

Information Security – Theory vs. Reality

0368-4474, Winter 2015-2016

Lecture 6: Physical Side Channel Attacks on PCs

Guest lecturer: Lev Pachmanov

Side channel attacks

Traditional side channel attacks methodology

- 1. Grab/borrow/steal device
- 2. Find key-dependent instruction
- Record emanations using high-bandwidth equipment (> clock rate , PC: >2GHz)
- 4. Obtain traces
- 5. Signal and cryptanalytic analysis
- 6. Recover key

Traditional side channel attacks methodology

- 1. Grab/borrow/steal device
- 2. Find key-dependent instruction
- Record emanations using high-bandwidth equipment (> clock rate , PC: >2GHz)
- 4. Obtain traces
- 5. Signal and cryptanalytic analysis
- 6. Recover key

Traditional side channel attacks methodology

- 1. Grab/borrow/steal device-
- 2. Find key-dependent instruction
- Record emanations using high-bandwidth equipment (> clock rate , PC: >2GHz)
- 4. Obtain traces
- 5. Signal and cryptanalytic analysis
- 6. Recover key

Complex electronics running complicated software (in parallel)

VS.

Measuring a 2GHz PC requires expansive and bulky equipment (compared to a 100 MHz smart card)

Our results

- Channels for attacking PCs
 - Ground potential (chassis and others)
 - Power
 - Electromagnetic
 - Acoustic
- Exploited via low-bandwidth cryptanalytic attacks
 - Adaptive attack (50 kHz bandwidth) [Genkin Shamir Tromer '14]
 - Non-adaptive attacks (1.5 MHz bandwidth)
 [Genkin Pipman Tromer '14] [Genkin Pachmanov Pipman Tromer '15]
- Common cryptographic software
 - GnuPG 1.4.13-1.4.16 (CVE 2013-4576, 2014-3591, 2014-5270)
 - RSA and ElGamal, various implementations
 - Worked with GnuPG developers to mitigate the attacks
- Applicable to various laptop models

Chassis-potential channel

Ground-potential analysis

- Attenuating EMI emanations
 "Unwanted currents or electromagnetic fields? Dump them to the circuit ground!"
 (Bypass capacitors, RF shields, ...)
- Device is grounded, but its "ground" potential fluctuates relative to the mains earth ground.

Computation

affects currents and EM fields

dumped to device ground

connected to conductive chassis

Key = **∢**..... 101011...

Connecting to the chassis

Demo: distinguishing instructions

Distinguishing various CPU operations

Low-bandwidth leakage of RSA

Definitions (RSA)

Key setup

- sk: random primes p, q,
 private exponent d
- **pk:** n = pq, public

exponent e

Encryption

 $c = m^e \mod n$

Decryption

 $m = c^d \mod n$

A quicker way used by most implementations $m_p = c^{d_p} \mod p$ $m_q = c^{d_q} \mod q$ Obtain *m* using Chinese Remainder Theorem

GnuPG RSA key distinguishability

Can distinguish between:

- 1. Decryptions and other operations
- 2. Two exponentiations (mod p, mod q)
- 3. Different keys
- 4. Different primes

Key extraction

GnuPG modular exponentiation

GnuPG modular exponentiation

Non-adaptive key extraction (similar to [Yen, Lien, Moon and Ha 05])

Non-adaptive ciphertext choice $c \equiv -1 \mod p$ (similar to [YLMH05]):

- RSA: c = N 1
- ElGamal: c = p 1

Algorithm	Attack type	# ciphertexts	Time	BW	Cipher	Ref
Sqr-and- always-mlt	Non-adaptive chosen ciphertext	1	3 sec	2 MHz	ElGamal, RSA	[GPT14]

Non-adaptive ciphertext choice $c \equiv -1 \mod p$ (similar to [YLMH05]):

- RSA: c = N 1
- ElGamal: c = p 1

Algorithm	Attack type	# ciphertexts	Time	BW	Cipher	Ref
Sqr-and- always-mlt	Non-adaptive chosen ciphertext	1	3 sec	2 MHz	ElGamal, RSA	[GPT14]
Sliding / fixed window	Non-adaptive chosen ciphertext	2 ^{w-1} (usually 8 or 16)	30 sec	2 MHz	ElGamal, RSA	[GPPT15]

Non-adaptive ciphertext choice $c \equiv -1 \mod p$ (similar to [YLMH05]):

- RSA: c = N 1
- ElGamal: c = p 1

Algorithm	Attack type	# ciphertexts	Time	BW	Cipher	Ref
Sqr-and- always-mlt	Non-adaptive chosen ciphertext	1	3 sec	2 MHz	ElGamal, RSA	[GPT14]
Sliding / fixed window	Non-adaptive chosen ciphertext	2 ^{w-1} (usually 8 or 16)	30 sec	2 MHz	ElGamal, RSA	[GPPT15]
Sqr-and- always-mlt	Adaptive chosen ciphertext	Key size 4	1 hour	50 kHz	RSA	[GST14]

Non-adaptive ciphertext choice $c \equiv -1 \mod p$ (similar to [YLMH05]):

- RSA: c = N 1
- ElGamal: c = p 1

Algorithm	Attack type	# ciphertexts	Time	BW	Cipher	Ref
Sqr-and- always-mlt	Non-adaptive chosen ciphertext	1	3 sec	2 MHz	ElGamal, RSA	[GPT14]
Sliding / fixed window	Non-adaptive chosen ciphertext	2 ^{w-1} (usually 8 or 16)	30 sec	2 MHz	ElGamal, RSA	[GPPT15]
Sqr-and- always-mlt	Adaptive chosen ciphertext	Key size 4	1 hour	50 kHz	RSA	[GST14]

Empirical results: ground-potential attacks

Demo: RSA key extraction from chassis potential

Reading the secret key (non-adaptive attack)

Reading the secret key (non-adaptive attack)

- Acquire trace
- Filter around carrier (1.7 MHz)
- FM demodulation
- Read out bits ("simple ground analysis")

RSA and ElGamal key extraction in a few seconds using <u>human touch</u> (non-adaptive attack)

Ground-potential analysis

 Attenuating EMI emanations
 "Unwanted currents or electromagnetic fields? Dump them to the circuit ground!"
 (Bypass capacitors, RF shields, ...)

• Device is grounded, but its "ground" potential fluctuates relative to the mains earth ground.

Computation

- affects currents and EM fields
- dumped to device ground

connected to conductive chassis

Ground-potential analysis

- Attenuating EMI emanations
 "Unwanted currents or electromagnetic fields? Dump them to the circuit ground!"
 (Bypass capacitors, RF shields, ...)
- Device is grounded, but its "ground" potential fluctuates relative to the mains earth ground.

Computation

device ground

conductive chassis

currents and EM fields

affects

dumped to

connected to

connected to

Even when no data, or port is turned off.

RSA and ElGamal key extraction in a few seconds using the far end of 10 meter network cable

Empirical results: electromagnetic attacks

Electromagnetic key extraction

- Currents inside the target create electromagnetic waves.
- Can be detected using an electromagnetic probe (e.g., a loop of cable).

Portable Instrument for Trace Acquisition

Key extraction via commodity radio receiver

Acoustic cryptanalysis

Acoustic emanations from PCs

• Noisy electrical components in the voltage regulator

 Commonly known as "coil-whine" but also originates from capacitors

Experimental setup (example)

Adaptive key extraction

Severe attenuation of high frequency signals.

- Effective bandwidth of 50 kHZ
- Cannot observe a single squaring

Make the entire decryption depend on a single attacked bit

- Extreme version of self-amplification
- Extract the prime q bit-by-bit (adaptive chosen ciphertext)
- Total #measurements: 2048 decryptions for RSA-4096 (~1 hour)

An adaptive chosen-ciphertext attack

An adaptive chosen-ciphertext attack

Bit distinguisher oracle Total #measurements: 111 ... 1 С Key size Error correction $2 \cdot 2$ Coppersmith Just q lattice reduction: half the bits suffice **Overall: 2048 decryptions** for RSA-4096 (~1 hour) $\begin{array}{ll} 0 & if \ c > q \\ 1 & if \ c \le q \end{array}$

GnuPG RSA decryption - $m_q = c^{d_q} \mod q$

Extracting q_i (simplified)

Extracting q_i

Extracting q_i (problem)

Empirical results: acoustic attacks

Distinguishing a key bit by a spectral signature

Demo: key extraction Acoustic: results

RSA 4096-bit key extraction from **<u>1 meter</u>** away using a microphone

Acoustic: results

RSA 4096-bit key extraction from **10 meters** away using a parabolic microphone

Acoustic: results

RSA 4096-bit key extraction from **30cm** away using a **smartphone**

Countermeasures

Countermeasures

Common suggestions

- 1. Shielding
 - EM (Faraday cages), ground difficult and expensive
 - Acoustic? Vents!
- 2. Add analog noise (expensive, correlations remain)
- 3. Parallel software load (inadequate, may help attacker)

Attacks rely on decryption of chosen ciphertexts.

Solution: ciphertext randomization use equivalent but random-looking ciphertexts

- Negligible slowdown for RSA
- x2 slowdown for ElGamal

- Effective countermeasure: ciphertext randomization (added in GnuPG 1.4.16)
- Given a ciphertext *c*:
- 1. Generate a random number r and compute r^e
- 2. Decrypt $r^e \cdot c$ and obtain m'
- 3. Output $m' \cdot r^{-1}$

Works since
$$ed = 1 \mod \varphi(n)$$
 thus:
 $(r^e \cdot c)^d \cdot r^{-1} \mod n = r^{ed} \cdot r^{-1} \cdot c^d \mod n$
 $= r \cdot r^{-1} \cdot c^d \mod n$
 $= m$

tau.ac.il/~tromer/acoustic CRYPTO'14 CVE 2013-4576
tau.ac.il/~tromer/handsoff CHES'14 CVE-2014-5270
tau.ac.il/~tromer/radioexp CHES'15 CVE-2014-3591

