$$
\begin{gathered}
\text { Space-stretch tradeoff } \\
\text { in routing } \\
\text { revisited }
\end{gathered}
$$

Tolik Zinovyev (Boston University)

Routing in computer networks, model

- Undirected graph (network)

Routing in computer networks, model

- Undirected graph (network)
- Nodes have labels (a binary string)

Routing in computer networks, model

- Undirected graph (network)
- Nodes have labels (a binary string)
- Nodes have ports

Routing in computer networks, model

- Undirected graph (network)
- Nodes have labels (a binary string)
- Nodes have ports
- Nodes have routing programs

Routing characteristics

Space usage: program size

Routing stretch: route length / distance

Model, continued

- Adversarial / non-adversarial labels
- Adversarial: labels given; aka nameindependent model
- Non-adversarial: designer labels; aka labeled model

Model, continued

- Adversarial / non-adversarial labels
- Adversarial: labels given; aka nameindependent model
- Non-adversarial: designer labels; aka labeled model
- Adversarial / non-adversarial ports
- Adversarial: ports given
- Non-adversarial: designer ports

Lower bounds with non-adversarial ports

Work	Stretch	Local memory (bits)	Notes
Gavoille and Perennes (1996)	$<5 / 3$	$\Omega(n \log n)$ on $\Omega(n)$ nodes	Node labels are [n]
Buhrman, Hoepman, Vitányi (1996)	1	$\Omega(n)$ on $\Omega(n)$ nodes	
Gavoille and Gengler (2001)	<3	$\Omega(n)$ on some node	complex proof

Lower bounds with non-adversarial ports

Work	Stretch	Local memory (bits)	Notes
Gavoille and Perennes (1996)	$<5 / 3$	$\Omega(\mathrm{n} \log \mathrm{n})$ on $\Omega(\mathrm{n})$ nodes	Node labels are [n]
Buhrman, Hoepman, Vitányi (1996)	1	$\Omega(\mathrm{n})$ on $\Omega(\mathrm{n})$ nodes	
Gavoille and Gengler (2001)	<3	$\Omega(\mathrm{n})$ on some node	complex proof
This paper	<3	$\Omega(\mathrm{n})$ on cn nodes, $\forall 0<\mathrm{c}<1$	

Lower bounds with adversarial ports

Work	Stretch	Local memory (bits)	Notes
Peleg and Upfal (1989)	3	$\Omega\left(n^{1 / 5}\right)$ on some node	
	5	$\Omega\left(n^{1 / 7}\right)$ on some node	
	$\mathrm{s} \geq 1$	$\Omega\left(\mathrm{n}^{1 /(s+2)}\right)$ on some node	
Thorup and Zwick (2001)	3	$\Omega\left(\mathrm{n}^{1 / 2}\right)$ on some node	Does not work in standard model;
	5	$\Omega\left(\mathrm{n}^{1 / 3}\right)$ on some node	relies on girth conjecture
	$<2 \mathrm{k}+1$	$\Omega\left(\mathrm{n}^{1 / k}\right)$ on some node	

Lower bounds with adversarial ports

Work	Stretch	Local memory (bits)	Notes
Peleg and Upfal (1989)	3	$\Omega\left(n^{1 / 5}\right)$ on some node	
	5	$\Omega\left(n^{1 / 7}\right)$ on some node	
	$\mathrm{s} \geq 1$	$\Omega\left(\mathrm{n}^{1 /(s+2)}\right)$ on some node	
Thorup and Zwick (2001)	3	$\Omega\left(\mathrm{n}^{1 / 2}\right)$ on some node	Does not work in standard model;
	5	$\Omega\left(\mathrm{n}^{1 / 3}\right)$ on some node	relies on girth conjecture
	$<2 \mathrm{k}+1$	$\Omega\left(\mathrm{n}^{1 / k}\right)$ on some node	

Lower bounds with adversarial ports

Work	Stretch	Local memory (bits)	Notes
Peleg and Upfal (1989)	3	$\Omega\left(\mathrm{n}^{1 / 5}\right)$ on some node	
	5	$\Omega\left(\mathrm{n}^{1 / 7)}\right.$ on some node	
	$\mathrm{s} \geq 1$	$\Omega\left(\mathrm{n}^{1 /(s+2)}\right)$ on some node	
Thorup and Zwick (2001)	3	$\Omega\left(\mathrm{n}^{1 / 2}\right)$ on some node	Does not work in standard model;
	5	$\Omega\left(\mathrm{n}^{1 / 3}\right)$ on some node	relies on girth conjecture
	$<2 \mathrm{k}+1$	$\Omega\left(\mathrm{n}^{1 / k}\right)$ on some node	
This paper	$<2 \mathrm{k}+1$	$\Omega\left(\mathrm{n}^{1 / k}\right.$ log n) on some node	relies on girth conjecture

Previous proof does not work

- Mikkel Thorup's and Uri Zwick's proof relies on a reduction from approximate distance oracles

- Distance oracles with stretch $<2 \mathrm{k}+1$ require $\Omega\left(\mathrm{n}^{1+1 / k}\right)$ bits of storage [1]

Previous proof does not work

- Reduction in [2]:
- Given a routing scheme with small size, construct small distance oracle
- Distance oracle simulates routing and counts hops

What is next node?

[2]: Mikkel Thorup and Uri Zwick. Compact routing schemes. 2001

New proof

- Works in the standard model
- Borrows inspiration from Thorup's and Zwick's proof by using graphs with large girth
- Property: routing to a neighbor with stretch $<2 \mathrm{k}+1$ in graph with girth $2 k+2$ traverses edge toward neighbor

New proof

- Routing scheme must know port toward neighbor!
- Make extractor program
- input: routing scheme, node labels, advice string
- output: port assignment for the whole graph

Extractor program

- Start with unknown port assignment

Extractor program

- Start with unknown port assignment
- Repeat:
- Take vertex x with incomplete port assignment

Extractor program

- Start with unknown port assignment
- Repeat:
- Take vertex x with incomplete port assignment
- Take neighbor y with unknown outgoing port

Extractor program

- Start with unknown port assignment
- Repeat:
- Take vertex x with incomplete port assignment
- Take neighbor y with unknown outgoing port
- Simulate routing from x to y

Extractor program

- Start with unknown port assignment
- Repeat:
- Take vertex x with incomplete port assignment
- Take neighbor y with unknown outgoing port
- Simulate routing from x to y

Extractor program

- Start with unknown port assignment
- Repeat:
- Take vertex x with incomplete port assignment
- Take neighbor y with unknown outgoing port
- Simulate routing from x to y

Extractor program

- Start with unknown port assignment
- Repeat:
- Take vertex x with incomplete port assignment
- Take neighbor y with unknown outgoing port
- Simulate routing from x to y

Extractor program

- Start with unknown port assignment
- Repeat:
- Take vertex x with incomplete port assignment
- Take neighbor y with unknown outgoing port
- Simulate routing from x to y

Extractor program

- Start with unknown port assignment
- Repeat:
- Take vertex x with incomplete port assignment
- Take neighbor y with unknown outgoing port
- Simulate routing from \mathbf{x} to \mathbf{y}

Extractor program

- Start with unknown port assignment
- Repeat:
- Take vertex x with incomplete port assignment
- Take neighbor y with unknown outgoing port
- Simulate routing from x to y

Extractor program

- Start with unknown port assignment
- Repeat:
- Take vertex x with incomplete port assignment
- Take neighbor y with unknown outgoing port
- Simulate routing from x to y

Extractor program

- Start with unknown port assignment
- Repeat:
- Take vertex x with incomplete port assignment
- Take neighbor y with unknown outgoing port
- Simulate routing from x to y

Extractor program

- Start with unknown port assignment
- Repeat:
- Take vertex x with incomplete port assignment
- Take neighbor y with unknown outgoing port
- Simulate routing from x to y

Extractor program

- Start with unknown port assignment
- Repeat:
- Take vertex x with incomplete port assignment
- Take neighbor y with unknown outgoing port
- Simulate routing from x to y
- As last step, learn port at x toward y

Extractor program

- Start with unknown port assignment
- Repeat:
- Take vertex x with incomplete port assignment
- Take neighbor y with unknown outgoing port
- Simulate routing from x to y
- As last step, learn port at x toward y
- 1 in 4 k ports learned from routing scheme

Results

- Thm: if graph with n vertices, m edges, girth $2 \mathrm{k}+2$ exists, then routing with stretch $<2 k+1$ requires $\Omega(\mathrm{m} / \mathrm{n} \log (\mathrm{m} / \mathrm{n})$) bits at some node

Results

- Thm: if graph with n vertices, m edges, girth $2 k+2$ exists, then routing with stretch $<2 \mathrm{k}+1$ requires $\Omega(\mathrm{m} / \mathrm{n} \log (\mathrm{m} / \mathrm{n})$) bits at some node
- Cor: assuming girth conjecture by Paul Erdős, routing with stretch $<2 \mathrm{k}+1$ requires $\Omega\left(\mathrm{n}^{1 / \mathrm{k}} \log \mathrm{n}\right)$ bits at some node

Results

- Thm: if graph with n vertices, m edges, girth $2 k+2$ exists, then routing with stretch $<2 k+1$ requires $\Omega(\mathrm{m} / \mathrm{n} \log (\mathrm{m} / \mathrm{n})$) bits at some node
- Cor: assuming girth conjecture by Paul Erdős, routing with stretch $<2 \mathrm{k}+1$ requires $\Omega\left(\mathrm{n}^{1 / k} \log \mathrm{n}\right)$ bits at some node
- Girth conjecture by Paul Erdős: there exists a graph with
- n nodes
- $\Omega\left(n^{1+1 / k}\right)$ edges
- girth $2 \mathrm{k}+2$
- Proven for k=1,2,3,5; weaker results for other k

Girth conjecture requirement

- All known approaches: prove that many routing schemes are necessary (including last proof)
- If $2^{\Omega(n \wedge(1+1 / k) \log n)}$ routing schemes are needed to satisfy all n vertex graphs with stretch $<2 k+1$, then there exists a graph with $\Omega\left(\mathrm{n}^{1+1 / k}\right)$ edges and girth $2 \mathrm{k}+2$

Open problems

1. Can we overcome girth conjecture in labeled model?

- (in name-independent model we can [1])

2. Unconditional (non-adversarial ports) lower bound for stretch ≥ 3 ?

Extra slides

Routing in computer networks, example

Routing in computer networks, example

Routing in computer networks, example

