2^k - 1$, $r = 2^{k+1} - 1$

Running time analysis

- ▶ DP.apply always called on \vec{t} with size(\vec{t}) < 2^{k+1} ; takes time $O(2^k)$
- m = |deltas|:
 PROCESSBATCHRECURSIVE(⋅,
 deltas, ⋅) calls DP.apply ≤ m
 times (at current stack level)
- ► T(m) total # calls to DP.apply ► T(1) = 1
 - T(m) < 2T(m/2) + m
- ▶ solving: $T(2^k) = O(k \cdot 2^k)$; total time $O(k \cdot 2^{2k})$

- ► Input:
 - $ightharpoonup \vec{t_j}$: a ticket assignment
 - deltas: an array of indices that generate $\overrightarrow{t_{j+1}}, \overrightarrow{t_{j+2}}, ..., \overrightarrow{t_{i+|\text{deltas}|}}$
 - ▶ dp_head: DP data structure where $(w_i, (\overrightarrow{t_j})_i)$ are applied exactly for $i \notin deltas$
- Output:
 - ▶ the smallest valid ticket assignment $\overrightarrow{t_{j'}}$ where $j < j' \le j + |\text{deltas}|$, or \bot if no such solution exists

Back to batch algorithm

▶ goal: test $\overrightarrow{t_j}$ for $j \in (l, r]$, $l = 2^k - 1$, $r = 2^{k+1} - 1$

Running time analysis:

- ▶ DP.apply always called on \vec{t} with size(\vec{t}) < 2^{k+1} ; takes time $O(2^k)$
- m = |deltas|:
 PROCESSBATCHRECURSIVE(⋅,
 deltas, ⋅) calls DP.apply ≤ m
 times (at current stack level)
- ► T(m) total # calls to DP.apply ► T(1) = 1
 - $T(m) \le 2T(m/2) + m$
- ▶ solving: $T(2^k) = O(k \cdot 2^k)$; total time $O(k \cdot 2^{2k})$

- ► Input:
 - $ightharpoonup \vec{t_j}$: a ticket assignment
 - deltas: an array of indices that generate $\overrightarrow{t_{j+1}}, \overrightarrow{t_{j+2}}, ..., \overrightarrow{t_{j+|\text{deltas}|}}$
 - ▶ dp_head: DP data structure where $(w_i, (\overrightarrow{t_j})_i)$ are applied exactly for $i \notin deltas$
- Output:
 - ▶ the smallest valid ticket assignment $\overrightarrow{t_{j'}}$ where $j < j' \le j + |\text{deltas}|$, or \bot if no such solution exists

Back to batch algorithm

▶ goal: test $\vec{t_j}$ for $j \in (I, r]$, $I = 2^{k-1}, r = 2^{k+1} - 1$

Running time analysis:

- DP.apply always called on \vec{t} with size(\vec{t}) < 2^{k+1} ; takes time $O(2^k)$
- ▶ m = |deltas|:
 PROCESSBATCHRECURSIVE(·,
 deltas, ·) calls DP.apply ≤ m
 times (at current stack level)
- ► T(m) total # calls to DP.apply ► T(1) = 1► $T(m) \le 2T(m/2) + m$
- ▶ solving: $T(2^k) = O(k \cdot 2^k)$; total time $O(k \cdot 2^{2k})$

- ► Input:
 - $ightharpoonup \vec{t_j}$: a ticket assignment
 - deltas: an array of indices that generate $\overrightarrow{t_{j+1}}, \overrightarrow{t_{j+2}}, ..., \overrightarrow{t_{j+|\text{deltas}|}}$
 - ▶ dp_head: DP data structure where $(w_i, (\overrightarrow{t_j})_i)$ are applied exactly for $i \notin deltas$
- Output:
 - the smallest valid ticket assignment $\overrightarrow{t_{j'}}$ where $j < j' \le j + |\mathtt{deltas}|$, or \bot if no such solution exists

Back to batch algorithm

▶ goal: test $\vec{t_j}$ for $j \in (l, r]$, $l = 2^k - 1$, $r = 2^{k+1} - 1$

Running time analysis:

- DP.apply always called on \vec{t} with size(\vec{t}) < 2^{k+1} ; takes time $O(2^k)$
- ▶ m = |deltas|:
 PROCESSBATCHRECURSIVE(·,
 deltas, ·) calls DP.apply ≤ m
 times (at current stack level)
- ▶ T(m) total # calls to DP.apply
 - T(1) = 1
 - ► $T(m) \le 2T(m/2) + m$
- ▶ solving: $T(2^k) = O(k \cdot 2^k)$; total time $O(k \cdot 2^{2k})$

- ► Input:
 - $ightharpoonup \vec{t_j}$: a ticket assignment
 - deltas: an array of indices that generate $\overrightarrow{t_{j+1}}, \overrightarrow{t_{j+2}}, ..., \overrightarrow{t_{j+|\text{deltas}|}}$
 - ▶ dp_head: DP data structure where $(w_i, (\overrightarrow{t_j})_i)$ are applied exactly for $i \notin deltas$
- Output:
 - the smallest valid ticket assignment $\overrightarrow{t_{j'}}$ where $j < j' \le j + |\mathtt{deltas}|$, or \bot if no such solution exists

Back to batch algorithm

▶ goal: test $\vec{t_j}$ for $j \in (l, r]$, $l = 2^k - 1$, $r = 2^{k+1} - 1$

Running time analysis:

- ▶ DP.apply always called on \vec{t} with size(\vec{t}) < 2^{k+1} ; takes time $O(2^k)$
- ▶ m = |deltas|:
 PROCESSBATCHRECURSIVE(·,
 deltas, ·) calls DP.apply ≤ m
 times (at current stack level)
- ► T(m) total # calls to DP.apply ► T(1) = 1► T(m) < 2T(m/2) + m
- ▶ solving: $T(2^k) = O(k \cdot 2^k)$; total time $O(k \cdot 2^{2k})$

- ► Input:
 - ightharpoonup: a ticket assignment
 - deltas: an array of indices that generate $\overrightarrow{t_{i+1}}, \overrightarrow{t_{i+2}}, ..., \overrightarrow{t_{i+|deltas|}}$
 - ▶ dp_head: DP data structure where $(w_i, (\vec{t_j})_i)$ are applied exactly for $i \notin \text{deltas}$
- Output:
 - the smallest valid ticket assignment $\overrightarrow{t_{j'}}$ where $j < j' \le j + |\mathtt{deltas}|$, or \bot if no such solution exists

Fabrice Benhamouda, Shai Halevi, and Lev Stambler.

Weighted secret sharing from wiretap channels.

In Kai-Min Chung, editor, *ITC 2023*, volume 267 of *LIPIcs*, pages 8:1–8:19. Schloss Dagstuhl, June 2023.

doi:10.4230/LIPIcs.ITC.2023.8.

Pyrros Chaidos, Aggelos Kiayias, Leonid Reyzin, and Anatoliy Zinovyev.

Approximate lower bound arguments.

In Marc, love and Gregor Leander, editors, FU.

In Marc Joye and Gregor Leander, editors, *EUROCRYPT 2024*, *Part IV*, volume 14654 of *LNCS*, pages 55–84. Springer, Cham, May 2024. doi:10.1007/978-3-031-58737-5 3.

Sourav Das, Benny Pinkas, Alin Tomescu, and Zhuolun Xiang. Distributed randomness using weighted VUFs.

In Serge Fehr and Pierre-Alain Fouque, editors, *EUROCRYPT 2025, Part VII*, volume 15607 of *LNCS*, pages 314–344. Springer, Cham, May 2025. doi:10.1007/978-3-031-91098-2 12.

Hanwen Feng, Tiancheng Mai, and Qiang Tang.

Scalable and adaptively secure any-trust distributed key generation and all-hands checkpointing.

In Bo Luo, Xiaojing Liao, Jun Xu, Engin Kirda, and David Lie, editors, *ACM CCS* 2024, pages 2636–2650. ACM Press, October 2024. doi:10.1145/3658644.3690253.

Peter Gazi, Aggelos Kiayias, and Alexander Russell.

Fait accompli committee selection: Improving the size-security tradeoff of stake-based committees.

In Weizhi Meng, Christian Damsgaard Jensen, Cas Cremers, and Engin Kirda, editors, *ACM CCS 2023*, pages 845–858. ACM Press, November 2023. doi:10.1145/3576915.3623194.

Andrei Tonkikh and Luciano Freitas.

Swiper: a new paradigm for efficient weighted distributed protocols.

Cryptology ePrint Archive, Report 2023/1164, 2023.

URL: https://eprint.iacr.org/2023/1164.