

Information Security – Theory vs. Reality

0368-4474, Winter 2015-2016

Lecture 5: Side channels: memory, taxonomy

Lecturer: Eran Tromer

More architectural side channels + Example of a non-cryptographic attack

TENEX directory password validation, inside a system call:

```
check_password(char* given_pass) {
    ...
    for (i=0; i<=strlen(correct_pass); i++)
        if (correct_pass[i] != given_pass[i]) {
            sleep (3);
            return EACCESS; // access denied
        }
    return 0;
}</pre>
```

Attack each byte at a turn, by placing given_pass on a page boundary.

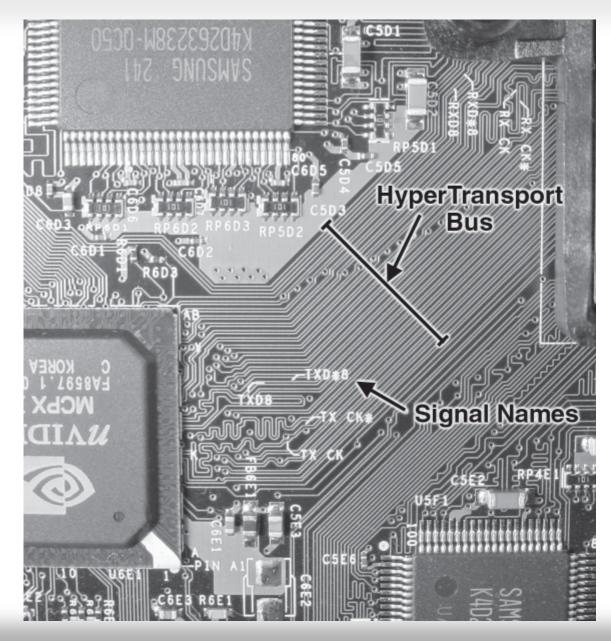
- Timing due to page fault
- Timing due to TLB miss
- Crash due to page fault
- Leftover page status after page fault

Information leakage from memory and storage

Bypassing memory/storage access controls

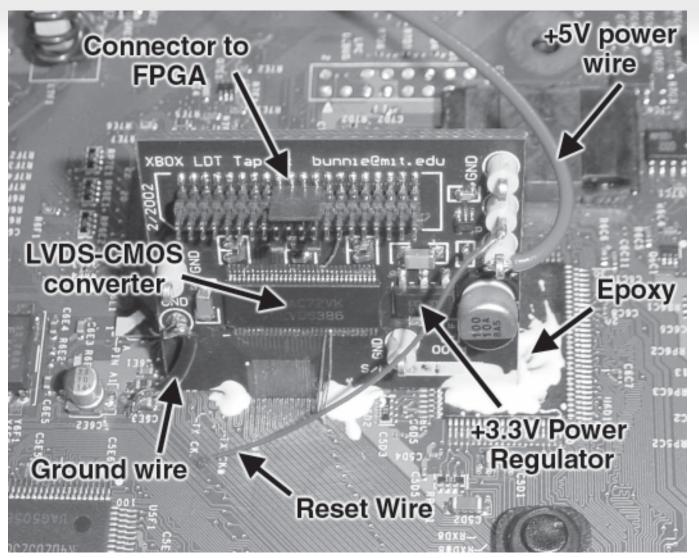
While system operates, DRAM is protected by CPU and OS. Can be circumvented by:

- Hardware snooping
- Data remanence: accessing residual data after
 - system shutdown
 - (attempted) logical erasure
 - (attempted) physical erasure



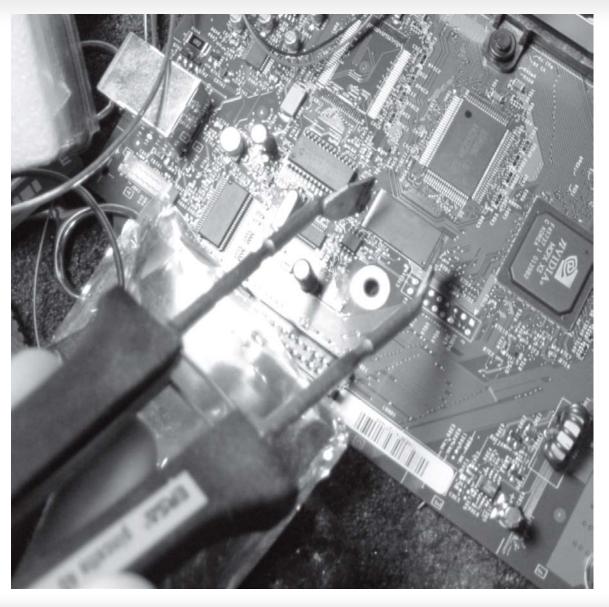
DRAM memory bus analyzers

Tapping bus lines on printed circuit boards



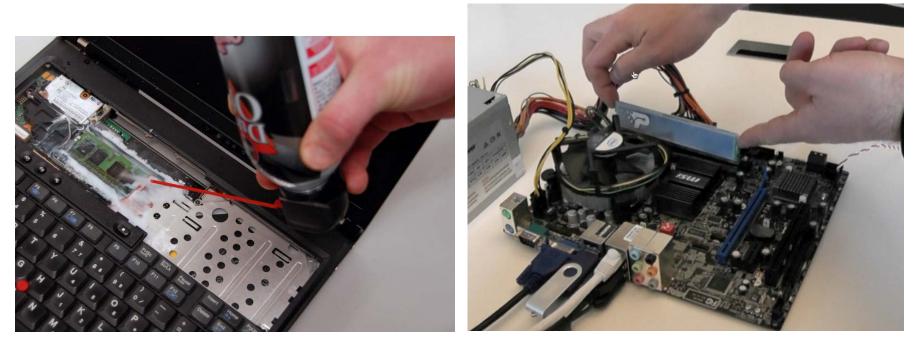
Xbox HyperTransport bus traces

[Andrew "bunnie" Huang", *Hacking the Xbox*]

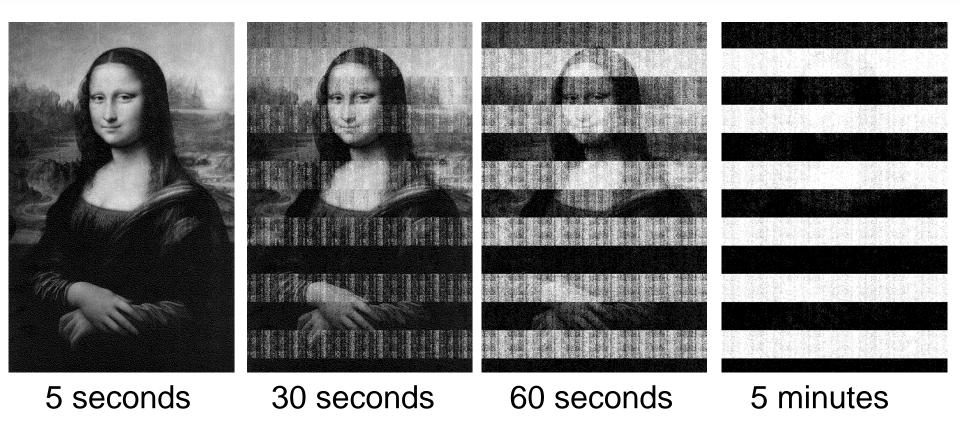

Tapping bus lines on printed circuit boards (cont.)

HyperTransport tap board mounted on the Xbox motherboard. [Andrew "bunnie" Huang", *Hacking the Xbox*]

Directly reading non-volatile memory chips (ROM, EPROM, EEPROM, flash)


Removing the Xbox FLASH ROM with a tweezer-style soldering iron. [Andrew "bunnie" Huang", *Hacking the Xbox*]

DRAM data remanence ("cold boot" attack)


- Freeze the state of volatile DRAM and read it on a different machine
 - Cold boot attack (literally freeze)
 - Keep power using capacitor

[Halderman et al., Lest We Remember: Cold Boot Attacks on Encryption Keys, 2008]

DRAM data remanence ("cold boot" attack), example of memory decay

[Halderman et al., Lest We Remember: Cold Boot Attacks on Encryption Keys, 2008]

SRAM data remanence

- Data remanence in SRAM
 - Low temperature data remanence is dangerous to tamper resistant devices which store keys and secret data in a battery backed-up SRAM
 - Long period of time data storage causes the data to be "burnedin" and likely to appear after power up; dangerous to secure devices which store keys at the same memory location for years
- Experimental example Eight SRAM samples were tested at different conditions
 - at room temperature the retention time varies from 0.1 to 10 sec
 - cooling down to -20°C increases the retention time to 1...1000 sec, while at -50°C the data retention time is 10 sec to 10 hours
 - grounding the power supply pin reduces the retention time

Data remanence: continued

Remanence in magnetic hard disk

- Residual bias in magnetic field
- Imperfect alignment of write head on track

 \rightarrow using high-precision equipment, can peel current data layer and access prior data.

Aided by error-correcting codes.

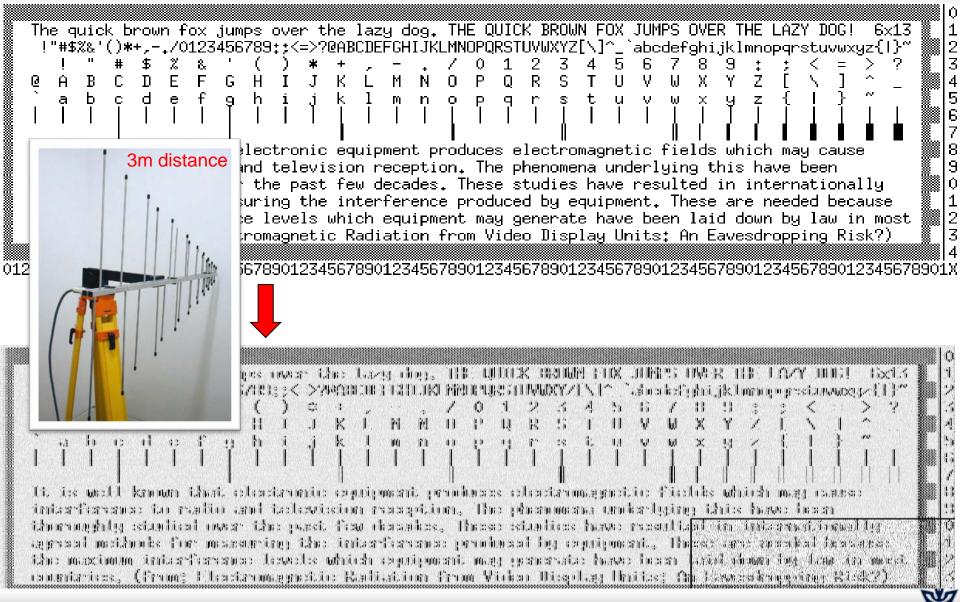
Remanence at higher levels

- Memory cell
- Smart memory
 - Flash Translation Layer
 - Bad-sector handling
 - Hardware buffers
 - Battery-backed buffers
 - Hybrid disks (HDD+SSD)
- Filesystem (undelete an erased file)
- Application-level (backups, revisions)`

Taxonomy of side/covert channels

Side/covert channels: physical

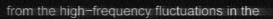
- Electromagnetic (radiated emanations)
 - Computation
 - Peripherals
 CRT screen electron gun (van Eck), CRT/LCD screen cable, keyboards, printers
- Electric (conducted emanations)
 - Power
 - Ground


(Chassis, shields, cables, adjacent wall socket)

- Mechanical
 - Acoustic
 - Voltage regulators
 - Peripherals (keyboards, printers)
 - Vibrations
 - On-screen keyboards

- Thermal
 - Between cores
 - Between computers
- Optical
 - Status LEDs
 - CRT screens

Electromagnetic "van Eck" attack on analog CRT screen [Markus Kuhn, Compromising emanations: eavesdropping risks of computer displays, 2003]


Reflected optical emanations from CRT

[Markus Kuhn, Compromising emanations: eavesdropping risks of computer displays, 2003]

CRT 1m from wall, photodetector 1.5m from wall

G

B

light emitted by a cathode-ray tube computer monitor

which I bicked up as a diffuse reflection from a nearby wall

arkus Kuhn, University of Cambridge, Computer Laboratory, 2001

Side/covert channels: (micro)architecture

- Data cache
- Instruction cache
- DRAM contention
- Branch predictor
- Functional units
 - ALU
- Paging mechanism
 - Page faults
 - Table Lookaside Buffer
- Memory prefetching
- Hard disks
 - Contention
 - Head movement

Side/covert channels: OS / VMM / storage virtualization

Scheduler

- Assists other attacks (e.g., temporal resolution for cache attack)
- Directly exploitable

- Deduplication
 - Assists other attacks
 - Directly exploitable (example: cloud storage dedup)

Side/covert channels: other

- Data remanence
 - Hard disks magnetic remnants
 - DRAM/SRAM cells persistance
 - Block remapping
- Timing
 - Nominal computation
 - Optimizations
 - Contention and variable-time operations
 - Error handling

Often can be done over a network.

- Communication (nominally or by other channels)
 - Data
 - Metadata
 - source, destination
 - flags
 - timing
 - size
 - after compression...
 - Protocol recognition
 - Deanonymization
 - Tor

