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Course agenda
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Course duties

• Questionnaire (on course website)
• Material: everything covered in class (including 

whiteboard and discussions), and assigned reading 
as specified.

• Exercises
– 5 exercises, submitted in individually.
– 30% of grade
– All mandatory
– No late submissions

• Final project
• Lecture summaries: up to 5% bonus
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Resources

• Course website:
http://cs.tau.ac.il/~tromer/istvr1516

• Recommended Facebook group: istvr1516
• Mailing list (see website)
• The course material is not covered by any single 

book. For background and discussion of physical 
attacks, see:
Ross Anderson, Security Engineering, 2nd ed.

• Additional reading material during the semester.



5

Course agenda
Advanced topics in applied cryptography and 
information security, focusing on all the ways 

our convenient abstractions and careful 
designs fail in reality – and what to do about it.
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Tentative topics

Attacks

• Software side-channel 
attacks

• Physical side-channel 
attacks

• Fault attacks
• Hardware security

Defense

• Leakage-resilient 
cryptography

• Fully-homomorphic 
encryption

• Computationally-sound 
proofs
with applications to Bitcoin

• Multiparty computation
• Obfuscation
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Today:
Side-channel attacks
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Types of undesired information flow

Inadvertent information channels between processes running 
on the same system:

• Side channels

• Covert channels
collaborate to circumvent mandatory access controls

Most generally:
• Violate information flow control

attacker victim

receiver sender



9

Cryptographic algorithms
vs.

the real world
An example
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Cryptographic algorithms

• Model: 

• Formal security definitions
(CPA, CCA1, CCA2, …)

• Well-studied algorithms
(RSA, AES, DES, …)

• Algorithmic attacks are believed infeasible.

Input:
(plaintext, key)

Output
(ciphertext)
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ENGULF [Peter Wright, Spycatcher, p. 84]

• In 1956, a couple of Post Office engineers fixed a 
phone at the Egyptian embassy in London.
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ENGULF (cont.)

• “The combined MI5/GCHQ operation enabled us to read the 
Egyptian ciphers in the London Embassy throughout the 
Suez Crisis.”
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Architectural side-channel 
attacks
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Cloud Computing (Infrastructure as a Service)

Instant virtual machines
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Public Clouds
(Amazon EC2, Microsoft Azure, Rackspace Mosso)

Instant virtual machines
... for anyone
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Virtualization

Instant virtual machines
... for anyone
…on the same hardware.
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Virtualization

What if someone running on that hardware
is malicious?
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A Tale of Virtualization and Side Channels
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Virtualization: textbook description

Hardware

Virtual machine manager

ProcessProcessProcessProcessProcessProcess

OSOS

Virtual memory

20 mattresses
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Cross-talk through architectural channels

Hardware

Virtual machine manager

ProcessProcessProcessProcessProcessProcess

OSOS

Virtual memory
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Cross-talk through architectural channels

Hardware

Virtual machine manager

ProcessProcessProcessProcessProcessProcess

OSOS

Virtual memory

• Contention for shared 
hardware resources
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Cross-talk through architectural channels

Hardware

Virtual machine manager

OSOS

Virtual memory

cache

• Contention for shared 
hardware resources

• Example: contention for 
CPU data cache

Attacker Victim
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Cross-talk through architectural channels

Hardware

Virtual machine manager

OSOS

Virtual memory

cache

• Contention for shared 
hardware resources

• Example: contention for 
CPU data cache

Attacker Victim

<1 ns latency
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Cross-talk through architectural channels

Hardware

Virtual machine manager

OSOS

Virtual memory

cache

• Contention for shared 
hardware resources

• Example: contention for 
CPU data cache

Attacker Victim

<1 ns latency
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Cross-talk through architectural channels

Hardware

Virtual machine manager

OSOS

Virtual memory

cache

• Contention for shared 
hardware resources

• Example: contention for 
CPU data cache

Attacker Victim

<1 ns latency~100 ns latency
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Cross-talk through architectural channels

Hardware

Virtual machine manager

OSOS

Virtual memory

cache

• Contention for shared 
hardware resources

• Example: contention for 
CPU data cache leaks 
memory access patterns.

Attacker Victim

<1 ns latency~100 ns latency
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Cross-talk through architectural channels

Hardware

Virtual machine manager

OSOS

Virtual memory

cache

• Contention for shared 
hardware resources

• Example: contention for 
CPU data cache leaks 
memory access patterns.

• This is sensitive 
information! Can be used 
to steal encryption keys 
in few milliseconds of 
measurements.

Attacker Victim
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Cache attacks

• CPU core contains small, fast memory 
cache shared by all applications. Attacker

app
Victim
app

CPU

Slow DRAM main memory 

secret
key

• Contention for this shared resources
mean Attacker can observe slow-down 
when Victim accesses its own memory.

• From this, Attacker can deduce the 
memory access patterns of Victim.

• The cached data is subject to memory 
protection…

cache

• But the metadata leaks information about 
memory access patterns:
addresses and timing.
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char p[16], k[16];                     // plaintext and key
int32 Col[4];                          // intermediate state

const int32 T0[256],T1[256],T2[256],T3[256]; // lookup tables
...

/* Round 1 */

Col[0]← T0[p[ 0] ⊕ k[ 0]] ⊕ T1[p[ 5] ⊕ k[ 5]] ⊕
T2[p[10] ⊕ k[10]] ⊕ T3[p[15] ⊕ k[15]];

Col[1]← T0[p[ 4] ⊕ k[ 4]] ⊕ T1[p[ 9] ⊕ k[ 9]] ⊕
T2[p[14] ⊕ k[14]] ⊕ T3[p[ 3] ⊕ k[ 3]];

Col[2]← T0[p[ 8] ⊕ k[ 8]] ⊕ T1[p[13] ⊕ k[13]] ⊕
T2[p[ 2] ⊕ k[ 2]] ⊕ T3[p[ 7] ⊕ k[ 7]];

Col[3]← T0[p[12] ⊕ k[12]] ⊕ T1[p[ 1] ⊕ k[ 1]] ⊕
T2[p[ 6] ⊕ k[ 6]] ⊕ T3[p[11] ⊕ k[11]];

Example: breaking AES encryption via address leakage
(NIST FIPS 197; used by WPA2, IPsec, SSH, SSL, disk encryption, …)

lookup index = plaintext ⊕ key

Complications:
• Multiple indices per

cache line
• Uncertain messages
• Noise

Requires further
cryptographic and
statistical analysis. 

How to learn addresses?
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Associative memory cache
D

R
AM

ca
ch

e

memory block
(64 bytes)

cache line
(64 bytes)
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Victim’s memory
D

R
AM

ca
ch

e
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Detecting victim’s memory accesses
D

R
AM

ca
ch

e
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Measurement technique

Attacker can exploit cache-induced crosstalk as 
an input or as an output:

• Effect of the cache on the victim

• Effect of victim on the cache

Attacker Victim

AttackerVictim
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Evict+Time: Measuring effect of cache on encryption
Attacker manipulates cache states and measures effect on victim’s running time.

D
R

AM
ca

ch
e

1. Victim’s 
data fully 
cached

2. Attacker 
evicts 
victim’s 
block

3. Attacker 
times the 
victim’s 
next run. 
Slowdown?



36

Prime+Probe: Measuring effect of encryption on cache
Attacker checks which of its own data was evicted by the victim.

D
R

AM
ca

ch
e

1. Fill cache
with attacker’s 
data
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Prime+Probe: Measuring effect of encryption on cache
Attacker checks which of its own data was evicted by the victim.

D
R

AM
ca

ch
e

2. Trigger a 
single 
encryption

1. Fill cache
with attacker’s 
data
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Prime+Probe: Measuring effect of encryption on cache
Attacker checks which of its own data was evicted by the victim.

D
R

AM
ca

ch
e

2. Trigger a 
single 
encryption

3. Access 
attacker 
memory 
again and 
see which 
cache sets 
are slow

1. Fill cache
with attacker’s 
data
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Experimental results [Osvik Shamir Tromer 05]
[Tromer Osvik Shamir 09]

• Attack on OpenSLL AES encryption library call:
Full key extracted from 13ms of measurements (300 encryptions)

• Attack on an AES encrypted filesystem (Linux dm-crypt):
Full key extracted from 65ms of measurements (800 I/O ops)

Measuring a “black box” OpenSSL encryption on Athlon 64, using 10,000 samples. Horizontal axis: 
evicted cache set. Vertical axis: p[0] (left), p[5] (right).Brightness: encryption time (normalized)

Secret key byte k[0]=0x00 Secret key byte k[5]=0x50
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Extension: “Hyper Attacks”

• Obtaining parallelism:
– HyperThreading  (simultaneous multithreading)
– Multi-core, shared caches, cache coherence
– (Also: interrupts, scheduler)

• Attack vector:
– Monitor cache statistics in real time
– Encryption process is not communicating with 

anyone 
(no I/O, no IPC).

– No special measurement equipment
– No knowledge of either plaintext of ciphertext
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• “Hyper Attack” attack on AES
(independent process doing batch encryption of text):

Recovery of 45.7 key bits in one minute.

Experimental results
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Implications?
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Implications

• Multiuser systems (e.g, Android)

• Untrusted code, even if sandboxed  
(e.g., ActiveX, Java applets, managed .NET, 
JavaScript, Google Native Client, Silverlight)

• Digital right management
The trusted path is leaky 
(even if verified by TPM attestation, etc.)

• Remote network attacks
Virtual machines
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ProcessProcessProcessProcessProcessProcess

OS services

OS kernel OS kernel

Virtualization

CPU Memory Devices

OS services

Hypervisor

Touted for its security benefits:
• Isolation
• Sandboxing
• Management
• Monitoring
• Recovery
• Forensics (replay)
All true.

But many side-channel
attacks are
oblivious to virtualization.
(It’s the same
underlying hardware!)

This creates inherent new risks.



45

Architectural attacks in cloud computing: difficulties

• How can the attacker reach a target VM?
• How to exploit it? Practical difficulties:

– Core migration
– Extra layer of page-table indirection
– Coarse hypervisor scheduler
– Load fluctuations
– Choice of CPU

• Is the “cloud” really vulnerable?
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Demonstrated using Amazon EC2 as cast study:

• Cloud cartography
Mapping the structure of the “cloud” and
locating a target on the map. 

• Placement vulnerabilities
An attacker can place his VM on the same physical
machine as a target VM (40% success for a few dollars).

• Cross-VM exfiltration
Once VMs are co-resident, information and secret keys
can be exfiltrated across VM boundary.
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Cloud cartography

Where in the world is the target VM, and how can I get there?

• On EC2, VMs can be co-resident only if they have identical 
creation parameters:
– Region (US/Europe)
– Availability zone (data center)
– Instance type (machine pool)

• The cloud-internal IP addresses
assigned to VMs are strongly
correlated with their creation
parameters.

Mapping out this correlation:
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Cloud cartography (example)

IP address (position) vs. zone (color)

IP address (position) vs. instance type (color)

zone 2zone 3zone 1

Deduced:
Heuristic rules for mapping IP address to creation parameters.



49

Achieving co-residence

• Overall strategy:
– Derive target’s creation parameters
– Create similar VMs until co-residence is detected. 

• Improvement:
– Target fresh (recently-created) instances, exploiting 

EC2’s sequential assignment strategy
– Conveniently, one can often trigger new creation of new 

VMs by the victim, by inducing load (e.g., RightScale).

• Success in hitting a given (fresh) target:
~40% for a few dollars
Reliable across EC2 zones, accounts and times of day.
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Detecting co-residence

• EC2-specific:
– Internal IP address are close

• Xen-specific:
– Obtain and compare Xen Dom0 address

• Generic:
– Network latency

– Cross-VM architectural channels:
send HTTP requests to target and observe correlation 
with cache utilization
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Exploiting co-residence: cross-VM attacks

• Demonstrated:
[Ristenpart Tromer Shaham Savage ‘09]

[Zhang Juels Reiter Ristenpart ‘12]

– Measuring VMs load (average/transient)
– Estimating web server traffic
– Robust cross-VM covert channel
– Detecting keystroke timing in an SSH

session across VMs 
(on a similarly-configured Xen box)

→ keystroke recovery [Song Wagner Tian 01]

– Stealing ElGamal secret keys[Zhang Juels Reiter Ristenpart 2012] 

– Stealing RSA secret keys[Inci Gulmezoglu Irazoqui Eisenbarth Sunar 2015]

– Stealing AES secret keys [Irazoqui Inci Eisenbarth Sunar 2014]

http requests per minute
0 50 100 200

m
ea

su
re

m
en

t
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Architectural attacks (continued)
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L3 Flush+Reload attack [Yarom Falkner 2014]

• Target outermost cache, shared between all 
CPU cores (typically L3)

• RSA key extraction from GnuPG 1.4.13
• Target specific memory block (instead of 

cache set)
• Exploits memory deduplication (content-

based page sharing)
– Common code, libraries, data across VMs
– Supposedly safe (nominally, no new information 

flow)
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L3 flush+reload attack (cont.)
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