
40

Proof-carrying data: Secure Proof-carrying data: Secure Proof-carrying data: Secure
computation on untrusted computation on untrusted computation on untrusted
platforms | platforms | platforms |

When running software applications and services, we rely on the underlying
execution platform: the hardware and the lower levels of the software stack.
The execution platform is susceptible to a wide range of threats, ranging from

accidental bugs, faults, and leaks to maliciously induced Trojan horses. The problem is
aggravated by growing system complexity and by increasingly pertinent outsourcing
and supply chain consideration. Traditional mechanisms, which painstakingly validate all
system components, are expensive and limited in applicability.

What if the platform assurance
problem is just too hard? Do we have
any hope of securely running software
when we cannot trust the underlying
hardware, hypervisor, kernel, libraries,
and compilers?

This article will discuss a potential
approach for doing just so: conducting
trustworthy computation on untrusted
execution platforms. The approach,
proof-carrying data (PCD), circumnavi-

gates the threat of faults and
leakage by reasoning solely
about properties of a computa-
tion’s output data, regardless
of the process that produced
it. In PCD, the system designer
prescribes the desired proper-
ties of the computation’s out-
puts. These properties are then
enforced using cryptographic
proofs attached to all data flow-
ing through the system and
verified at the system perimeter
as well as internal nodes.

What if the platform assurance
problem is just too hard? Do we have
any hope of securely running software
when we cannot trust the underlying
hardware, hypervisor, kernel, libraries,
and compilers?

This article will discuss a potential
approach for doing just so: conducting
trustworthy computation on untrusted
execution platforms. The approach,
proof-carrying data (PCD), circumnavi

When running software applications and services, we rely on the underlying
execution platform: the hardware and the lower levels of the software stack.
The execution platform is susceptible to a wide range of threats, ranging from

accidental bugs, faults, and leaks to maliciously induced Trojan horses. The problem is
aggravated by growing system complexity and by increasingly pertinent outsourcing
and supply chain consideration. Traditional mechanisms, which painstakingly validate all
system components, are expensive and limited in applicability.

What if the platform assurance

40

What if the platform assurance
problem is just too hard? Do we have
any hope of securely running software
when we cannot trust the underlying
hardware, hypervisor, kernel, libraries,
and compilers?

This article will discuss a potential
approach for doing just so: conducting
trustworthy computation on untrusted
execution platforms. The approach,
proof-carrying data (PCD), circumnavi

 The Next Wave | Vol. 19 No. 2 | 2012 | 41

FEATURE

1. introduction
Integrity of data, information flow control, and fault
isolation are three examples of security properties
of which attainment, in the general case and under
minimal assumptions, is a major open problem. Even
when particular solutions for specific cases are known,
they tend to rely on platform trust assumptions (for
example, the kernel is trusted, the central processing
unit is trusted), and even then they cannot cross trust
boundaries between mutually untrusting parties. For
example, in cloud computing, clients are typically
interested in both integrity [1] and confidentiality [2]
when they delegate their own computations to the
untrusted workers.

Minimal trust assumptions and very strong cer-
tification guarantees are sometimes almost a basic
requirement. For example, within the information
technology supply chain, faults can be devastating
to security [3] and hard to detect; moreover, hard-
ware and software components are often produced in
faraway lands from parts of uncertain origin where
it is hard to carry out quality assurance in case trust
is not available [4]. This all implies risks to the users
and organizations [5, 6, 7, 8].

2. Goals
In order to address the aforementioned problems, we
propose the following goal:

Goal. A compiler that, given a protocol for a
distributed computation and a security property
(in the form of a predicate to be verified at every
node of the computation), yields an augmented
protocol that enforces the security property.

We wish this compiler to respect the original
distributed computation (that is, the compiler should
preserve the computation’s communication graph, dy-
namics, and efficiency). This implies, for example, that
scalability is preserved: If the original computation can
be jointly conducted by numerous parties, then the
compiler produces a secure distributed computation
that has the same property.

3. Our approach
We propose a generic solution approach, proof-
carrying data (PCD), to solve the aforementioned

problems by defining appropriate checks to be per-
formed on each party’s computation and then letting
parties attach proofs of correctness to each message.
Every piece of data flowing through a distributed
computation is augmented by a short proof string
that certifies the data as compliant with some desired
property. These proofs can be propagated and ag-
gregated “on the fly,” as the computation proceeds.
These proofs may be between components of a single
platform or between components of mutually un-
trusting platforms, thereby extending trust to any
distributed computation.

But what “properties” do we consider? Certainly
we want to consider the property that every node
carried out its own computation without making any
mistakes. More generally, we consider properties that
can be expressed as a requirement that every step in
the computation satisfies some compliance predicate
C computable in polynomial time; we call this notion
C-compliance. Thus, each party receives inputs that
are augmented with proof strings, computes some
outputs, and augments each of the outputs with a
new proof string that will convince the next party (or
the verifier of the ultimate output) that the output is
consistent with a C-compliant computation. See figure
1 for a high-level diagram of this idea.

For example, C could simply require that each
party’s computation was carried out without errors.
Or, C could require that not only each party’s com-
putation was carried out without errors, but also that
the program run by each party carried a signature
valid under the system administrator’s public key; in
such a case, the local program supplied by each party
would be the combination of the program and the
signature. Or, C could alternatively require that each
party’s computation involved a binary produced by

Final
veri�er

Accept
or

Reject

m
1 , π

1

m 2
, π 2

m3 , π3

m 4
, π 4

m
5 , π

5 m 6
, π 6

m
7 , π

7

Figure 1. A distributed computation in which each party sends
a message mi that is augmented with a short proof πi . The final
verifier inspects the computation’s outputs in order to decide
whether they are “compliant” or not.

42

Proof-carrying data: Secure computation on untrusted platforms

a compiler prescribed by the system administrator,
which is known to perform certain tests on the code to
be compiled (for example, type safety, static analysis,
dynamic enforcement). Note that a party’s local pro-
gram could be a combination of code, human inputs,
and randomness.

To formalize the above, we define and construct
a PCD scheme: A cryptographic primitive that fully
encapsulates the proof system machinery and pro-
vides a simple but very general “interface” to be used
in applications.a

Our construction does require a minimal trusted
setup: Every party should have black-box access to
a simple signed-input-and-randomness functional-
ity, which signs every input it receives along with
some freshly-generated random bits. This is similar to
standard functionality of cryptographic signing tokens
and can also be implemented using Trusted Platform
Module chips or a trusted party.

3.1. Our results

We introduce the generic approach of PCD for secur-
ing distributed computations and describing the
cryptographic primitive of PCD schemes to capture
this approach:

Theorem (informal). PCD schemes
can be constructed under standard
cryptographic assumptions, given
signed-input-and-randomness tokens.

3.2. The construction and its practicality

We do not rely on the traditional notion of a proof; in-
stead, we rely on computationally sound proofs. These
are proofs that always exist for true theorems and can
be found efficiently given the appropriate witness. For
false theorems, however, we only have the guarantee
that no efficient procedure will be able to write a proof
that makes us accept with more than negligible prob-
ability. Nonetheless, computationally sound proofs
are just as good as traditional ones, for we are not
interested in being protected against infeasible attack
procedures, nor do we mind accepting a false theorem
with, say, 2-100 probability.

The advantage of settling for computationally sound
proofs is that they can be much shorter than the com-
putation to which they attest and can be verified much
more quickly than repeating the entire computation.
To this end, we use probabilistically checkable proofs
(PCPs) [11, 12], which originate in the field of com-
putational complexity and its cryptographic exten-
sions [9, 13, 14].

While our initial results establish theoretical foun-
dations for PCD and show their possibility in prin-
ciple, the aforementioned PCPs are computationally
heavy and are notorious for being efficient only in the
asymptotic sense, and they are not yet of practical rel-
evance. Motivated by the potential impact of a practi-
cal PCD scheme, we have thus taken on the challenge
of constructing a practical PCP system, in an ongoing
collaboration with Professor Eli Ben-Sasson and a
team of programmers at the Technion.

4. related approaches
Cryptographic tools. Secure multiparty computation
[15, 16, 17] considers the problem of secure function
evaluation; our setting is not one function evaluation,
but ensuring a single invariant (that is, C-compli-
ance) through many interactions and computations
between parties.

Platforms, languages, and static analysis. Integ-
rity can be achieved by running on suitable fault-
tolerant systems. Confidentiality can be achieved
by platforms with suitable information flow control
mechanisms following [18, 19] (for example, at the
operating-system level [20, 21]). Various invariants
can be achieved by statically analyzing programs and
by programming language mechanisms such as type
systems following [22, 23]. The inherent limitation of
these approaches is that the output of such computa-
tion can be trusted only if one trusts the whole plat-
form that executed it; this renders them ineffective in
the setting of mutually untrusting distributed parties.

run-time approaches. In proof-carrying code (PCC)
[24], the code producer augments the code with for-
mal, efficiently checkable proofs of the desired prop-
erties (typically, using the aforementioned language
or static analysis techniques); PCC and PCD are

a. PCD schemes generalize the “computationally-sound proofs” of Micali [9], which consider only the “one-hop” case of a single prover
and a single verifier and also generalize the “incrementally verifiable computation” of Valiant [10], which considers the case of an a-priori
fixed sequence of computations.

 The Next Wave | Vol. 19 No. 2 | 2012 | 43

FEATURE

complementary techniques, in the sense that PCD can
enforce properties expressed via PCC. Dynamic analy-
sis monitors the properties of a program’s execution
at run-time (for example, [25, 26, 27]). Our approach
can be interpreted as extending dynamic analysis to
the distributed setting, by allowing parties to (implic-
itly) monitor the program execution of all prior parties
without actually being present during the executions.
The Fabric system [28] is similar to PCD in motiva-
tion, but takes a very different approach: Fabric aims
to make maximal use of distributed-system given trust
constraints, while PCD creates new trust relations.

5. The road onward
We envision PCD as a framework for achieving secu-
rity properties in a nonconventional way that cir-
cumvents many difficulties with current approaches.
In PCD, faults and leakage are acknowledged as an
expected occurrence, and rendered inconsequential
by reasoning about properties of data that are inde-
pendent of the preceding computation. The system
designer prescribes the desired properties of the
computation’s output; proofs of these properties are at-
tached to the data flowing through the system and are
mutually verified by the system’s components.

We have already shown explicit constructions of
PCD, under standard cryptographic assumptions, in
the model where parties have black-box access to a
simple hardware token. The theoretical problem of
weakening this requirement, or formally proving that
it is (in some sense) necessary, remains open. In recent
work, we show how to resolve this problem in the case
of a single party’s computation [29].

As for practical realizations, since there is evidence
that the use of PCPs for achieving short proofs is
inherent [30], we are tackling head-on the challenge of
making PCPs practical. We are also studying devising
ways to express the security properties, to be enforced
by PCD, using practical programming languages such
as C++.

In light of these, as real-world practicality of PCD
becomes closer and closer, the task of compliance
engineering becomes an exciting direction. While PCD
provides a protocol compiler to ensure any compliance

predicate in a distributed computation, figuring out
what are useful compliance predicates in this or that
setting is a problem in its own right.

We already envision problem domains where we
believe enforcing compliance predicates will come
a long way toward securing distributed systems in a
strong sense:

 � Multilevel security. PCD may be used for in-
formation flow control. For example, consider
enforcing multilevel security [31, Chap. 8.6] in
a room full of data-processing machines. We
want to publish outputs labeled “nonsecret,” but
are concerned that they may have been tainted
by “secret” information (for example, due to
bugs, via software side channel attacks [32] or,
perhaps, via literal eavesdropping [33, 34, 35]).
PCD then allows you to reduce the problem of
controlling information flow to the problem of
controlling the perimeter of the information
room by ensuring that every network packet
leaving the room is inspected by the PCD verifier
to establish it carries a valid proof.

 � iT supply chain and hardware Trojans. Using
PCD, one can achieve fault isolation and ac-
countability at the level of system components
(for example, chips or software modules) by
having each component augment every output
with a proof that its computation, including all
history it relied on, was correct. Any fault in the
computation, malicious or otherwise, will then
be identified by the first nonfaulty subsequent
component. Note that even the PCD verifiers
themselves do not have to be trusted except for
the very last one.

 � Distributed type safety. Language-based type-
safety mechanisms have tremendous expressive
power, but are targeted at the case where the
underlying execution platform can be trusted to
enforce type rules. Thus, they typically cannot
be applied across distributed systems consist-
ing of multiple mutually untrusting execution
platforms. This barrier can be surmounted by
using PCD to augment typed values passing
between systems with proofs for the correctness
of the type.

44

Proof-carrying data: Secure computation on untrusted platforms

Efforts to understand how to think about com-
pliance in concrete problem domains are likely to
uncover common problems and corresponding
design patterns [36], thus improving our overall abil-
ity to correctly phrase desired security properties as
compliance predicates.

We thus pose the following challenge: Given a
genie that grants every wish expressed as a compliance
predicate on distributed computations, what compli-
ance predicates would you wish for in order to achieve
the security properties your system needs?

Acknowledgments
This research was partially supported by the Check
Point Institute for Information Security, the Israeli
Centers of Research Excellence program (center No.
4/11), the European Community’s Seventh Frame-
work Programme grant 240258, the National Science
Foundation (NSF) grant NSF-CNS-0808907, and the
Air Force Research Laboratory (AFRL) grant FA8750-
08-1-0088. Views and conclusions contained here are
those of the authors and should not be interpreted as
necessarily representing the official policies or en-
dorsements, either express or implied, of AFRL, NSF,
the US government or any of its agencies.

About the authors
Alessandro Chiesa is a second-year doctoral student
in the Theory of Computation group in the Com-
puter Science and Artificial Intelligence Laboratory
(CSAIL) at Massachusetts Institute of Technology
(MIT). He is interested in cryptography, complexity
theory, quantum computation, mechanism design,
algorithms, and security. He can be reached at MIT
CSAIL, alexch@csail.mit.edu.

Eran Tromer is a faculty member at the School of
Computer Science at Tel Aviv University. His research
focus is information security, cryptography, and
algorithms. He is particularly interested in what hap-
pens when cryptographic systems meet the real world,
where computation is faulty and leaky. He can be
reached at Tel Aviv University, tromer@cs.tau.ac.il.

references
[1] Ferdowsi A. S3 data corruption? Amazon Web Ser-
vices (discussion forum). 2008 Jun 22. Available at:
https://forums.aws.amazon.com/thread.jspa?threadID=
22709&start=0&tstart=0

[2] Ristenpart T, Tromer E, Shacham H, Savage S. Hey, you,
get off of my cloud! Exploring information leakage in third-
party compute clouds. In: Proceedings of the 16th ACM
Conference on Computer and Communications Security; Nov
2009; Chicago, IL. p. 199–212. Available at: http://cseweb.
ucsd.edu/~hovav/dist/cloudsec.pdf

[3] Biham E, Shamir A. Differential fault analysis of secret
key cryptosystems. In: Kaliski BS Jr., editor. Advances in
Cryptology—CRYPTO ’97 (Proceedings of the 17th Annual
International Cryptology Conference; Aug 1997; Santa
Barbara, CA). LNCS, 1294. London (UK): Springer-Verlag;
1997. p. 513–525. DOI: 10.1007/BFb0052259

[4] Collins DR. Trust, a proposed plan for trusted integrated
circuits. Paper presented at a conference; Mar 2006; p.
276–277. Available at: http://oai.dtic.mil/oai/oai?verb=getR
ecord&metadataPrefix=html&identifier=ADA456459

[5] Agrawal D, Baktir S, Karakoyunlu D, Rohatgi P, Sunar
B. Trojan detection using IC fingerprinting. In: Proceedings
of the 2007 IEEE Symposium on Security and Privacy; May
2007; Oakland, CA. p. 296–310. DOI: 10.1109/SP.2007.36

[6] Biham E, Carmeli Y, Shamir A. Bug attacks. In: Wagner
D, editor. Advances in Cryptology—CRYPTO 2008 (Pro-
ceedings of the 28th Annual International Cryptology
Conference; Aug 2008; Santa Barbara, CA). LNCS, 5157.
Berlin (Germany): Springer-Verlag; 2008. p. 221–240. DOI:
10.1007/978-3-540-85174-5_13

[7] King ST, Tucek J, Cozzie A, Grier C, Jiang W, Zhou
Y. Designing and implementing malicious hardware. In:
Proceedings of the First USENIX Workshop on Large-Scale
Exploits and Emergent Threats; Apr 2008; San Francisco,
CA. p. 1–8. Available at: http://www.usenix.org/events/
leet08/tech/full_papers/king/king.pdf

[8] Roy JA, Koushanfar F, Markov IL. Circuit CAD tools as
a security threat. In: Proceedings of the First IEEE Inter-
national Workshop on Hardware-Oriented Security and
Trust; Jun 2008; Anaheim, CA. p. 65–66. DOI: 10.1109/
HST.2008.4559052

[9] Micali S. Computationally sound proofs. SIAM Journal
on Computing. 2000;30(4):1253–1298. DOI: 10.1137/
S0097539795284959

[10] Valiant P. Incrementally verifiable computation or

 The Next Wave | Vol. 19 No. 2 | 2012 | 45

FEATURE

proofs of knowledge imply time/space efficiency. In: Canetti
R, editor. Theory of Cryptography (Proceedings of the Fifth
Theory of Cryptography Conference; Mar 2008; New York,
NY). LNCS, 4948. Berlin (Germany): Springer-Verlag; 2008.
p. 1–18. DOI: 10.1007/978-3-540-78524-8_1

[11] Babai L, Fortnow L, Levin LA, Szegedy M. Check-
ing computations in polylogarithmic time. In: Proceed-
ings of the 23rd Annual ACM Symposium on Theory of
Computing; May 1991; New Orleans, LA. p. 21–32. DOI:
10.1145/103418.103428

[12] Ben-Sasson E, Sudan M. Simple PCPs with poly-log
rate and query complexity. In: Proceedings of the 37th An-
nual ACM Symposium on Theory of Computing; May 2005;
Baltimore, MD. p. 266–275. DOI: 10.1145/1060590.1060631

[13] Kilian J. A note on efficient zero-knowledge proofs and
arguments. In: Proceedings of the 24th Annual ACM Sym-
posium on Theory of Computing; May 1992; Victoria, BC,
Canada. p. 723–732. DOI: 10.1145/129712.129782

[14] Barak B, Goldreich O. Universal arguments and
their applications. In: Proceedings of the 17th IEEE An-
nual Conference on Computational Complexity; May 2002;
Montreal, Quebec , Canada. p. 194–203. DOI: 10.1109/
CCC.2002.1004355

[15] Goldreich O, Micali S, Wigderson A. How to play ANY
mental game. In: Proceedings of the 19th Annual ACM Sym-
posium on Theory of Computing; May 1987; New York, NY.
p. 218–229. DOI: 10.1145/28395.28420

[16] Ben-Or M, Goldwasser S, Wigderson A. Completeness
theorems for non-cryptographic fault-tolerant distributed
computation. In: Proceedings of the 20th Annual ACM Sym-
posium on Theory of Computing; May 1988; Chicago, IL. p.
1–10. DOI: 10.1145/62212.62213

[17] Chaum D, Crépeau C, Damgård I. Multiparty uncondi-
tionally secure protocols. In: Proceedings of the 20th Annual
ACM Symposium on Theory of Computing; May 1988;
Chicago, IL. p. 11–19. DOI: 10.1145/62212.62214

[18] Denning DE, Denning PJ. Certification of programs
for secure information flow. Communications of the ACM.
1977;20(7):504–513. DOI: 10.1145/359636.359712

[19] Myers AC, Liskov B. A decentralized model for
information flow control. In: Proceedings of the 16th
ACM SIGOPS Symposium on Operating Systems Prin-
ciples; Oct 1997; Saint-Malo, France. p. 129–142. DOI:
10.1145/268998.266669

[20] Krohn M, Yip A, Brodsky M, Cliffer N, Kaashoek MF,
Kohler E, Morris R. Information flow control for standard

OS abstractions. In: Proceedings of the 21st ACM SIGOPS
Symposium on Operating Systems Principles; Oct 2007; Ste-
venson, WA. p. 321–334. DOI: 10.1145/1294261.1294293

[21] Zeldovich N, Boyd-Wickizer S, Kohler E, Mazières D.
Making information flow explicit in HiStar. In: Proceedings
of the Seventh USENIX Symposium on Operating Systems
Design and Implementation; Nov 2006; Seattle, WA. p.
19–19. Available at: http://www.usenix.org/event/osdi06/
tech/full_papers/zeldovich/zeldovich.pdf

[22] Andrews GR, Reitman RP. An axiomatic approach to
information flow in programs. ACM Transactions on Pro-
gramming Languages and Systems. 1980;2(1):56–76. DOI:
10.1145/357084.357088

[23] Denning DE. A lattice model of secure information
flow. Communications of the ACM. 1976;19(5):236–243.
DOI: 10.1145/360051.360056

[24] Necula GC. Proof-carrying code. In: Proceedings of
the 24th ACM SIGPLAN-SIGACT Symposium on Principles
of Programming Languages; Jan 1997; Paris, France. p.
106–119. DOI: 10.1145/263699.263712

[25] Nethercote N, Seward J. Valgrind: A framework for
heavyweight dynamic binary instrumentation. In: Proceed-
ings of the 2007 ACM SIGPLAN Conference on Programming
Language Design and Implementation; Jun 2007; San Diego,
CA. p. 89–100. DOI: 10.1145/1250734.1250746

[26] Suh GE, Lee JW, Zhang D, Devadas S. Secure pro-
gram execution via dynamic information flow tracking.
In: Proceedings of the 11th International Conference on
Architectural Support for Programming Languages and
Operating Systems; Oct 2004; Boston, MA. p. 85–96. DOI:
10.1145/1024393.1024404

[27] Kiriansky V, Bruening D, Amarasinghe SP. Secure
execution via program shepherding. In: Proceedings of the
11th USENIX Security Symposium; Aug 2002; San Francisco,
CA. p. 191–206. Available at: http://www.usenix.org/pub-
lications/library/proceedings/sec02/full_papers/kiriansky/
kiriansky_html/index.html

[28] Liu J, George MD, Vikram K, Qi X, Waye L, Myers AC.
Fabric: A platform for secure distributed computation and
storage. In: Proceedings of the 22nd ACM SIGOPS Sympo-
sium on Operating Systems Principles; Oct 2009; Big Sky,
MT. p. 321–334. DOI: 10.1145/1629575.1629606

[29] Bitansky N, Canetti R, Chiesa A, Tromer E. From
extractable collision resistance to succinct non-interactive
arguments of knowledge, and back again. Cryptology ePrint
Archive. 2011;Report 2011/443. Available at: http://eprint.
iacr.org/2011/443

[30] Rothblum GN, Vadhan S. Are PCPs inherent in ef-
ficient arguments? In: Proceedings of the 24th IEEE Annual
Conference on Computational Complexity; Jul 2009; Paris,
France. p. 81–92. DOI: 10.1109/CCC.2009.40

[31] Anderson RJ. Security Engineering: A Guide to Building
Dependable Distributed Systems. 2nd ed. Indianapolis (IN):
Wiley Publishing; 2008. ISBN: 978-0-470-06852-6

[32] Brumley D, Boneh D. Remote timing attacks are
practical. Computer Networks: The International Jour-
nal of Computer and Telecommunications Networking.
2005;48(5):701–716.

[33] LeMay M, Tan J. Acoustic surveillance of physically
unmodified PCs. In: Proceedings of the 2006 International
Conference on Security and Management; Jun 2006; Las

Vegas, NV. p. 328–334. Available at: http://ww1.ucmss.com/
books/LFS/CSREA2006/SAM4311.pdf

[34] Asonov D, Agrawal R. Keyboard acoustic emanations.
In: Proceedings of the 2004 IEEE Symposium on Security and
Privacy; May 2004; Oakland, CA. p. 3–11. DOI: 10.1109/
SECPRI.2004.1301311

[35] Tromer E, Shamir A. Acoustic cryptanalysis: On nosy
people and noisy machines. Presentation at: Eurocrypt 2004
Rump Session; May 2004; Interlaken, Switzerland. Available
at: http://people.csail.mit.edu/tromer/acoustic

[36] Gamma E, Helm R, Johnson R, Vlissides J. Design
Patterns: Elements of Reusable Object-Oriented Software.
Boston (MA): Addison-Wesley Longman Publishing Co.,
Inc.; 1995. ISBN: 9780201633610

Proof-carrying data: Secure computation on untrusted platforms

