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Routing in computer networks, model
● Undirected graph (network)
● Nodes have labels (a binary string)
● Nodes have ports
● Nodes have routing programs

Routing program

packet header, 
incoming port

new packet header, 
outgoing port
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Routing characteristics
Space usage: program size

Routing stretch: route length / distance

u v
shortest path

route
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Model, continued
● Adversarial / non-adversarial labels

● Adversarial: labels given; aka name-
independent model

● Non-adversarial: designer labels; aka 
labeled model
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Lower bounds with non-adversarial ports
Work Stretch Local memory (bits) Notes

Gavoille and Perennes (1996) < 5/3 Ω(n log n) on Ω(n) nodes Node labels are [n]

Buhrman, Hoepman, Vitányi (1996) 1 Ω(n) on Ω(n) nodes

Gavoille and Gengler (2001) < 3 Ω(n) on some node complex proof
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Work Stretch Local memory (bits) Notes

Gavoille and Perennes (1996) < 5/3 Ω(n log n) on Ω(n) nodes Node labels are [n]

Buhrman, Hoepman, Vitányi (1996) 1 Ω(n) on Ω(n) nodes

Gavoille and Gengler (2001) < 3 Ω(n) on some node complex proof

This paper < 3 Ω(n) on cn nodes, 0<c<1∀
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Lower bounds with adversarial ports

Work Stretch Local memory (bits) Notes
Peleg and Upfal (1989) 3

5
s ≥ 1

Ω(n1/5) on some node
Ω(n1/7) on some node
Ω(n1/(s+2)) on some node

Thorup and Zwick (2001) 3
5
< 2k+1

Ω(n1/2) on some node
Ω(n1/3) on some node
Ω(n1/k) on some node

Does not work in standard model; 
relies on girth conjecture
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Lower bounds with adversarial ports

Work Stretch Local memory (bits) Notes
Peleg and Upfal (1989) 3

5
s ≥ 1

Ω(n1/5) on some node
Ω(n1/7) on some node
Ω(n1/(s+2)) on some node

Thorup and Zwick (2001) 3
5
< 2k+1

Ω(n1/2) on some node
Ω(n1/3) on some node
Ω(n1/k) on some node

Does not work in standard model; 
relies on girth conjecture

This paper < 2k+1 Ω(n1/k log n) on some node relies on girth conjecture
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Previous proof does not work
● Mikkel Thorup’s and Uri Zwick’s proof relies on a reduction 

from approximate distance oracles

[1]: Mikkel Thorup and Uri Zwick. Approximate distance oracles. 2001

compact data
structure

● Distance oracles with stretch <2k+1 require Ω(n1+1/k) bits of 
storage [1]
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Previous proof does not work
● Reduction in [2]:

● Given a routing scheme with small size, construct small 
distance oracle

● Distance oracle simulates routing and counts hops

u’s
routing

program

header, port

?

[2]: Mikkel Thorup and Uri Zwick. Compact routing schemes. 2001

header, ?

What is next node?
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New proof
● Works in the standard model
● Borrows inspiration from Thorup’s and Zwick’s proof by 

using graphs with large girth
● Property: routing to a neighbor with stretch <2k+1 in 

graph with girth 2k+2 traverses edge toward neighbor

u
v

<2k+1 path ?
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New proof
● Routing scheme must know port toward neighbor!
● Make extractor program

● input: routing scheme, node labels, advice string
● output: port assignment for the whole graph

u
v

<2k+1 path ?

port
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Extractor program
● Start with unknown port assignment adv. 01001110...
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assignment

x

adv. 01001110...



20 

Extractor program
● Start with unknown port assignment
● Repeat:

● Take vertex x with incomplete port 
assignment

● Take neighbor y with unknown 
outgoing port

x

y

?

adv. 01001110...



21 

Extractor program
● Start with unknown port assignment
● Repeat:

● Take vertex x with incomplete port 
assignment

● Take neighbor y with unknown 
outgoing port

● Simulate routing from x to y x

y

?

adv. 01001110...



22 

Extractor program
● Start with unknown port assignment
● Repeat:

● Take vertex x with incomplete port 
assignment

● Take neighbor y with unknown 
outgoing port

● Simulate routing from x to y x

y

?

3

adv. 01001110...



23 

Extractor program
● Start with unknown port assignment
● Repeat:

● Take vertex x with incomplete port 
assignment

● Take neighbor y with unknown 
outgoing port

● Simulate routing from x to y x

y

z

?

3

adv. 01001110...



24 

Extractor program
● Start with unknown port assignment
● Repeat:

● Take vertex x with incomplete port 
assignment

● Take neighbor y with unknown 
outgoing port

● Simulate routing from x to y x

y

z

?

3

1

adv. 01001110...



25 

Extractor program
● Start with unknown port assignment
● Repeat:

● Take vertex x with incomplete port 
assignment

● Take neighbor y with unknown 
outgoing port

● Simulate routing from x to y x

y

z

?

3

1

adv. 01001110...



26 

Extractor program
● Start with unknown port assignment
● Repeat:

● Take vertex x with incomplete port 
assignment

● Take neighbor y with unknown 
outgoing port

● Simulate routing from x to y x

y

z

?

3

1

3

2adv. 01001110...



27 

Extractor program
● Start with unknown port assignment
● Repeat:

● Take vertex x with incomplete port 
assignment

● Take neighbor y with unknown 
outgoing port

● Simulate routing from x to y x

y

z

?

3

1

3

2adv. 01001110...



28 

Extractor program
● Start with unknown port assignment
● Repeat:

● Take vertex x with incomplete port 
assignment

● Take neighbor y with unknown 
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● Simulate routing from x to y x

y

?

z3

1

3

2

4

1

adv. 01001110...



29 

Extractor program
● Start with unknown port assignment
● Repeat:
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Extractor program
● Start with unknown port assignment
● Repeat:

● Take vertex x with incomplete port 
assignment

● Take neighbor y with unknown 
outgoing port

● Simulate routing from x to y
● As last step, learn port at x toward y

x

y

z

1

3

adv. 01001110...

1

3
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4
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Extractor program
● Start with unknown port assignment
● Repeat:

● Take vertex x with incomplete port 
assignment

● Take neighbor y with unknown 
outgoing port

● Simulate routing from x to y
● As last step, learn port at x toward y

● 1 in 4k ports learned from routing 
scheme

x

y

z

1

3

adv. 01001110...

1

3

2

4

1
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Results
● Thm: if graph with n vertices, m edges, girth 2k+2 exists, 

then routing with stretch <2k+1 requires Ω(m/n log(m/n)) 
bits at some node
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Results
● Thm: if graph with n vertices, m edges, girth 2k+2 exists, 

then routing with stretch <2k+1 requires Ω(m/n log(m/n)) 
bits at some node

● Cor: assuming girth conjecture by Paul Erdős, routing with 
stretch <2k+1 requires Ω(n1/k log n) bits at some node

● Girth conjecture by Paul Erdős: there exists a graph with
● n nodes
● Ω(n1+1/k) edges
● girth 2k+2

● Proven for k=1,2,3,5; weaker results for other k
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Girth conjecture requirement
● All known approaches: prove that many routing schemes 

are necessary
● If 2Ω(n^(1+1/k) log n) routing schemes are needed to satisfy all n-

vertex graphs with stretch <2k+1, then there exists a 
graph with Ω(n1+1/k) edges and girth 2k+2

● All known approaches: prove that many routing schemes 
are necessary (including last proof)

● If 2Ω(n^(1+1/k) log n) routing schemes are needed to satisfy all n-
vertex graphs with stretch <2k+1, then there exists a 
graph with Ω(n1+1/k) edges and girth 2k+2
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all n-vertex graphs their spanners routing schemes
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subgraphs that approximately 
preserve distances
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all n-vertex graphs their spanners routing schemes

subgraphs that approximately 
preserve distances

spanners with large girth known

too small
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Open problems

1. Can we overcome girth conjecture in labeled model?
• (in name-independent model we can [1])

2. Unconditional (non-adversarial ports) lower bound for stretch  3≥ ?

[1]: Ittai Abraham, Cyril Gavoille, and Dahlia Malkhi. On space-stretch trade-offs: Lower bounds. 2006
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Extra slides
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h0, 1

Routing in computer networks, example
1110, 0

1
2
3
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1
2
3
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h0, 3 h1, 2
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Routing in computer networks, example
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h0, 3 h1, 2
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Routing in computer networks, example
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