
Rigorous Bounds on Cryptanalytic Time/Memory Tradeoffs

Elad Barkan1 Eli Biham1 Adi Shamir2

1 Computer Science Department
Technion – Israel Institute of Technology

Haifa 32000, Israel
2 Department of Computer Science and Applied Mathematics

The Weizmann Institute
Rehovot 76100, Israel

Abstract. In this paper we formalize a general model of cryptanalytic time/memory tradeoffs
for the inversion of a random function f : {0, 1, . . . , N − 1} 7→ {0, 1, . . . , N − 1}. The model
contains all the known tradeoff techniques as special cases. It is based on the new notion of
stateful random graphs, whose evolution depends on a hidden state such as the color in the
Rainbow scheme or the table number in the classical Hellman scheme. We prove an upper
bound on the number of images y = f(x) for which f can be inverted using a tradeoff scheme,
and derive from it a lower bound on the number of hidden states. These bounds hold with
an overwhelming probability over the random choice of the function f , and their proofs are
based on a rigorous combinatorial analysis. With some additional natural assumptions on the
behavior of the online phase of the algorithm, we prove a lower bound on its worst-case time

complexity T = Ω(N2

M2 ln N
), where M is the memory complexity. We describe several new

variants of existing schemes, including a method that can improve the time complexity of the
online phase (by a small factor) by performing deeper analysis during the preprocessing phase.
Keywords: Time/memory tradeoff, time/memory/data tradeoff, rigorous, lower bound, hid-
den state, stateful random graph, Hellman, Rainbow.

1 Introduction

In this paper we are interested in generic (“black-box”) schemes for the inversion of one-way func-
tions such as f(x) = Ex(0), where E is any encryption algorithm, x is the key, and 0 is the fixed
plaintext zero. For the sake of simplicity, we assume that both x and f(x) are chosen from the set
{0, 1, . . . , N − 1} of N possible values.

The simplest example of a generic scheme is exhaustive search, in which a pre-image of f(x) is
found by trying all the possible pre-images x′, and checking whether f(x′) = f(x). The worst-case
time complexity T of exhaustive search is N , and the space complexity M is negligible. Another
extreme scheme is holding a huge table with all the images, and for each image storing one of its
pre-images. This method requires a preprocessing phase whose time and space complexities T and
M are about N , followed by an online inversion phase whose running time T is negligible and
space complexity M is about N . Cryptanalytic time/memory tradeoffs deal with finding a com-
promise between these extreme schemes, in the form of a tradeoff between the time and memory
complexities of the online phase (assuming that the preprocessing phase comes for free). Cryptana-
lytic time/memory/data tradeoffs are a variant which accepts D inversion problems and has to be
successful in at least one of them. This scenario typically arises in stream ciphers, when it suffices
to invert the function that maps an internal state to the output at one point to break the cipher.
However, the scenario also arises in block ciphers when the attacker needs to recover one key out
of D different encryptions with different keys of the same message [3, 4]. Note that for D = 1 the
problem degenerates to a the time/memory tradeoff discussed above.

1.1 Previous Work

The first and most famous cryptanalytic time/memory tradeoff was suggested by Hellman in 1980 [9].
His tradeoff requires a preprocessing phase with a time complexity of about N and allows a tradeoff
curve of M

√
T = N . An interesting point on this curve is M = T = N2/3. Since only values of

T ≤ N are interesting, this curve is restricted to M ≥
√

N . Hellman’s scheme consists of several
tables, where each table covers only a small fraction of the possible values of f(x) using chains of
repeated applications of f . Hellman rigorously calculated a lower bound on the expected coverage

of images by a single table in his scheme. However, Hellman’s analysis of the coverage of images
by the full scheme was highly heuristic, and in particular it made the unjustifiable assumption that
many simple variants of f are independent of each other. Under this analysis, the success rate of
Hellman’s tradeoff for a random f is about 55%, which was verified using computer simulations.
Shamir and Spencer proved in a rigorous way (in an unpublished manuscript from 1981) that with
overwhelming probability over the choice of the random function f , even the best Hellman table
(with unbounded chains created from the best collection of start points, which are chosen using an
unlimited preprocessing phase) has essentially the same coverage of images as a random Hellman
table (up to a multiplicative logarithmic factor). However, they could not rigorously deal with the
full (multi-table) Hellman scheme.

In 1982, Rivest noted that in practice, the time complexity is dominated by the number of disk
access operations (random access to disk can be many orders of magnitude slower than the evaluation
of f). He suggested to use distinguished points to reduce the number of disk accesses to about

√
T .

The idea of distinguished points was described in detail and analyzed in 1998 by Borst, Preneel, and
Vandewalle [6], and later by Standaert, Rouvroy, Quisquater, and Legat in 2002 [13].

In 1996, Kusuda and Matsumoto [11] described how to find an optimal choice of the tradeoff
parameters in order to find the optimal cost of an inversion machine. Kim and Matsumoto [10] showed
in 1999 how to increase the precomputation time to allow a higher success probability. In 2000,
Biryukov and Shamir [5] generalized time/memory tradeoffs to time/memory/data tradeoffs, and
discussed specific applications of these tradeoffs to stream ciphers.

A new time/memory tradeoff scheme was suggested by Oechslin [12] in 2003. It saves a factor 2
in the worst-case time complexity compared to Hellman’s original scheme. Another interesting work
on time/memory tradeoffs was performed by Fiat and Naor [7, 8] in 1991. They introduce a rigorous
time/memory tradeoff for inverting any function. Their tradeoff curve is less favorable compared to
Hellman’s tradeoff, but it can be used to invert any function rather than a random function.

A question which naturally arises is what is the best tradeoff curve possible for cryptanalytic
time/memory tradeoffs? Yao [14] showed that T = Ω(N log N

M) is a lower bound on the time com-
plexity, regardless of the structure of the algorithm. This bound is tight up to a logarithmic factor,
in case f is a single-cycle permutation, for which a tradeoff of TM = N is possible [9], but the
question remains open for functions which are not single-cycle permutations. Can there be a better
cryptanalytic time/memory tradeoff than what is known today?

1.2 The Contribution of This Paper
In this paper we formalize a general model of cryptanalytic time/memory tradeoffs, which includes
all the known schemes (and many new schemes). In this model, the preprocessing phase is used to
create a matrix whose rows are long chains (where each link of a chain includes one oracle access to
f), but only the start points and end points of the chains are stored in a table, which is passed to
the online phase (the chains in the matrix need not be of the same length).

The main new concept in our model is that of a hidden state, which can affect the evolution of a
chain. Typical examples of hidden states are the table number in Hellman’s scheme, and the color in
a Rainbow scheme. The hidden state is an important ingredient of time/memory tradeoffs. Without
the hidden state, the chains are paths in a single random graph, and the number of images that
these chains can cover is extremely small (as shown heuristically in [9] and rigorously by Shamir
and Spencer). We observe that in existing schemes, almost all of the online running time is spent
on discovering the value of the hidden state (and hence the name hidden state). Once the correct
hidden state is found, the online phase needs to spend only about a square root of the running time
to complete the inversion.

The main effect of the hidden state is that it increases the number of states during the evolution
of the chains in the preprocessing phase from N to NS, where S is the number of values that the
hidden state can assume. The chains can be viewed as paths in a new directed graph, which we call
the stateful random graph. Two nodes in the stateful random graph are connected by an edge:

yi si → yi+1 si+1 ,

if (yi+1, si+1) is the (unique) successor of (yi, si) defined by a deterministic transition function, where
yi and yi+1 are the output of the f function, and si, si+1 are the respective values of the hidden

2

state during the creation of yi and yi+1. The evolution of the y values along a path in the stateful
random graph is “somewhat random” since it is controlled by the random function f . However, the
evolution of the hidden state (si and si+1) can be totally controlled by the designer of the scheme.

The larger number of states is what allows chains to cover a larger number of images y. We
rigorously prove that with an overwhelming probability over the choice of f , the number of images
that can be covered by any collection of M chains is bounded from above by 2

√
SNM ln (SN), where

M = Nα for any 0 < α < 1. Intuitively it might seem that making S larger at the expense of N should
cause the coverage to be larger (as S can behave more like a permutation). Surprisingly, S and N play
the same role in the bound. The product SN remains unchanged if we enlarge S at the expense of N
or vice versa. Note that

√
SNM is about the coverage that is expected with the Hellman or Rainbow

schemes, and thus even for the best choice of start points and path lengths (found with unlimited
preprocessing time), there is only a small factor of at most 2

√
lnSN that can be gained in the

coverage. We use the above upper bound to derive a lower bound on the number S of hidden states.
Under some additional natural assumptions on the behavior of the online phase, we give a lower

bound on the worst-case time complexity:

T ≥ 1
1024 ln N

N2

M2
,

where the success probability is at least 1/2 (the constant 1024 can be greatly improved by using
a tighter analysis). Therefore, either there are no fundamentally better schemes, or their structure
will have to violate our assumptions. Finally we show a similar lower bound on time/memory/data
tradeoffs of the form:

T ≥ 1
1024 ln N

N2

D2M2
.

1.3 Structure of the Paper

The model is formally defined in Section 2, and in Section 3 we prove the rigorous upper bound on
the best achievable coverage of M chains in a stateful random graph. Section 4 uses the upper bound
to derive a lower bound on the number of hidden states. The lower bound on the time complexity
(under additional assumptions) is given in Section 5. Additional observations and notes appear in
Section 6, and the paper is summarized in Section 7.

To make the paper self contained without exceeding the page limit, we include a description
of the main details of the time/memory tradeoffs of [9, 12] in Appendix A. A new time/memory
tradeoff is described in Appendix B. In Appendix C, we describe a time/memory tradeoff scheme
that violates our assumptions on the behavior of the online phase, and in Appendix D we compare
the time complexity of the Hellman and Rainbow scheme. Finally, Appendix E contains the analysis
of some new time/memory/data tradeoffs.

2 The Stateful Random Graph Model

The class of time/memory tradeoffs that we consider in this paper can be seen as the following
game: An adversary commits to a generic scheme with oracle accesses to a function f , which is
supposed to invert f on a given image y. Then, the actual choice of f is revealed to the adversary,
who is allowed to perform an unbounded precomputation phase to construct the best collection of
M chains. Then, during the online phase, a value y is given to the adversary, who should find x such
that f(x) = y using the scheme it committed to. The chains are not necessarily of the same length,
and the collection of the M chains is called the matrix. We are interested in the time/memory
complexities of schemes for which the algorithm succeeds with probability of at least 1/2 for an
overwhelming majority of random functions f .

In the model that we consider, we are generous to the adversary by not counting the size of the
memory that is needed to represent the scheme that it has committed to. Having been generous,
we cannot allow the adversary to choose the scheme after f is revealed, as the adversary can use

3

si

y2 f
xi

h

U

yiyi−1f
x1

h

U

y0 y1

s0 s1

f
x2

h

U
s2

· · ·

si−1

· · ·

Fig. 1. A Typical Chain — A Path in the Stateful Random Graph

D. A Rainbow stateful random graph

...
(1, 1)

(N − 1, 1)

B. N paths are needed to cover all f(x)’s

(f(0), 1) (f(1), 2)

...

...

...
(N − 1, 0)

(1, 0)
(0, 0)

(f(N − 1), 0)

A. One path covers all f(x)’s

(N − 1, 1)

(2, 1)

(1, 1)

...

s = 1
s = 0 s = 2

· · ·

(f(0), 0)

(0, 1)
· · ·

s = S − 2
s = S − 1

(f(1), 0)

(f(2), 0)

(f(N − 1), 0)

· · ·

Each
component
contains nodes
with the same
hidden state.

C. Hellman’s stateful random graph

(0, 1)

Fig. 2. Four Examples of Stateful Random Graphs

his knowledge to avoid collisions during the chain creation processes, and thus cover almost all the
images using a single Hellman table.1

We do not impose any restrictions on the behavior of the preprocessing algorithm, but we require
that it performs all oracle accesses to f through a sub-algorithm. When the preprocessing algorithm
performs a series of oracle accesses to f , in which each oracle access can depend on the result of
previous oracle accesses in the series, it is required to use the sub-algorithm. We call such a series
of oracle accesses a chain. The hidden state is the internal state of the sub-algorithm.

A typical chain of the sub-algorithm is depicted in Figure 1, where by U we denote the function
that updates the internal state of the sub-algorithm and prepares the next input for f , and by h we
denote the entire complex of U together with the oracle access to f . We denote by si the hidden
state which accompanies the output yi of f in the sub-algorithm. The choice of U by the adversary
together with f defines the stateful random graph, and h can be seen as the function that takes us
from one node in the stateful random graph to the next node. U is assumed to be deterministic (if
a non-deterministic U is desired, then the randomness can be given as part of the first hidden state
s0), and thus each node in the stateful random graph has an out-degree of 1.

Choosing U such that si = si−1 +1 (mod N) and xi = si−1 creates a stateful random graph that
goes over all the possible images of f in a single-cycle (depicted in Figure 2.A), and thus represents
exhaustive search (note that the yi−1 is ignored by U and thus all its N values with the same hidden
state si−1 converge to the same node (f(si−1), si−1+1)). Such a cycle is very easy to cover even with
a single path, but at the heavy price of using N hidden states. At the other extreme, we can construct
a stateful random graph (see Figure 2.B) that requires a full lookup table to cover all images of f
by choosing U as: if si−1 = 1 then xi = yi−1 and si = 0, else xi = si = 0. In this function, each
(yi−1, 1) is mapped by h to (f(yi−1), 0), and all these values are mapped to the same node (f(0), 0).

As another example consider the mapping xi = yi−1 and si = g(si−1), where g is some function.
This mapping creates a stateful random graph which is the direct product of the random graph
induced by f , and the graph induced by g (this graph is not shown in the figure). We can implement
Hellman’s scheme by setting xi = yi−1 + si (mod N) and si = si−1, where si represents the table
number to which the chain belongs. This stateful random graph (see Figure 2.C) consists of S
disconnected components, where each component is defined by h and a single hidden state. Finally,

1 A variant of the model is the auxiliary-memory model, in which we allow the scheme to depend on an
additional collection of M ln N bits, which the adversary chooses during the preprocessing. Thus, we
allow the adversary some customization of his scheme to the specific function f (within the limits of M
memory rows). Analysis shows that the auxiliary-memory model is only marginally stronger (by small
constant factor) than this model. Therefore, without loss of generality, we can discuss the model without
auxiliary memory.

4

we can implement a Rainbow scheme by setting xi = yi−1+si−1 (mod N) and si = si−1+1 (mod S),
where S is the number of colors in the scheme. This stateful random graph (see Figure 2.D) looks
like a layered graph with S columns and random connections between adjacent columns (including
wrap-around links).

The preprocessing algorithm can perform any preprocessing on a start point of the chain before
executing the sub-algorithm on that point, and any postprocessing on the end point of the chain
(for example, before storing it in long-term memory). The preprocessing algorithm can stop the
sub-algorithm at any point, using any strategy that may or may not depend on the value of the
hidden states and the results of the oracle accesses, and it can use unbounded amount of additional
space during its execution. For example, in Hellman’s original method, the chain is stopped after t
applications of f . Therefore, the internal state of the preprocessing algorithm must contain a counter
that counts the length of the chain. However, the length of the chain does not affect the way the next
link is computed, and therefore this counter can be part of the internal state of the preprocessing
algorithm rather than the hidden state of the sub-algorithm. As a result, only the table number
has to be included in the hidden state of Hellman’s scheme. In the Rainbow scheme, however, the
current location in the chain determines the way the next link is computed, and thus the index of
the link in the chain must be part of the hidden state.

The preprocessing algorithm can store in a table only the start points and end points of up to M
chains, which are used by the online algorithm. Note that the requirement of passing information
from the preprocessing phase to the online phase only in the form of chains does not restrict our
model in any way, as the sub-algorithm that creates the chains can be designed to perform any
computation. Moreover, the preprocessing algorithm can encode any information as a collection of
start points, which the online algorithm can decode to receive the information. Also note that this
model of a single table can accommodate multiple tables (for example, Hellman’s multiple tables)
by including with each start point and end point the respective value of the hidden-state.

The input of the online algorithm is y that is to be inverted, and the table generated by the
preprocessing algorithm. We require that the online algorithm performs all oracle accesses to f (in-
cluding chain creation) through the same sub-algorithm used during the preprocessing. In the variant
of time/memory/data tradeoffs, the input of the online algorithm consists of D values y1, y2, . . . , yD

and the table, and it suffices that the algorithm succeeds in inverting one image. This concludes the
definition of our model.

In existing time/memory tradeoffs, the online algorithm assumes that the given y = f(x) is
covered by the chains in the table. Therefore, y appears with some hidden state si, which is unfor-
tunately unknown. The algorithm sequentially tries all the values that si can assume, and for each
one of them it initializes the sub-algorithm on (y, si). The sub-algorithm executed a certain number
of steps (for example, until an end point condition has been reached). Once an end point that is
stored in the table has been found, the start point is fetched, and the chain is reconstructed to reveal
the xi such that y = f(xi).2 Existing time/memory/data tradeoffs work in a similar way, and the
process is repeated for each one of the D given images.

2.1 Coverage Types and Collisions of Paths in the Stateful Random Graph

A Table with M rows induces a certain coverage of the stateful random graph. Each row in the
table contains a start point and an end point. For each such pair, the matrix associated with the
table contains the chain of points spanned between the start point and the end point in the stateful
random graph. The set of all the points (yi, si) on all these chains is called the gross coverage of the
stateful random graph that is induced by the table.

The gross coverage of the M paths is strongly affected by collisions of paths. Two paths in a
graph collide once they reach a common node in the graph, i.e., two links in two different chains have
the same yi value and the same hidden state si. From this point on, the evolution of the paths is
identical (but, the end points can be different). As a result, the joint coverage of the two paths might
be greatly reduced (compared to paths that do not collide). It is important to note that during the

2 Note that the fact that an end point is found does not guarantee a successful inversion of y. Such a case
is called a false alarm, and it can be caused, for example, when the chain that is recreated from y merges
with a chain (whose end point is stored in the table) that does not contain y.

5

M1 M2 · · · M(NS
M)

f1 0 0
f2 1 0
...

. . .

fNN

Fig. 3. A Table W denoting for each function fi whether the net coverage obtained from the set of start
points Mj is larger (1) or smaller (0) than 2A

evolution of the paths, it is possible that the same value yi repeats under different hidden states.
However, such a repetition does not cause a collision of the paths.

To analyze the behavior of the online algorithm, we are interested in the net coverage (denoted
by C), which is the number of different yi values that appear during the evolution of the M paths,
regardless of the hidden state they appear with, as this number represents the total number of images
that can be inverted. Clearly, the gross coverage of the M paths is larger than or equal to the net
coverage of the paths.

When we ask what is the maximum gross or net coverage that can be gained from a given start
point, we can ignore the end point and allow the path to be of unbounded length, since eventually
the path loops (as the graph is finite). Once the path loops, the coverage cannot grow further. An
equivalent way of achieving the maximum coverage of M paths is by choosing the end point of each
path to be the point (yi, si) along the path whose successor is the first point seen for the second
time along this path.

3 A Rigorous Upper Bound on the Maximum Possible Net Coverage of
M Chains in a Stateful Random Graph

In this section we formally prove the following upper bound on the net coverage:

Theorem 1. Let A =
√

SNM ln (SN), where M = Nα, for any 0 < α < 1. For any U with S
hidden states, with overwhelming probability over the choice of f : {0, 1, . . . , N −1} 7→ {0, 1, . . . , N −
1}, the maximum net coverage C of images (y = f(x)) values) on any collection of M paths of any
length in the stateful random graph of U is bounded from above by 2A.

This theorem shows that even though stateful random graphs can have many possible shapes,
the images of f they contain can only be significantly covered by using many paths or many hidden
states (or both), as defined by the implied tradeoff formula above. Without loss of generality, we
can assume that S < N , since otherwise the claimed bound is larger than N , and clearly, the net
coverage can never exceed N .

3.1 Reducing the Best Choice of Start Points to the Average Case

In the first phase of the proof, we reduce the problem of bounding the best coverage (gained by the
best collection of M start points) to the problem of bounding the coverage defined by a random set
of start points and a random f . We do it by constructing a huge table W (as shown in Figure 3)
which contains a row for each possible function f , and a column for each possible set of M start
points. In entry Wi,j of the table we write 1 if the net coverage obtained by the set Mj of start
points for the embedded function fi (extended into paths of unbounded length) is larger than our
bound (2A), and we write 0 otherwise. Therefore, a row with all zeros means that there is no set of
start points for this embedded function that can achieve a net coverage larger than 2A.

To prove the theorem, it suffices to show that the number of 1’s in the table, which we denote by
#1, is much smaller than the number of rows, which we denote by #r (i.e., #1 � #r). From counting
considerations, it follows that the vast majority of rows contain only zeros, and the correctness of
the theorem follows.

We can express the number of 1’s in the table by the number of entries multiplied by the
probability that a random entry in the table contains 1, and require that the product is much

6

1. For i ∈ {1, . . . , S} Bucketi = LowerFreshBucketi = UpperFreshBucketi = φ.
2. NetCoverage = SeenX = φ.
3. Apply h to the first start point to generate the first event

xi−→(yi, si).
4. if yi appears in Bucketsi Jump to Step 7 (Collision is detected). Otherwise:
5. Add yi to Bucketsi .
6. If xi does not appear in SeenX (i.e., xi is fresh):

(a) If yi does not appear in NetCoverage, add it to NetCoverage.
(b) If |LowerFreshBucketsi | < A/S, add yi to LowerFreshBucketsi ,

otherwise, add yi to UpperFreshBucketsi .
7. Move to the next event:

– Add xi to SeenX (i.e., mark that xi is no longer fresh)
– If a collision was detected in Step 4, apply h to the next start point

(stop if there are no unprocessed start points). Otherwise:
generate the next event by applying h to (yi, si).

8. Jump to Step 4.

Legend:

– SeenX is used to determine freshness by storing all the values of x that have been seen by now.
This is the only set that stores input values of f . All the other sets store output values of f .

– Bucketi stores the all the y’s that have been seen along with hidden state i (used for collision detection).
– NetCoverage stores all the y’s that have been seen from all chains considered so far, but without

repetitions caused by different hidden states.
– For fresh values of x, LowerFreshBucketi stores the first A/S values of y = f(x) seen with hidden

state i (note that the x is fresh, but the y could have already appeared in other Buckets).
– For fresh values of x, UpperFreshBucketi stores the values of y after the first A/S values were seen

with hidden state i (again, such a y could have already appeared in other Buckets).

Fig. 4. A Particular Algorithm that Counts the Net Coverage of M Start Points

smaller than #r, i.e., #1 = Prob(Wi,j = 1) · #c · #r � #r, where #c is the number of columns
in the table. Therefore, it suffices to show that for a random embedded function and random set of
start points, Prob(Wi,j = 1) ·#c is very close to zero. We have thus reduced the problem of proving
that the coverage in the best case is smaller than 2A, to bounding the number of columns multiplied
by the probability that the average case is larger than 2A. This is proven in the next few subsections.

3.2 Bounding Prob(Wi,j = 1)

We bound Prob(Wi,j = 1) by constructing an algorithm that counts the net coverage of a given
function f and a given set of M start points, and analyzing the probability that the coverage is
larger than 2A. During this analysis, we would like to consider each output of f as a new and
independent coin flip, as Prob(Wi,j = 1) is taken over a uniform choice of the function f . However,
this assumption is justified only when xi does not appear as an input to f on any previously
considered point. In this case we say that xi is fresh, and this freshness is a sufficient condition for
f ’s output to be random and independent of any previous event.

Denote by xi−→(yi, si) the event of reaching the point (yi, si), where xi is the input of f during the
application of h, i.e., yi = f(xi). When we view the points (yi = f(xi), si) as nodes in the stateful
random graph, the value xi is a property of the edge that enters (yi, si), rather than a property of
the node itself, since the same (yi, si) might be reached from several preimages. The freshness of xi

(at a certain point in time) depends on the order in which we evolve the paths (the xi is fresh the
first time it is seen, and later occurrences of xi are not fresh), but it should be clear that the net
coverage of a set of paths is independent of the order in which the paths are considered.

The algorithm is described in Figure 4. It refers to the ratio A/S, which for the sake of simplicity
we treat in the rest of the analysis as an integer. Note that A/S ≥ 2

√
M ln(NS) (as S < N), and

A/S � 1 (as N grows to infinity) since M = Nα. Thus, the rounding of A/S to the nearest integer
causes only a negligible effect.

7

Lemma 1. At the end of the algorithm |NetCoverage| is the size of the net coverage.

Proof We observe that the algorithm processes all the points (yi, si) that are in the coverage of the
chains originating from the M start points, since it only stops a path when it encounters a collision.

A necessary condition for a yi = f(xi) to be counted in the net coverage is that yi appears in an
event xi−→(yi, si) that is not a collision and in which xi is fresh. If this condition holds, the algorithm
reaches Step 6a, and adds yi to NetCoverage.

At the end of the algorithm NetCoverage = ∪S
i=1(LowerFreshBucketi ∪UpperFreshBucketi),

and thus

|NetCoverage| ≤
S∑

i=1

(|LowerFreshBucketi|+ |UpperFreshBucketi|),

since each time a yi value is added to NetCoverage (in Step 6a) it is also added to either LowerFreshBucket
or UpperFreshBucket in Step 6b. We use this inequality to upper bound |NetCoverage|.

Bounding
∑S

i=1 |LowerFreshBucketi| is easy, as the condition in Step 6b assures that for each i,
|LowerFreshBucketi| ≤ A/S, and thus their sum is at most A. Bounding

∑S
i=1 |UpperFreshBucketi|

requires more effort, and we do it with a series of observations and lemmas.
Our main observation on the algorithm is that during the processing of an event xi−→(yi, si), the

value yi is added to UpperFreshBucketsi if and only if:

1. xi is fresh (Step 6); and
2. LowerFreshBucketsi

contains exactly A/S values (Step 6b); and
3. (yi, si) does not collide with a previous point placed in the same bucket (Step 4).

Definition 1. An event xi−→(yi, si) is called a coin toss if the first two conditions hold for the event.

Therefore, a yi is added to UpperFreshBucketsi
only if xi−→(yi, si) is a coin toss (but not vice versa),

and thus the number of coin tosses serves as an upper bound on
∑S

i=1 |UpperFreshBucketi|.
Our aim is to upper bound the net coverage (number of images in the coverage) by the number

of different x values in the coverage (which is equal to the number of fresh x’s), and to bound
the number of fresh x’s by A (for lower fresh buckets) plus the number of coin tosses (upper fresh
buckets).

Definition 2. A coin toss xi−→(yi, si) is called successful if before the coin toss yi ∈ LowerFreshBucketsi
.

Observe that each successful coin toss causes a collision, as LowerFreshBucketsi ⊆ Bucketsi at
any point in time, i.e., a successful coin toss means that the node (yi, si) in the graph was already
visited at some previous time (the collision is detected at Step 4). Note that a collision can also
be caused by events other than a successful coin toss (and these events are not interesting in the
context of the proof): For example, a coin toss might cause a collision in case yi ∈ Bucketsi

(but
yi 6∈ UpperFreshBucketsi

⋃
LowerFreshBucketsi) before the coin toss. Another example is when

xi is not fresh, and therefore, xi−→(yi, si) is not a coin toss, but yi ∈ Bucketsi
before the event (xi was

marked as seen in an event of a hidden state different than si).
Since each chain ends with the first collision that is seen, the algorithm stops after encountering

exactly M collisions, one per path. As a successful coin toss causes a collision, there can be at most
M successful coin tosses in the coverage.

Note that the choice of some of the probabilistic events as coin tosses can depend on the outcome
of previous events (for example, LowerFreshBuckets must contain A/S points before a coin toss
can occur for hidden state s), but not on the current outcome. Therefore, once an event is designated
as a coin toss we have:

Lemma 2. A coin toss is successful with probability of exactly A/(SN), and the success (or failure)
is independent of any earlier probabilistic event.

8

Proof As xi is fresh, yi = f(xi) is truly random (i.e., chosen with uniform distribution and in-
dependently of previous probabilistic events). LowerFreshBucketsi

contains exactly A/S different
values, and thus the probability that yi collides with one of them is exactly A/S

N = A
SN . As all the

other coin tosses have an xi value different from this one, the value of f(xi) is independent of their
values.

It is important to note that the independence of the outcomes of the coin tosses is crucial to the
correctness of the proof.

What is the probability that the number of coin tosses in the M paths is larger than A? It is
smaller than or equal to the probability that among the first A coin tosses there were fewer than M
successful tosses, i.e., it is bounded by

Prob (B (A, q) < M) ,

where q = A/(SN) and B(A, q) is a random variable distributed according to the binomial distri-
bution, namely, the number of successful coin tosses out of A independent coin tosses with success
probability q for each coin toss.

Note that choosing A too large would result in a looser bound. On the other hand, choosing A too
small might increase our bound for Prob (Wi,j = 1) too much. We choose A such that the expected
number of successes Aq in A coin tosses with probability of success q satisfies Aq = M ln(SN). This
explains our choice of A =

√
SNM ln (SN).

It follows that:

Prob (Wi,j = 1) = Prob (|NetCoverage| > 2A)

≤ Prob

(
S∑

i=1

(|LowerFreshBucketi|+ |UpperFreshBucketi|) > 2A

)

≤ Prob

(
A +

S∑
i=1

(|UpperFreshBucketi|) > 2A

)

= Prob

(
S∑

i=1

(|UpperFreshBucketi|) > A

)
≤ Prob (B (A, q) < M) .

The first inequality holds as
∑S

i=1(|LowerFreshBucketi|+|UpperFreshBucketi|) > |NetCoverage|.
The last inequality holds as the number of coin tosses upper bounds

∑S
i=1(|UpperFreshBucketi|.

We bound Prob (B (A, q) < M) by M · Prob (B (A, q) = M) because the binomial distribution
satisfies Prob(B(A, q) = b) ≥ Prob(B(A, q) = b− 1) as long as b < (A + 1)q, and in our case b = M
while (A + 1)q = Aq + q = M ln(NS) + q > M (as Aq = M ln(NS)). Therefore, we conclude that

Prob (Wi,j = 1) ≤ Prob (B (A, q) < M) ≤ M · Prob (B (A, q) = M) .

3.3 Concluding the Proof
To complete the proof we show that Prob(Wi,j = 1) ·#c is very close to zero by bounding #c ·M ·
Prob (B (A, q) = M) .

In the following equations, we use the bound
(
x
y

)
≤ xy/y! ≤ (xe/y)y, since from Stirling’s

approximation y! ≥ (y/e)y. We bound (1 − q)−M by estimating that q = A
SN =

√
M ln(SN)

SN =√
ln(SN)
SN1−α is very close to 0, certainly lower than 0.5 (recall that M = Nα, and α < 1). Thus, 1− q

is larger than 0.5, and (1− q)−M must be smaller than (2)M . Moreover, as q > 0 is very close to 0,
we approximate (1− q)A as e−Aq.

Since each column in W is defined by a subset of M out of the NS start points, #c =
(
NS
M

)
, and

thus

#c ·M ·Prob (B (A, q) = M) =
(

NS

M

)
M

(
A

M

)
(q)M · (1− q)A−M ≤ Me−Aq

(
2e2AqNS

M2

)M

and substitute Aq = M ln (SN)

9

=Me−M ln(NS)

(
2e2NSM ln(NS)

M2

)M

=M(NS)−M

(
2e2NS ln(NS)

M

)M

= M

(
2e2 ln(NS)

M

)M

= Nα

(
2e2 ln(NS)

Nα

)Nα

.

When N grows to infinity the expression converges to zero, which concludes the proof.

4 A Lower Bound for S

We now analyze the minimum S required by the scheme. By Section 3, the net coverage of even
the best set of M chains contains at most 2

√
SNM ln (SN) distinct yi values. To make the success

probability at least one half, we need a net coverage of at least N/2. Therefore (recalling that S ≤ N),

N/2 ≤ 2
√

SNM ln (SN) ≤ 2
√

SNM ln(N2).

From this, we can derive the following rigorous lower bound on the number of hidden states in any
time/memory tradeoff which covers at least half the space with high probability:

S ≥ N

32M lnN
.

5 A Lower Bound on the Time Complexity

We lower bound the worst-case time complexity of the online phase under the following natural
assumption on its behavior:

– Given y, the online algorithm works by sequentially trying the hidden states (in any order). For
each hidden state s, it applies h on (y, s) at least ts times in case (y, s) does not appear in a
chain in the matrix, where ts is the largest distance from any point with hidden state s in the
matrix to its corresponding end point. Note that the ts values can depend on the specific matrix
that results from the precomputation (and thus depend on the function f).

A simplistic “proof” for the lower bound is to say that with overwhelming probability S ≥
N

32M ln N , and for each hidden state we should run on average half the width of the matrix (i.e., N
4M).

Multiply the two figures to receive the “bound”:

T ≥ N2

128M2 lnN
.

However, it should be clear that this proof is incorrect, as for example, there can be a correlation
between the hidden state and the length of the path we have to explore. One example of such a
correlation is the Rainbow scheme, in which some hidden states appear only near the end points.
Moreover, there can be more hidden states close to the end points than hidden states far from the end
points, which shifts the average run per hidden state towards the end points. In the rest of the section
we rigorously lower bound the running time in the worst case, based only on the above assumption.

Preparation: align the chains in the matrix such that their end points are aligned in a column.
Consider the l = N

4M columns which are adjacent to the end points. The sub-matrix which constitutes
these l columns contains at most N/4 different images f(x). We call this sub-matrix the right sub-
matrix, and the rest of the matrix the left sub-matrix. As M = Nα, l is large enough so we can
round it to the nearest integer (with negligible effect).

The worst case (with regards to the time complexity) is when the input y to the algorithm is
not an image under f , or y is an image under f but is not covered by the matrix. Then, the time
complexity is at least the sum of all the lengths ts. We divide the hidden states into two categories:
short hidden states for which ts ≤ l, and long hidden states for which ts > l.3 We would like to show
3 Note that the distinction between short and long hidden states is unrelated to the number of images that

appear with these hidden states.

10

that the number of long hidden states SL is large, and use the time complexity spent on long hidden
states as a lower bound on the total time complexity.

The net coverage of f(x) images in the left sub-matrix must be at least N/4 images which do
not appear in the right sub-matrix (since the total net coverage is at least N/2). Note that all the
N/4 images in the left sub-matrix must be covered only by the SL long hidden states, as all the
appearances of short hidden states are concentrated in the right sub-matrix. In other words, the left
sub-matrix can be viewed as a particular coverage of at least N/4 images by M continuous paths
that contain only the SL long hidden states.

It is not difficult to adapt the coverage theorem to bound the coverage of the left sub-matrix (using
only long hidden states). The combinatorial heart of the proof remains the same, but the definitions
of the events are slightly changed. For more details see Appendix F. The adapted coverage theorem
implies that with an overwhelming probability, the number of long hidden states satisfies

SL ≥
N

64M ln((SN)2)
≥ N

256 ln N
.

Since for each long hidden state ts ≥ l, the total time complexity in the worst case is at least

T ≥ l · SL ≥
N

4M

N

256M lnN
≥ 1

1024 ln N

N2

M2
.

Note that we had to restrict the length of ts such that it includes all occurrences of the hidden
state s in the matrix, as otherwise (and using the unlimited preprocessing), each chain could start
with a prefix consisting of all the values of f(x), and thus any image in the rest of the chain (the
suffix) cannot be a fresh occurrence. The algorithm can potentially encode in the hidden state in-
formation about the xi and f(xi) values seen in the prefix, in such a way that it can change the
probability of collision (and in particular, avoid collisions). Note that the preprocessed chains are
very long, but the online phase can be very fast if it covers only the suffixes of each path. As a result,
we cannot use the methods of our proof in such a case.

In Appendix C, we present an algorithm that violates the assumption by spending less time on
wrong guesses of the hidden state compared to the correct guesses of the hidden states. The resulting
matrices are called stretched matrices, and allow the algorithm to achieves a time complexity which
is better by a small factor compared to the known time/memory tradeoffs (but still far from the
lower bound above), at the price of a lengthier preprocessing.

5.1 A Lower Bound on the Time Complexity of Time/Memory/Data Tradeoffs

The common approach to time/memory/data tradeoffs is to use an existing time/memory tradeoff,
but reduce the coverage (as well as the preprocessing) of the tables by a factor of D. Thus, out of
the D images, one is likely to be covered by the table. The decrease in coverage reduces the number
of hidden states, and thus the time complexity per image is reduced by a factor of D3. However, the
tradeoff might need to be applied D times in the worst case (for the D images), which results in an
overall decrease in the time complexity by a factor of D2 (note that the D time/memory tradeoffs
can be executed in parallel, which can reduce the average time complexity in some cases). Using
similar arguments and assumptions to the ones in the case of time/memory tradeoff, it follows that
the worst-case time complexity can be lower bounded by

T ′ ≥ D
1

1024D3 lnN

N2

M2
=

1
1024D2 lnN

N2

M2
.

6 Notes on Rainbow-Like Schemes
6.1 A Note on the Rainbow Scheme

The worst-case time complexity of the original Rainbow scheme was claimed to be half that of
Hellman’s scheme. However, the reasoning behind the claim considers only the number of start points
and end points, and completely disregards the actual number of bits that are needed to represent
these points. What [12] ignores is that the start points and end points in Hellman’s scheme can be

11

compressed twice as much as in the Rainbow scheme. If we double M in Hellman’s scheme to get a
fair comparison, we can reduce T by a factor of four via the time/memory tradeoff, which actually
outweights the claimed improvement by a factor of two in the Rainbow scheme (ignoring possible
complications such as false alarms). For more details, see Appendix D.

6.2 Notes on Rainbow Time/Memory/Data Tradeoffs

The original Rainbow scheme does not provide a time/memory/data tradeoff, but only a time/memory
tradeoff. The natural way to generalize the Rainbow scheme to a time/memory/data tradeoff is to
reduce the number of colors, which can be reduced in several ways. The first method is to reduce
the number of colors to S by repeating the series of colors t times:

f0f1f2...fS−1f0f1f2...fS−1f0f1f2...fS−1...f0f1f2...fS−1,

we call the resulting matrix a thin-Rainbow matrix. The stateful random graph can be described by
xi = yi−1 + si−1 (mod N) and si = si−1 + 1 (mod S). The resulting tradeoff4 is TM2D2 = N2,
which is similar to the tradeoff in [5], i.e., we lose the claimed improvement (by a factor of 2) of
the original Rainbow time/memory tradeoff. However, like the Rainbow scheme, this method still
requires twice as many bits to represent its start points and end points, and thus it is far inferior
to [5]. Additional details can be found in Appendix E.

The second method is to group the colors together in groups of t, and a typical row looks like:

f0f0f0...f0︸ ︷︷ ︸
t times

f1f1f1...f1︸ ︷︷ ︸
t times

f2f2f2...f2︸ ︷︷ ︸
t times

... fS−1fS−1fS−1...fS−1︸ ︷︷ ︸
t times

,

we call the resulting matrix a thick-Rainbow matrix. Note, however, that during the online phase
the algorithm needs to guess not only the “flavor” i of fi, but also the phase of fi among the other
fi’s (except for the last fi). In fact, the hidden state is larger than S and includes the phase, as the
phase affects the development of the chain. Therefore, the number of hidden states is t(S − 1) + 1
(which is almost identical to the number of hidden states in the original Rainbow scheme), and we
get an inferior tradeoff of TM2D = N2. On the other hand, we retain the claimed savings of 2 in the
time complexity. This example demonstrates the difference between “flavors” of f and the concept
of a hidden state.

The new strategy we propose to implement a Rainbow-like time/memory/data tradeoff is to use
the notion of distinguished points not only to determine the end of the chain, but also to determine
the points in which we switch from one flavor of f to the next. In this case, the number of hidden
states is equal to the number of flavors, and does not have to include any additional information.
We can specify U as: xi = yi−1 + si−1 (mod N), and if yi−1 is special, then si = si−1 + 1 (mod S)
else si = si−1, where yi−1 is special if its log2 t bits are zeros. We call the resulting matrix a fuzzy-
Rainbow matrix, as each hidden state appears in slightly different locations in different rows of the
matrix. The tradeoff curve is 2TM2D2 = N2 + ND2M , with T ≥ D2. The factor two savings is
gained when N2 � ND2M ⇒ D2M � N (which happens when T � D2). The number of disk
accesses is about

√
2T , when D2M � N , but is never more than in thin-Rainbow scheme for the

same memory complexity. Additional details are given in Appendix E.

7 Summary

In this paper, we proved that in our very general model, and under the natural assumption on the
structure of the online phase, there are no cryptanalytic time/memory tradeoffs which are better
than existing time/memory tradeoffs, up to a logarithmic factor.

4 When we write a time/memory/data tradeoff curve, the relations between the parameters relate to the
expected worst-case behavior when the algorithm fails to invert y, and neglecting false-alarms.

12

Acknowledgements

We would like to thank Joel Spencer for his contribution to the proof of the single table coverage
bound in 1981, and Eran Tromer for his careful review and helpful comments on earlier versions of
the paper.

References

1. Gildas Avoine, Pascal Junod, Philippe Oechslin, Time-Memory Trade-Offs: False Alarm Detection Using
Checkpoints (Extended Version),
Available online on http://lasecwww.epfl.ch/pub/lasec/doc/AJO05a.pdf, 2005.

2. Steve Babbage, A Space/Time Tradeoff in Exhaustive Search Attacks on Stream Ciphers, European
Convention on Security and Detection, IEE Conference Publication No. 408, 1995. Also presented at the
rump session of Eurocrypt ’96. Available online on http://www.iacr.org/conferences/ec96/rump/.

3. Eli Biham, How to decrypt or even substitute DES-encrypted messages in 228 steps, Information Pro-
cessing Letters, Volume 84, Issue 3, pp. 117–124, 2002.

4. Alex Biryukov, Some Thoughts on Time-Memory-Data Tradeoffs, IACR ePrint Report 2005/207,
http://eprint.iacr.org/2005/207.pdf, 2005.

5. Alex Biryukov, Adi Shamir, Cryptanalytic Time/Memory/Data Tradeoffs for Stream Ciphers, Advances
in Cryptology, proceedings of Asiacrypt 2000, Lecture Notes in Computer Science 1976, Springer-Verlag,
pp. 1–13, 2000.

6. Johan Borst, Bart Preneel, Joos Vandewalle, On the Time-Memory Tradeoff Between Exhaustive Key
Search and Table Precomputation, Proceedings of 19th Symposium on Information Theory in the
Benelux, Veldhoven (NL), pp. 111–118, 1998.

7. Amos Fiat, Moni Naor, Rigorous Time/Space Tradeoffs for Inverting Functions, STOC 1991, ACM
Press, pp. 534-541, 1991.

8. Amos Fiat, Moni Naor, Rigorous Time/Space Tradeoffs for Inverting Functions, SIAM Journal on Com-
puting, 29(3): pp. 790-803, 1999.

9. Martin E. Hellman, A Cryptanalytic Time-Memory Trade-Off, IEEE Transactions on Information The-
ory, Vol. IT-26, No. 4, pp. 401–406, 1980.

10. Il-Jun Kim, Tsutomu Matsumoto, Achieving Higher Success Probability in Time-Memory Trade-Off
Cryptanalysis without Increasing Memory Size, IEICE Transactions on Fundamentals, Vol. E82-A, No. 1,
pp. 123–129, 1999.

11. Koji Kusuda, Tsutomu Matsumoto, Optimization of Time-Memory Trade-Off Cryptanalysis and Its
Application to DES, FEAL-32, and Skipjack, IEICE Transactions on Fundamentals, Vol. E79-A, No. 1,
pp. 35–48, 1996.

12. Philippe Oechslin, Making a Faster Cryptanalytic Time-Memory Trade-Off, Advances in Cryptology,
proceedings of Crypto 2003, Lecture Notes in Computer Science 2729, Springer-Verlag, pp. 617–630,
2003.

13. Francois-Xavier Standaert, Gael Rouvroy, Jean-Jacques Quisquater, Jean-Didier Legat, A Time-Memory
Tradeoff Using Distinguished Points: New Analysis & FPGA Results, proceedings of CHESS 2002, Lec-
ture Notes in Computer Science 2523, Springer-Verlag, pp. 593–609, 2003.

14. Andrew Chi-Chih Yao, Coherent Functions and Program Checkers (Extended Abstract), STOC 1990,
ACM Press, pp. 84-94, 1990.

A Description of Current Approaches to Time/Memory Tradeoffs
A.1 Hellman’s Time/Memory Tradeoff — Unicolor Tables

Let f : {0, 1, . . . , N − 1} 7→ {0, 1, . . . , N − 1} be a random function to be inverted. Hellman’s basic
idea is as follows: During a preprocessing phase, m chains of length t are created from m random
start points as shown in Figure 5. Only the start points and end points are stored in a memory,
indexed by the end points. The other points of the chains are discarded to save space. In the online
phase, the algorithm is given f(x). Assume that the value f(x) appears in some chain, then f can
be repeatedly applied on f(x) until the end of the chain is reached. It is easy to identify the incident
of reaching an end point, as the end points are stored in the database, and the algorithm can just
search the database and see if the current value is an end point (only if the value is in the database,
it can be an end point). Once the end point is found, the start point is retrieved from the data

13

f

f

f

f

f

f

f

ff

length t

m

Start Points End Points

Fig. 5. A Single Hellman Matrix

base, and the chain is reconstructed until we hit f(x) again. The value y before f(x) is its preimage.
However, if f(x) is not encountered during the reconstruction of the chain from the start point, the
algorithm understands that a false alarm occurred, i.e., the chain that was created from f(x) merged
(due to the collisions in f) with one of the chains that is covered by the chains.

How many applications of f are required? Let i be the number of applications of f on top of
f(x), such that f i+1(x) is an end point. Then, f(x) should be encountered exactly after t − i − 1
applications of f on the start point. Note that if after t− 1 applications of f on top of f(x) no end
point is encountered, it means that no chain covers f(x).

The algorithm succeeds only if f(x) is covered by some chain. Therefore, the success probability
of the method is bounded by the number of different f(x) values that are covered by the matrix.
Thus, the success probability is bounded by mt/N . Unfortunately, the number of different f(x)
values in the matrix cannot grow much beyond N/t: Assume that there are mt = N/t different
values in the matrix. When adding the next chain, due to the birthday paradox, one of the t values
along the chain is likely to collide with one of the mt values already in the matrix (as t · (mt) ≈ N).
Thus, when additional chains are added to the matrix, the fraction of unique values in the matrix
decreases, and as a result, it is assumed that mt < N/t (Hellman calculated that if mt = N/t then
the probability of success of a single table is about 0.80mt/N).

Hellman’s solution to this problem is to use t independent matrices from t cycles-independent
functions fi, such that the inversion of fi would reveal the pre-image of f . Each matrix covers
approximately N/t of the points. Thus, the collection of t matrices covers about N points, and the
success probability would be about 1− (1− 0.8mt/N)t ≈ 1− emt2/N = 1− e−0.8 ≈ 0.55 (assuming
mt2 = N). Hellman suggests to choose fi = Ri(f), where Ri is a permutation, such that fi 6= fj

would have a very different cycle structure. However, it should be noted that the structures of fi and
fj are not independent, and actually they are dependent as both functions are based on the same
underlying function f . This dependency could be problematic, and it was not taken into account in
the analysis. A similar problem exists with the analysis of the Rainbow scheme.

It should be noted that Hellman considered the case where f ’s output is larger than its input
(e.g., f(x) = DESx(0) has 56 bits of input and 64 bits of output). In this case, the role of R is to
be both a reduction and a re-randomization function. As a reduction function R reduces the size of
the output back to 56 bits. As a re-randomization function, Ri can be a different permutation for
each value of i. In case the output of f is larger than its input (as happens with f(x) = DESx(0)),
R has another degree of freedom as it can choose to remove different bits of the output.

The time/memory curve is as follows: The method requires M = mt rows of memory. In the
preprocessing phase the function f evaluated for about N times. In the inversion phase, f is evaluated
t− 1 times per table in the worst case, which gives a total time complexity of about T = t2 (and on
average half). By substituting mt by M and t by

√
T in mt2 = N , it follows that M

√
T = N . We

do not analyze the time complexity due to false alarms, but Hellman calculated that it should not
exceed T/2.

A.2 Oechslin’s Time/Memory Tradeoff — Rainbow Tables

14

Rt(f)

length t

m

Start Points End Points

R1(f)

R1(f)

R1(f)

R2(f)

R2(f)

R2(f)

Rt(f)

Rt(f)

Fig. 6. Oechslin’s Rainbow Matrix

Oechslin [12] recently suggested an improved time/memory tradeoff scheme. Oechslin’s idea is to use
Hellman’s original suggestion with the same fi functions, but during the computation of a chain,
every value is calculated using a different fi, as is depicted in Figure 6. The resulting matrix is
called a Rainbow matrix. A Rainbow matrix induces a more efficient coverage of the search space
by reducing the effect of collisions among the chains of the matrix. While in Hellman’s method if
the same value appears in two different chains of the same matrix, the chains merge, and one chain
does not contribute to the coverage from merger point and on. However, in a Rainbow matrix, the
same value must appear in two chains in the same column for a similar effect. Analysis shows that
a collision in the same column of the matrix is not likely to occur as long as mt ≈ N , therefore, a
single Rainbow matrix has a coverage comparable to t Hellman matrices of the same length.

However, searching a Rainbow matrix takes about t/2 longer than searching in a single Hellman
matrix. As only one Rainbow matrix is needed compared to t Hellman matrices, the result is that
a Rainbow scheme save a factor 1/2 of the time complexity in the worst case. In the average case
(and assuming f(x) is always covered by the tables), searching a single Rainbow matrix is four times
faster than searching t Hellman matrices.

While in Hellman’s scheme the effort of searching another column of the matrix is a single
application of f , in the Rainbow scheme this is not the case. In the Rainbow scheme, for column
i, f(x) is transformed to fi(x) (by application of Ri on f(x)), and the chain is continued until the
end point, i.e., ft(ft−1(· · · (fi+1(fi(x))) · · ·)) is computed. Therefore, f is evaluated for t − i times
for column i. The worst-case time complexity is T =

∑t
i=1(t− i) ≈ t2/2.

B A Time/Memory Tradeoff with Hidden State that Depends Only on
the Previous Values in the Chain

The time/memory tradeoff scheme: We choose xi = yi−1+si−1 (mod N). We choose si = si−1+yi−1

(mod S), where S is the number of hidden states. The hidden state S is chosen to be equal to the
chain length. The rest of the details are similar to Hellman’s scheme.

Analysis similar to the other tradeoffs results in a TM2 = N2 tradeoff curve. We have sim-
ulated this tradeoff and verified that it gives similar performance compared to Hellman’s original
time/memory tradeoff.

We can convert the time/memory tradeoff to a time/memory/data tradeoff by reducing the
hidden state from the chain length to the chain length divided by D, as well as reducing the number
of memory rows by a factor of D. The resulting tradeoff is TM2D2 = N2.

C Stretching Distinguished Points — An Algorithm for Time/Memory
Tradeoff with Deeper Preprocessing

The main observation behind this algorithm is that most of the time complexity of the algorithm
is spent on wrong guesses of the hidden state. Therefore, there are two effective ways to reduce the
time complexity: reduce the number of hidden states, and reduce the time that is spent on wrong
guesses of the hidden state.

15

When distinguished points are used, there is variance in the length of the chains. Assuming the
chain length is distributed according to the geometric distribution with success probability p (i.e., a
point is distinguished with probability p), the expected chain length is (1−p)/p ≈ p−1. The standard
deviation is

√
(1− p)/p2 ≈ p−1. Therefore, there is a large variation in the length of chains, and it

is not surprising to find chains which are several times longer than their expected length.
Storing the longer chains in the matrices seems to accomplish both of the effective ways of

reducing the time complexity: as the chains are longer, each matrix covers more, and less matrices
are needed (i.e., the hidden state is reduced). Moreover, the time spent on wrong guesses is the
average chain length, which is smaller than the average chain length in the table (as the table
stores chains longer than the average). The suggested scheme is essentially Hellman’s scheme with
distinguished points, but we prefer to store longer chains in the matrices. The scheme performs a
longer precomputation, in which many chains are created. Only the longer chains are stored in the
matrices, and the shorter chains are discarded. We call the resulting matrices stretched matrices, as
they contain longer (stretched) chains.

Another possible source of savings in the time complexity is having an idea choice of parameters
for the scheme. Consider Hellman’s time/memory tradeoff with distinguished points. Hellman sug-
gests to fill a matrix until mt2 = N , where f : {0, 1, . . . , N − 1} 7→ {0, 1, . . . , N − 1} is a random
function, m is the number of rows in the matrix, and t is the chain length. Adding rows beyond
the mt2 = N matrix stop rule becomes increasingly difficult. However, from the point of view of
tradeoff efficiency, it is worthwhile adding rows to the matrix only until the moment that where we
gain more by adding a row in a new matrix (rather than adding the row to the existing matrix), i.e.,
the time savings using the time/memory tradeoff curve is better than adding a row. We the optimal
point in the next few paragraphs.

Let S be the number of the hidden states, i.e., S the number of tables, let C be the number of
distinct points that are covered by a single matrix, and let T be the time complexity as anticipated
by the “regular” tradeoff. For a single matrix, let m be the number of rows, and let

γ = m/(Np2) (1)

i.e., γ is the fraction of the number of rows compared to a single Hellman table (for Hellman γ = 1).
The total number memory rows is M = Sm. Therefore,

γ = M/(SNp2). (2)

Let

β(γ) = C(γ)/(Np), (3)

i.e., β(γ) is the fraction of the coverage gained by a single table with γ(Np2) rows compared to the
maximum coverage that is gained from a single Hellman table.

In this paragraph we show that the worst-case time complexity T = γ2N2

β3M2 . The number of
required tables is S = N/C(γ) = N/(β(γ)Np) = 1/(β(γ)p) (to reach a constant success probability).
Substitute p = 1/(β(γ)S) in γ = M/(SNp2) and express S as:

S =
γN

β2(γ)M
. (4)

Substitute S back to

p =
1

β(γ)S
=

β(γ)M
γN

. (5)

The worst-case time complexity (ignoring false alarms) is

T = S/p, (6)

16

Table 1. Experiments Results

k Gain Factor Actual
Work Factor

20 ≈ 2.1 ≈ 4.3
21 ≈ 2.9 ≈ 5.9
22 ≈ 4 ≈ 9
23 ≈ 4.8 ≈ 14.5
24 ≈ 5.6 ≈ 24.4
25 ≈ 6.1 ≈ 43
26 ≈ 6.6 ≈ 80.3

as evaluating each matrix takes on average p−1 applications of f . In the equation for T , we substitute
p and S with their respective expressions from above:

T =
S

p
= (7)

=
γ2N2

β3M2
(8)

For Hellman method with distinguished points, the time complexity falls back to T = N2

M2 .
However, we are interested in the optimal value of γ that minimize the time complexity. We calculate
the minimum (through the derivative of T), and reach the condition that:

dβ

dγ
=

2β

3γ
. (9)

Suggested is the following stretching algorithm to construct a single stretched Hellman matrix
with distinguished points:

1. Choose a work factor k.
2. Create kNp2 rows, if two or more rows have the same end point, keep the longest row.
3. Sort the rows by their length.
4. Add rows to the final matrix, longest-row first.
5. Let L be the total length of the rows added until now, m be the number of the rows that have

been added until now, and l be the length of the added row. Do not add the row and stop when
lp < 2Lp/(3m), i.e., l < 2L/(3m) (alternatively, add new rows until β3/γ2 reaches a maximum).

The stop condition is equivalent to dβ
dγ = 2β

3γ .
As the matrix covers L distinct points using m rows, β = L/(Np) and γ = m/(Np2). The time

savings using this method is the ratio β3/γ2 = L3p/(Nm2), which we call the gain factor. The actual
work factor, is the ratio between the time spent during preprocessing compared to the time that is
spent during the construction of a regular Hellman matrix to achieve this coverage: kNp/(L).

It is interesting to observe that the above method gains from the fact that the average time spent
on wrong guesses of the hidden state is the average chain length p−1. This figure is a several times
smaller than the average chain length in the matrix. As most of the time complexity is spent on
wrong guesses of the hidden state, the method gains the difference.

Experimental results are shown in Table 1. It should be noted that this method can be adapted
to other schemes that are based on distinguished points, such as in Appendix E.

D Time Complexity of Hellman Versus Rainbow

It is surprising that the preprocessing and postprocessing that the algorithm can perform on start
and end points is substantially different in the different schemes. For example, the start points
in Hellman’s scheme (using M = N2/3) can be compressed to half of the size of what the start

17

points in a Rainbow scheme can be compressed to (for M = N2/3). This factor two increase in the
memory complexity translates to a factor four degredation in the time complexity, which consumes
the savings that are introduced by a Rainbow scheme (compared to Hellman’s scheme). However,
the real advantage of Rainbow over Hellman’s scheme is more complicated as it involves other factors
such as the false alarm rate. In Hellman’s scheme, (log2 N)/3 bits are enough to store the start points:
the y value can be constructed by setting the first (log2 N)/3 bits to zeros, the next (log2 N)/3 bits
to the hidden state (table number, which can be globally stored), and the last (log2 N)/3 bits to
be an index (only the index bits need to be stored). In a Rainbow scheme, however, the hidden
state is identical to all the start points, and therefore, only 2(log2 N)/3 bits per start points are
needed (these bits are used to store the index of the start point). We can overcome this disadvantage
of the Rainbow scheme by dividing the single matrix to many smaller matrices each starting with
another hidden state (and having yi = yi−1 + 1 (mod S)), but this modification will also eliminate
the factor 2 savings in the worst-case time complexity of the Rainbow scheme (and increase the
number of disk accesses).

E Analysis of the New Time/Memory/Data Tradeoffs
E.1 Trivial Rainbow T/M/D Tradeoff: TM2D = N2

The memory is left the same — M , but each row is shortened to t/D elements. The new Rainbow
matrix covers Mt/D points, which represent constant fraction of N/D of the space. This implies
Mt = N , which when raised to the power of 2 is:

M2t2 = N2.

The total running time is about

T = Dt2/D2 = t2/D,

substitute t2 in the equation M2t2 = N2 and get:

TM2D = N2.

As t/D ≥ 1 it follows that t ≥ D ⇒ t2 ≥ D2 ⇒ TD ≥ D2, and therefore,

T ≥ D.

E.2 Thin-Rainbow T/M/D Tradeoff: TM2D2 = N2

The matrix contain M rows of memory. Each row contains t sequences of S colors, i.e., it looks like:

f0f1f2...fS−1f0f1f2...fS−1f0f1f2...fS−1...f0f1f2...fS−1.

Therefore, the length of each row is St. The matrix stop rule in this case is Mt2S = N (as analyzed
in Appendix E.4). When raised to the power of two:

M2t4S2 = N2.

We require that the matrix covers N/D elements, i.e.,

MSt = N/D.

Therefore, S = N/(DMt). Substituting S in M2t4S2 = N2 gives t2 = D2, i.e.,

t = D.

The total time is T = DStS = DtS2 = DtN2/(DMt)2 = N2/(DtM2), as for each data point
we go over all the S colors, and continue the chain for a length of about St (the length is actually

18

St− s, where s is the current hidden state, but we neglect s compared to St, which is accurate for
D � 1.). Substitute t with D to achieve the tradeoff curve:

T = N2/(D2M2).

As S = N/(DMt) is at least 1, it follows that N ≥ DMt ⇒ N ≥ D2M ⇒ N2/M2 ≥ D4.
Substitute N2/M2 with TD2 and get that:

T ≥ D2.

The number of disk accesses is DtS = DtN/(DMt) = N/(M) = D
√

T , as for each hidden state
we need to have t disk accesses (whenever the chain reaches hidden state S), and we repeat the
search D times. The number of disk accesses can be reduced to

√
T by using distinguished points

to mark the points of hidden state S that can end a chain (a point with hidden state S should be
distinguished with probability t−1).

E.3 Fuzzy-Rainbow T/M/D Tradeoff: 2TM2D2 = N2 + ND2M

The matrix contain M rows of memory. Each row contains about t repetitions of S colors, i.e., it
looks like:

f0f0f0...f0︸ ︷︷ ︸
about t

f1f1f1...f1︸ ︷︷ ︸
about t

f2f2f2...f2︸ ︷︷ ︸
about t

... fS−1fS−1fS−1...fS−1︸ ︷︷ ︸
about t

,

where the U function changes the value of the hidden state when a distinguished point occurs (with
probability t−1). The chain is terminated when a distinguished point is reached for hidden state S.
Therefore, the expected length of each row is St. The matrix stop rule in this case is Mt2S = N (as
analyzed in Appendix E.4). When raised to the power of two:

M2t4S2 = N2.

We require that the matrix covers N/D elements, i.e.,

MSt = N/D.

Therefore, S = N/(DMt). Substituting S in M2t4S2 = N2 gives t2 = D2, i.e.,

t = D.

The total time is T = D(S +1)St/2 = D2S(S +1)/2 = N2/(2D2M2)+N/(2M). It follows that:

2TD2M2 = N2 + ND2M.

As S = N/(DMt) is at least 1, it follows that N ≥ DMt ⇒ N ≥ D2M ⇒ N2/M2 ≥ D4. It
follows that T = N2/(2D2M2) + N/(2M) ≥ D4/(2D2) + D2/2 = D2, i.e.,

T ≥ D2.

Note that when T � D2, ND2M � N2, and the factor two in time savings is gained.
There is one disk access per hidden state (once we reach the end of the chain), and the search is

repeated D times. Therefore, the number of disk accesses is SD = N/(D2M)D = N/(DM) ≈
√

2T
(this figure is not higher than in the thin-Rainbow scheme).

E.4 Analysis of the Matrix Stop Rule in the Modified Rainbow Scheme

The thin-matrix contains M rows and looks like:

f0f1f2...fS−1f0f1f2...fS−1f0f1f2...fS−1...f0f1f2...fS−1

f0f1f2...fS−1f0f1f2...fS−1f0f1f2...fS−1...f0f1f2...fS−1

f0f1f2...fS−1f0f1f2...fS−1f0f1f2...fS−1...f0f1f2...fS−1

19

f0f1f2...fS−1f0f1f2...fS−1f0f1f2...fS−1...f0f1f2...fS−1

...

f0f1f2...fS−1f0f1f2...fS−1f0f1f2...fS−1...f0f1f2...fS−1,

where S is the number of hidden states, and each hidden state appears t times in each row (the same
analysis follows for the fuzzy-Rainbow scheme). Suppose that the matrix contains M rows and we
are in the process of adding the M + 1 row. Assuming that all the points in the first M rows are
distinct, the new row which looks like:

f0f1f2...fS−1f0f1f2...fS−1f0f1f2...fS−1...f0f1f2...fS−1

collides with the matrix if at least one of its points with hidden state k collides with another point
in the matrix with the same hidden state k. The probability that it happens is:

1− (prob. no collision) = 1− ((N −Mt)/N)St ≈ 1− e−(Mt2S)/N .

In birthday paradox, and in the matrix stop rule, we stop when the probability is about 0.5 (1− e−1

to be exact), which implies a matrix stop rule of Mt2S = N .

E.5 Notes

Note that the trivial Rainbow time/memory/data tradeoff scheme is not better than the other
tradeoffs at any point. Consider the most extreme point that the tradeoff allows, i.e., when T = D.
When using the other tradeoffs, what should be the data D′, such that the memory complexity and
the time complexity is identical?

Substitute T = D in the original tradeoff to obtain M = N/D. Substitute the expression for T
and M in the other tradeoff curves (TM2D′2 = N2):

D(N/D)2D′2 = N2.

It follows that
D′ =

√
D,

which is within the limits of the other tradeoff curves. Moreover, fewer data points are needed to
achieve the same memory and time complexity.

We have verified the above tradeoffs through computer simulations.

F Extended Coverage Theorem

We can extend the coverage theorem to bound the net coverage that can be obtained by M paths,
where the paths contain only S′ hidden states out of the S ≥ S′ hidden states of U . We call the
hidden states in the set of S′ hidden states insider hidden states and call the rest of the hidden states
outsider hidden states.5 Therefore, we are interested in the coverage of the sub-chains that begin in
the start points and end before the first occurrence of an outsider hidden state. We call this set of
sub-chains the insider matrix.

The tricky point is that the specific choice of the insider hidden states can depend on the choice
of f , which is not a priori known to the algorithm that counts the coverage in the main proof. The
crucial observation that solves the tricky point is that the only affect of the specific choice of the
insider hidden states is the location in which the chains are terminated. In particular, the choice
of the insider hidden states cannot affect the development of the chains, as the development of the
chains is part of the definitions of U .

We can model the specific choice of insider hidden states by M ln(SN) bits that contain a list of
M chain-terminating points. The set of terminating points contain the last points in the M chains
5 Insider hidden states correspond to long hidden states, and outsider hidden states correspond to short

hidden states. We make the distinction in the names to avoid confusion.

20

(after being chopped such that they do not contain outsider hidden states), i.e., the last points
of the chains in the insider matrix. In case there are two chains such that one chain contains the
terminating point of the other chain in its middle (i.e., not as a terminating point), we lengthen the
the other chain such that it is terminated by the same termination point of the first chain.6 The
coverage is uniquely given by U , fi and the set of start points and termination points. Therefore, it
suffices to prove that given any U , it holds that for the overwhelming majority of functions f , there
is no set of M start points and M termination points such that the resulting coverage in the insider
matrix is larger than 2A.

We have the following upper bound on the coverage of the insider matrix:

Theorem 2. Let A′ =
√

S′NM ln (SN), where M = Nα, for any 0 < α < 1. Let U be any update
function with S hidden states. For any S′ ≤ S ≤ N , for any choice of f , and for any set of M start
points, let the adversary choose a set of S′ insider hidden states. Then, with overwhelming probability
over the choice of f : {0, 1, . . . , N − 1} 7→ {0, 1, . . . , N − 1}, there is no choice of start points and S′

insider hidden states such that the net coverage in the resulting insider matrix is larger than 2A.

The proof begins with a reduction using a huge table W , similar to the one in the main proof
(the number of functions remains NN and the number of possible start points remains

(
NS
M

)
).

However, we should also take into account the termination points. As there are M chains, there
are NS termination points, and therefore, the number of possibilities to choose terminations points
is (NS)M . We have to multiply the number of columns by (NS)M , since the net coverage of the
insider matrix is given by a choice of a function fi (determined by the row), and a choice of a
set of M start points and M termination points (determined by the column). In each entry of the
table we write one if and only if: the coverage of fi using a set Mj of start points and a set Mk of
termination points contains at most S′ hidden states, and the net coverage is larger than 2A′, where
A′ =

√
S′NM ln((SN)2). Otherwise (if the there are more than S′ hidden states in the coverage,

or the net coverage is smaller than 2A), we write zero.
It suffices to prove that the number of ones in the table is considerably smaller than the number

of rows, as from counting arguments it would follow that most of the rows are zeros (and a row
of zeros for a function fi means that there is no choice of Mj start points and Mk termination
points such that the resulting coverage indeed contains only S′ hidden states and is larger than 2A).
Therefore, like in the main proof, it suffices to prove that the product of the number of columns and
the probability that Wi,(j,k) is 1 is very close to zero.

We now wish to upper bound the probability that Wi,(j,k) is one. We use a similar method to the
one in the main proof, i.e., an algorithm that counts the coverage. However, this time, the algorithm
receives not only the set of M start points as input, but also the set of M termination points so
it can count the resulting coverage. The exploration of each chain is stopped once either a collision
occurs or a termination point is reached.7 The only remaining differences in the algorithm compared
to the original one is that the threshold of the lower fresh bucket is changed from A/S to A′/S′,
and once the algorithm encounters more than S′ different hidden states, it sets the net coverage to
zero and halts.

The analysis of the algorithm is similar. Wi,(j,k) is one only if the coverage net coverage counted
by the algorithm is larger than 2A′. The algorithm can count a net coverage larger than 2A′ only if
it encounters more than 2A′ fresh x’s. The fresh x’s are stored in the lower and upper fresh buckets.
Wi,(j,k) can be one only if the coverage contains at most S′ hidden states, and in this case, only
the buckets for the S′ hidden states contain any elements. Therefore, the number of elements in the
lower fresh buckets is at most S′(A′/S′) = A′.

The net coverage is larger than 2A′ only if the upper fresh buckets contain at least A′ elements.
That means that there are at least A′ coin tosses. The probability of a coin toss of being successful
is q′ = A′/(S′N) (the independence argument still holds, as a coin toss is performed only for a fresh
value of x). We choose A′ such that A′q′ = M ln((SN)2), i.e. A′ =

√
S′NM ln((SN)2). As each

6 Clearly, the resulting coverage can only be larger (as we now need only (M − 1) ln(SN) bits, we can fill
the remaining bits with representation of any points that does not appear in the insider matrix).

7 Like in the main proof, we do not lose any coverage by stopping a chain once it collides with a previously
explored chain.

21

successful coin toss causes a collision that ends a chain, there can be no more than M successful
coin tosses. Therefore, the probability that the net coverage is larger than 2A′ is smaller than

Prob (B (A′, q′) < M) .

In the conclusion of the proof, the number of columns is #c = (NS)M
(
NS
M

)
. The factor (NS)M

increase in the number of columns compared to the original proof is eliminated by the increase of
ln(NS) (in Aq) from the original proof to ln((NS)2) in A′q′. This concludes the modified proof.

22

