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Committee selection (cont.)

Typical solution:

» select each party with probability p:

tj ~ Bernoulli(p)
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Introducing weights

» the n parties have weights wy, wa, ..., w, € Z>g
> need to assign new weights t1, to, ..., t, € Z>q
P say “party i gets t; tickets”

» new problem statement: adversary has weight
at most 20%; he must have < % tickets
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need to sample
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Introducing weights (cont.)
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» Algorand achieves it: does extra work to “hide"” t;

6/40



Improvements in weighted committee selection

» Take weight distribution (wj, ..., w,) into account

7/40



Improvements in weighted committee selection

» Take weight distribution (wj, ..., w,) into account
» Fait Accompli [GKR23]:
P selects biggest parties deterministically and everyone else randomly as in Algorand
» big players selected almost certainly anyway
» randomly sample from less weight = less variance
P improves committee size vs. error tradeoff

7/40



Improvements in weighted committee selection

» Take weight distribution (wj, ..., w,) into account
» Fait Accompli [GKR23]:
P selects biggest parties deterministically and everyone else randomly as in Algorand
» big players selected almost certainly anyway
» randomly sample from less weight = less variance
P improves committee size vs. error tradeoff
» Swiper [TF23] + others [BHS23, FMT24, DPTX25]:
» fully deterministic =

forallAwichw,-glzn:w,-:P Zt,-<lzn:t; ig
icA 5 i=1 icA 3 i=1

7/40



Improvements in weighted committee selection

» Take weight distribution (wj, ..., w,) into account
» Fait Accompli [GKR23]:
P selects biggest parties deterministically and everyone else randomly as in Algorand
» big players selected almost certainly anyway
» randomly sample from less weight = less variance
P improves committee size vs. error tradeoff
» Swiper [TF23] + others [BHS23, FMT24, DPTX25]:
> fully deterministic =

forallAwichw,-glzn:w,-:><[Zt;<1zn:t; ig
icA 5 i=1 icA 3 i=1
)

> cons: committee size £2(n) in worst case (e.g., w3 = wp = ... = w, =1
P pros: security against adaptive corruptions guaranteed
» pros: (?) deterministic committees are smaller when security parameter is large

7/40



Improvements in weighted committee selection

» Take weight distribution (wj, ..., w,) into account
» Fait Accompli [GKR23]:
P selects biggest parties deterministically and everyone else randomly as in Algorand
» big players selected almost certainly anyway
» randomly sample from less weight = less variance
P improves committee size vs. error tradeoff
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for allAw1chw,§ ZW, :><[Zt; Zt,
icA icA

> cons: committee size 2(n) in worst case (e.g., w; = wp = ... =

P pros: security against adaptive corruptions guaranteed

» pros: (?) deterministic committees are smaller when security parameter is large
» both show that realistic weight distributions allow small committees
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Minimize the size of the committee (t1, to, ..., t): how to quantify?

» option (1) : number of distinct parties on the committee:
the number of i € [n] with t; >0

» useful in e.g. Algorand
> option (2) : the total new weight: Y 7, t;
> useful when the protocol scales poorly with the weights (e.g., secret sharing)

Fait Accompli solves (1) and (2); Swiper and this work solves (2).
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Problem statement

Assume 0 < av < 8 < 1. Given wy, ..., w, € Z>g, find t1, ..., t, € Z>( such that
> minimize > 1 t;

» o — 3, deterministic:

forallAw1chW, SaZW, Zt, <BZt,

i€eA i€EA

This work extends Swiper (Tonkikh, Freitas '24).

» pure optimization problem
Adopt terminology: party i gets t; “tickets”.

» NP-hard? — unknown
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Swiper [TF23] overview: verifying a solution
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Output: True/False — test if the solution (ti, ..., t,) is valid; need to check

for all A with Y " w; <aZW, >t <52t,
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Swiper: knapsack problem, dynamic programming solution in time O(n- T),
where T =37 | t;.
for k € [n] do
for t €{0,1,..., T} do
compute min weight the adversary has to corrupt from [k] to get t tickets total:

dp[t] = mlnz w; subject to S C [k] and Z ti=t
i€S ieS

return =3t s.t. t > B> 0t Adplt] <a Yl wi
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Linear scaling:
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> set in-between: t; = [sw; + ¢ (¢ = const)

» run binary search to find locally minimal s D
O DD = =l mm

that generates a valid ticket assignment
» validity testing described in previous slide
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Linear scaling:
» assignment (ti, ..., ty) = (Wi, ..., w,) works, (ti,...,t,) = 0" doesn't
> set in-between: t; = [sw; + ¢ (¢ = const)

» run binary search to find locally minimal s D
O DD = =l mm

that generates a valid ticket assignment
» validity testing described in previous slide

Equivalently:
> define potential solutions t;, t3, ... with size(?j') = j tickets
» find locally minimal j such that ?f is valid but tj_,f is not
Swiper paper proves that when ¢ = o, all ty, fm, ... are valid, where

M = r(ﬁl__;’y)nJAJ = O(n).

Running time analysis:
> each search iteration: validity testing in time O(n- Y7, t;)) < O(n- M) = O(n?)

> total: O(n2 log n)
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Improving Swiper: super Swiper

DDDD = =l mm

» Replaces binary search with linear search
> 1,
while fj is not valid do
L et
return fﬁ
» binary search can get stuck in a “local minimum”
» linear search improves output
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Improving Swiper: super Swiper

DDDD = =l mm

» Replaces binary search with linear search

while 7 is not valid do Challenge 1: compute t;
e+ Challenge 2: test t;
return t;;

» binary search can get stuck in a “local minimum”
» linear search improves output

> reduces running time from O(n?logn) to O(n + R%log R),
where R < O(n) is the number of tickets > " ; t; in the output
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Challenge: how to compute t1, ..., tr?

» assume wy > wy > ... > wp, produce sorted ?f

DDDD = [ [ -

» observation: tjy; = ?j’—i— (...,0,0,1,0,0,...) =
calculate index to increment
» “slowly” increase s and see which indices increase

» for index i, store next s that increments t;
» each iteation: find minimum s, increment t;
> using binary heap: j-th query takes time O(log})
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Improving Swiper: super Swiper (cont.)

Jj= L

while % is not valid do

L et

return t;;

> Challenge 1: compute t; — time O(Rlog R)
» O(n+ RlogR) if w is unordered

» Challenge 2: test ?f -7
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> guarantee: want to test ¢
> call DP.apply(w;, (?),-) once for all i € [n] with (T); # 0 in any order
> then DP.get() returns max # tickets the adversary gets in t

> example: want to test t = (4,3,3,0) for w = (90, 60,50, 10)

dp.apply(90,4)
dp.apply(50, 3)
dp.apply(60, 3)
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» Reuse dynamic programming computations for testing ticket assignments
P generalized data structure DP:

method mutable? parameters output
.apply(w,t) | mutable party’s weight w;, # tickets t; | none
.get() immutable | none integer

> guarantee: want to test ¢
> call DP.apply(w;, (?),-) once for all i € [n] with (T); # 0 in any order
> then DP.get() returns max # tickets the adversary gets in t

> example: want to test T = (4,3,3,0) for w = (90,60, 50, 10)

dp.apply(90,4)

dp.apply(50, 3)

dp.apply(60, 3)
dp.get()
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Testing t; (cont.)

» To implement DP:
for k € [n] do
for t € {0,1,..., T} do
compute min weight the adversary has to corrupt from [k] to get ¢ tickets total:
apply
dp|t| = mi i subject to S C [k d ti=1t
plt] msln'ezsw subject to S C [k] an ;

get* (return -3t st. t> B>t Adplt] <adl, wi
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Testing t; (cont.)

» To implement DP:
for k € [n] do
for t € {0,1,..., T} do
compute min weight the adversary has to corrupt from [k] to get ¢ tickets total:
apply
dp[t] = mlnz w; subject to S C [k] and Z ti=t
i€S ieS

get* (return -3t st. t> B>t Adplt] <adl, wi

> time complexity

> if 7 (¥); = T, then DP.apply(w;, (t);) takes time O(T)
> DP.get() takes time O(1)
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Testing t; (cont.)

More interesting example: want to test t = (4,3,3,0) and i = (4,4,3,0)
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Testing t; (cont.)
More interesting example: want to test (2,1,1,1), (2,2,1,1), (2,2,2,1), (2,2,2,2)
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Testing t; (cont.)
More interesting example: want to test (2,1,1,1), (2,2,1,1), (2,2,2,1), (2,2,2,2)

2111 2211 2221 2222

4 - (log4 4 1) = 12 applies. Generalize: can test Swiper's 1, ts, ..., to(r) with
O(Rlog R) applies; each apply takes time O(R).
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Improving Swiper: super Swiper (cont.)

j+ 1

while fj’ is not valid do

L et

return t;;

» Challenge 1: compute ff —time O(n+ RlogR)
> Challenge 2: test t; — time O(R?log R)

Total: time O(n + R%*log R)
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Improving Swiper:

w2
2
o]
]
[

super Swiper (cont.)

B=1/3 B=1/2
0=02 a=025 a=03 a=03a=035 a=04 a=045
22 85 346 23 29 95 279
1.61lms | 2.07ms 1.96ms | 1.40ms | 1.88ms 1.80ms | 1.96ms
22 58 277 23 29 95 241
6.98ps 14.1ps 121ps 7.21ps 7.74ps 33.2ps 99.9ps

Table: Evaluation on the Aptos stake distribution
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Improving Swiper: super Swiper (cont.)

» linear search outputs fewer tickets

w2
2
o]
]
[

22 85 346 23 29 95 279
1.61lms | 2.07ms 1.96ms | 1.40ms | 1.88ms 1.80ms | 1.96ms
22 58 277 23 29 95 241
6.98p1s 14.1ps 121ps 7.21ps 7.74ps 33.2ps 99.911s

Table: Evaluation on the Aptos stake distribution
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Improving Swiper: super Swiper (cont.)

» linear search outputs fewer tickets

» linear search faster than binary search

B=1/3 B=1/2
0=02 a=025 a=03 a=03]a=035 a=04 a=045
235 745 22393 203 383 1203 17591
1.10s 1.22s 1.78s 1.03s 1.14s 1.19s 1.65s
232 745 22384 201 383 1171 17581
81.5ps | 485nus 129ms 88.0ps 21578 1.54ms | 140ms

Table: Evaluation on the Algorand stake distribution
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Coming next...

¥f Problem statement

v Swiper overview

¥ Contribution 1: super Swiper — linear search in time O(n + R?%log R)
[J Contribution 2: lower bounds

O

O

O
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Lower bounds

» super Swiper works great in practice, what about in theory?
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> want to know worst case approximation factor
» how big is output compared to optimal solution?
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Lower bounds

» super Swiper works great in practice, what about in theory?
> want to know worst case approximation factor
» how big is output compared to optimal solution?

» our result: super Swiper, Swiper [TF23] + others [BHS23, FMT24, DPTX25] all
have approximation factor 2(n)

> constructed an example where output is 2(n) but OPT = O(1)
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Coming next...

¥f Problem statement

v Swiper overview

¥ Contribution 1: super Swiper — linear search in time O(n + R?log R)
I Contribution 2: Q(n) approximation factor lower bound

[J Contribution 3: algorithms with better guarantees

O

O
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Algorithms with better theoretical guarantees

» Would like algorithms with good approximation factor; made some progress
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Algorithms with better theoretical guarantees

» Would like algorithms with good approximation factor; made some progress

» useful fact: assuming wy > wy > ... > w,,
3 an optimal solution with t; >t > ... > t,
> take an optimal solution (ti,..., t;,...tj, ..., t,) with t; < t;
> swap t; and t;
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» useful fact: assuming wy > wy > ... > w,,
3 an optimal solution with t; >t > ... > t,
> take an optimal solution (ti,..., t;,...tj, ..., t,) with t; < t;
> swap t; and t;

» bruteforcing sorted ticket assignment gives exact solution
(approximation factor 1), takes time

0 (n + R3/2ecﬁ)

» R < O(n) — size of optimal solution
» practical when R < 100
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Algorithms with better theoretical guarantees

» Would like algorithms with good approximation factor; made some progress

» useful fact: assuming wy > wy > ... > w,,
3 an optimal solution with t; >t > ... > t,

> take an optimal solution (ti,..., t;,...tj, ..., t,) with t; < t;
> swap t; and t;

» bruteforcing sorted ticket assignment gives exact solution
(approximation factor 1), takes time

0 (n + R3/2eC\/ﬁ)

» R < O(n) — size of optimal solution
» practical when R < 100

» corollary: polytime algorithm with approximation factor O(n/ log? n)
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Coming next...

¥f Problem statement

v Swiper overview

¥ Contribution 1: super Swiper — linear search in time O(n + R?log R)

I Contribution 2: Q(n) approximation factor lower bound

¥f Contribution 3: sub-expontential exact algorithm and polytime approx. algorithm
[J Contribution 4: LP based algorithm

O
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Algorithm based on linear programming

» Weight reduction can be formulated as an integer linear program
n
minimize Z ti
subject to Zt,<BZt, VA C [n] s.t. ZW,S@ZW,

icA i€A
ti € Z>o Vi€ [n]
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Algorithm based on linear programming

» Weight reduction can be formulated as an integer linear program
n
minimize Z ti
subject to Zt,</32t, VA C [n] s.t. ZW,<@ZW,

i€A i€A
ti € Z>o Vi€ [n]

» relax to (fractional) LP, run ellipsoid method, round output to an integer solution
» polynomial time algorithm
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Algorithm based on linear programming (cont.)

» Let OPT, g denote the smallest number of tickets
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Algorithm based on linear programming (cont.)

» Let OPT, g denote the smallest number of tickets
> solution of size OPT, (1_s)3 in polynomial time for any constant § > 0

» example: security o = % — (= % size optimal for a = % - (1-90)p= 1%
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Algorithm based on linear programming (cont.)

» Let OPT, g denote the smallest number of tickets
> solution of size OPT, (1_s)3 in polynomial time for any constant § > 0
» example: security o = % — (= % size optimal for a = % - (1-90)p= 1%

» OPT, (1_53/OPTq,s can be Q(n);
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Algorithm based on linear programming (cont.)
OPT, (155 can be useful anyway:

> ex.: Approximate Lower Bound Arguments [CKRZ24] yields
decentralized threshold signatures

300 T

— OPT,ps

200 [ N

100 3

Threshold signature size

| | | | | | | |
1,000 1,500 2,000 2,500 3,000 3,500 4,000 4,500 5,000
Committee size
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Algorithm based on linear programming (cont.)
OPT, (155 can be useful anyway:

> ex.: Approximate Lower Bound Arguments [CKRZ24] yields
decentralized threshold signatures

300 \ :
_g e OPTaﬁ
o —— approx. factor 3
E
gﬂ 200 |
(2]
O
o
=
3
< 100 |- i
|_

| | | | | | | |
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Algorithm based on linear programming (cont.)
OPT, (155 can be useful anyway:

> ex.: Approximate Lower Bound Arguments [CKRZ24] yields
decentralized threshold signatures

300 \ :
_g _— OPTaﬁ
o —— approx. factor 3
E —— OPT, (0/10)5
gﬂ 200 |
(2]
)
o
% T
< 100 |-
|_

| | | | | | | |
1,000 1,500 2,000 2,500 3,000 3,500 4,000 4,500 5,000
Committee size
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Algorithm based on linear programming (cont.)

» LP algorithm is impractical

> time complexity Q(nlo) for reasonable parameters
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Coming next...

¥f Problem statement

v Swiper overview

¥ Contribution 1: super Swiper — linear search in time O(n + R%log R)

I Contribution 2: Q(n) approximation factor lower bound

¥f Contribution 3: sub-expontential exact algorithm and polytime approx. algorithm
¥/ Contribution 4: LP based algorithm

[J Numerical evaluation
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Numerical evaluation

- B=1/3 B=1/2
" a=021a=02'a=03 a=03!a=035 a=04 | a=045
777777777 22 85 346 23 29 95 279
! Swiper
! 1.61lms | 2.07ms 1.96ms | 1.40ms | 1.88ms 1.80ms | 1.96ms
' super | 22 58 277 23 29 95 241
- Swiper 6.98ps 14.1ps 121ps 7.21ps 7.74ps 33.2ps 99.9ps
o 29 5 23 29 91
. exact
! 133ps 127ms 23611s 1.08ms 45.9s

Table: Evaluation on the Aptos stake distribution
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Numerical evaluation

» sub-exponential time exact algorithm can be practical!

- B=1/3 B=1/2
a=02 =02 a=03!a=03 a«=035 a=04 a=045
o 22 85 346 23 29 95 279
! Swiper
! 1.61ms | 2.07ms 1.96ms 1.40ms 1.88ms 1.80ms 1.96ms
super | 22 58 277 23 29 95 241
- Swiper 6.98p1s 14.1ps 121ps 7.21ps 7.74ps 33.2ps 99.9ps
o 29 55 23 29 91
©exact
! 133ps 127ms 23611s 1.08ms 45.9s

Table: Evaluation on the Aptos stake distribution
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Numerical evaluation

» sub-exponential time exact algorithm can be practical!

» super Swiper is almost optimal in practice

- B=1/3 B=1/2
a=02 =02 a=03!a=03 =035 a=04  a=045 |
o 22 85 346 23 29 95 279
! Swiper
! 1.61ms | 2.07ms 1.96ms 1.40ms 1.88ms 1.80ms 1.96ms
super | 22 58 277 23 29 95 241
- Swiper 6.98ps 14.1ps 121ps 7.21ps 7.74ps 33.2ps 99.9ps
o 29 55 23 29 91
" exact
! 133ps 127ms 23611s 1.08ms 45.9s

Table: Evaluation on the Aptos stake distribution
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Conclusion

» Good practical improvements
» super Swiper: linear search in time
O(n+ R?logR)
> exact algorithm in time O(n) + 2°0(VR) —
sometimes practical

Weight reduction problem:

given wi,...,w, € Z>q, find
t1,....,th € Zzo such that
> minimize Y 1, t;
» for all A with
Dieawi < ad il wi

Yieati <BYiiti
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Conclusion

» Good practical improvements
» super Swiper: linear search in time
O(n+ R?logR)
> exact algorithm in time O(n) + 2°0(VR) —
sometimes practical
» more theoretical work to be done
» NP-hard?
P better approximation factor in polytime
> to appear in DISC 2025
» thanks go to:

» Leo Reyzin for help with paper &
presentation
> Nathan Klein for ideas & rounding class

Weight reduction problem:

given wi,...,w, € Z>q, find
t1,....,th € Zzo such that
> minimize Y 1, t;
» for all A with
Dieawi < ad il wi

Yieati <BY i ti
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Additional slides
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Super Swiper

> test 1, to, 3, ... in batches
> batch k > 0 tests & for j € (jk, jk+1]
> jo =0, jkr1 = jk + 2¥ (batches grow)
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Super Swiper

> test 1, to, 3, ... in batches

> batch k > 0 tests & for j € (jk, jk+1]

> jo =0, jks1 = jk + 2¥ (batches grow)

» batch k takes time O(k . 22k)

> total time dominated by last batch: O(R?logR)
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Super Swiper(cont.)

Batch algorithm
> goal: test t; for j € (/, rl, 1=2%—1, r=2k"1—1 intime O(k-2%)
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Super Swiper(cont.)

Batch algorithm
> goal: test ff for j € (/, r], =2k -1, r=2k1—_1, in time O(k . 22")
» create array deltas: indices to increment (in E) that generate m, ﬂg’, oty
> |deltas| = 2X
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Super Swiper(cont.)

Batch algorithm
» goal: test ff for j € (/, r], =2k -1, r=2k1—_1, in time O(k . 22")
» create array deltas: indices to increment (in E) that generate m, ﬂg’, oty
> |deltas| = 2X
> create dp_head : DP and call dp_head.apply(w;, (f/’),) for i ¢ deltas
> takes time O(2%F)
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Super Swiper(cont.)

Batch algorithm

» goal: test ff for j € (/, r], =2k -1, r=2k1—_1, in time O(k . 22")

» create array deltas: indices to increment (in E) that generate m, ﬂg’, oty
> |deltas| = 2X

> create dp_head : DP and call dp_head.apply(w;, (f/’),) for i ¢ deltas
> takes time O(2%F)

» observation: could test m, ..., t; and save = 50% of CPU cycles
» for each ?j only apply indices i € deltas

> invoke PROCESSBATCHRECURSIVE(t/,deltas, dp_head)
> takes time O(k - 22F)
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Super Swiper(cont.)

PROCESSBATCHRECURSIVE(T;, deltas, dp_head)

> Input:
> 1. a ticket assignment
» deltas: an array of indices that generate

tit1; G425 o5 Gt |deltas|
» dp_head: DP data structure where (W,-, (tj)i)
are applied exactly for i ¢ deltas
» Output:
> the smallest valid ticket assignment #; where
J <Jj' <j+|deltas|, or L if no such solution

exists
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Super Swiper(cont.)

Divide and conquer

Base case. If |deltas| = 1:
> call dp_head.apply(w;, (ti11);)
where i € deltas

» check dp_head.get()

PROCESSBATCHRECURSIVE(T;, deltas, dp_head)

> Input:
> 1. a ticket assignment
» deltas: an array of indices that generate

tit1; G425 o5 Lt |deltas|
» dp_head: DP data structure where (W,-, (tj)i)
are applied exactly for i ¢ deltas
» Output:
> the smallest valid ticket assignment #;; where
J <Jj' <j+|deltas|, or L if no such solution

exists
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Super Swiper(cont.)
Recursive case. If |deltas| > 1: PROCESSBATCHRECURSIVE(;, deltas, dp_head)
> Input:

> 1. a ticket assignment
» deltas: an array of indices that generate

tj_Jrl’v tj_+2’v eeey tj+|deltas|
» dp_head: DP data structure where (W,-, (?;)I)
are applied exactly for i ¢ deltas
» Output:
> the smallest valid ticket assignment #;; where
J <Jj' <j+|deltas|, or L if no such solution

exists
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Super Swiper(cont.)
Recursive case. If |[deltas| > 1:
» split deltas into two halves
» deltas_1, deltas_r

PROCESSBATCHRECURSIVE(T;, deltas, dp_head)

> Input:
> 1. a ticket assignment
» deltas: an array of indices that generate

tit1; G425 o5 Gt |deltas|
» dp_head: DP data structure where (W,-, (tj)i)
are applied exactly for i ¢ deltas
» Output:
> the smallest valid ticket assignment #;; where
J <Jj' <j+|deltas|, or L if no such solution

exists
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Super Swiper(cont.)
Recursive case. If |[deltas| > 1:
» split deltas into two halves
» deltas_1, deltas_r
> to test left half:
> dp_1 < dp_head
> call dp_l.apply(w,-7 (tj)i) for
i € deltas_r \ deltas_1
> call PROCESSBATCHRECUR-
SIVE(t;, deltas_1, dp_1)

PROCESSBATCHRECURSIVE(T;, deltas, dp_head)
> Input:

> 1. a ticket assignment
» deltas: an array of indices that generate

tit1; G425 o5 Gt |deltas|
» dp_head: DP data structure where (W,-, (tj)i)
are applied exactly for i ¢ deltas
» Output:
> the smallest valid ticket assignment #;; where
J <Jj' <j+|deltas|, or L if no such solution
exists
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Super Swiper(cont.)
Recursive case. If |[deltas| > 1:
» split deltas into two halves

>

deltas_1, deltas_r

» to test left half:

4
>

>

dp_1 < dp_head

call dp_l.apply(w,-7 (?j)l) for
i € deltas_r \ deltas_1
call PROCESSBATCHRECUR-
SIVE(t;, deltas_1, dp_1)

» to test right half:

>
»
>

m < j + |deltas_1|

dp_r < dp_head

call dp_r.apply(w;, (tm),) for
i € deltas_1\ deltas_r

call PROCESSBATCHRECUR-
SIVE(E,:, deltas_r, dp_r)

PROCESSBATCHRECURSIVE(T;, deltas, dp_head)
> Input:

> 1. a ticket assignment
» deltas: an array of indices that generate

tit1; G425 o5 Gt |deltas|
» dp_head: DP data structure where (W,-, (tj)i)
are applied exactly for i ¢ deltas
» Output:
> the smallest valid ticket assignment #;; where
J <Jj' <j+|deltas|, or L if no such solution
exists
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Super Swiper(cont.)

Back to batch algorithm
> goal: test t; for j € (I,r],
[=2k—1,r=2k1_1

PROCESSBATCHRECURSIVE(T;, deltas, dp_head)

> Input:
> 1. a ticket assignment
» deltas: an array of indices that generate

tj_Jrl’v tj_+2’v eeey tj+|deltas|
» dp_head: DP data structure where (W,-, (?;)I)
are applied exactly for i ¢ deltas
» Output:
> the smallest valid ticket assignment #;; where
J <Jj' <j+|deltas|, or L if no such solution

exists
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Super Swiper(cont.)

Back to batch algorithm -
N ) PROCESSBATCHRECURSIVE( t;, deltas, dp_head)
> goal: test ¢ for j € (/,r], > Inout:
=2k 1, =2kt ] PR .
> t;: a ticket assignment

Running time analysis: » deltas: an array of indices that generate

> DP.apply always called on T with Lit15 £j42, o) Lt |deltas] N
Size(_{) < 2k+1. takes time O(Zk) » dp_head: DP data structure where (W,-, (tj)i)
are applied exactly for i ¢ deltas

» Output:
> the smallest valid ticket assignment #;; where
J <Jj' <j+|deltas|, or L if no such solution

exists
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Super Swiper(cont.)

Back to batch algorithm
> goal: test t; for j € (I,r],
[=2k—1,r=2k1_1

PROCESSBATCHRECURSIVE(T;, deltas, dp_head)
> Input:
> 1. a ticket assignment

Running time analysis: P> deltas: an array of indices that generate
> DP.apply always called on T with Lit15 £j42, o) Lt |deltas] N
size(T) < 2k+1. takes time O(Zk) » dp_head: DP data structure where (W,-, (tj)i)
are applied exactly for i ¢ deltas
> m = |deltas|:
» Output:

PROCESSBATCHRECURSIVE(, _
( » the smallest valid ticket assignment t; where

d‘eltas, ) calls DP.apply < m J <Jj' <j+|deltas|, or L if no such solution
times (at current stack level) exists
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Super Swiper(cont.)

Back to batch algorithm
> goal: test t; for j € (I,r],
[=2k—1,r=2k1_1

PROCESSBATCHRECURSIVE(T;, deltas, dp_head)
> Input:
> 1. a ticket assignment

Running time analysis: P> deltas: an array of indices that generate
> DP.apply always called on T with Lit15 £j42, o) Lt |deltas] N
size(T) < 2k+1. takes time O(Zk) » dp_head: DP data structure where (W,-, (tj)i)
are applied exactly for i ¢ deltas
> m = |deltas|:
» Output:

PROCESSBATCHRECURSIVE(, _
( » the smallest valid ticket assignment t; where

d‘eltas, ) calls DP.apply < m J <Jj' <j+|deltas|, or L if no such solution
times (at current stack level) exists

» T(m) — total # calls to DP.apply
> T(1)=1
> T(m)<2T(m/2)+m
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Super Swiper(cont.)
Back to batch algorithm

> goal: test t; for j € (I,r],
[=2k -1, r=2k1_1

PROCESSBATCHRECURSIVE(T;, deltas, dp_head)
> Input:
> 1. a ticket assignment

Running time analysis: P> deltas: an array of indices that generate
> DP.apply always called on T with Lit15 Ej42, o) Lt |deltas| N
Size(_{) < 2k+1. takes time O(Zk) » dp_head: DP data structure where (W,-, (tj)i)
are applied exactly for i ¢ deltas

> m = |deltas|:
PROCESSBATCHRECURSIVE(:,
deltas, -) calls DP.apply < m
times (at current stack level)
» T(m) — total # calls to DP.apply
> T(1)=1
> T(m)<2T(m/2)+m
> solving: T(2) = O(k - 2¥);
total time O (k - 22k)

» Output:
> the smallest valid ticket assignment #;; where
Jj<j <j+|deltas|, or L if no such solution
exists
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