
Secure Association for the Internet of Things

Almog Benin Sivan Toledo Eran Tromer
almogbenin@gmail.com stoledo@tau.ac.il tromer@cs.tau.ac.il

Blavatnik School of Computer Science, Tel-Aviv University

Abstract. Existing standards (ZigBee and Bluetooth Low Energy) for
networked low-power wireless devices do not support secure association
(or pairing) of new devices into a network: their association process is
vulnerable to man-in-the-middle attacks. This paper addresses three es-
sential aspects in attaining secure association for such devices.
First, we de�ne a user-interface primitive, oblivious comparison, that
allows users to approve authentic associations and abort compromised
ones. This distills and generalizes several existing approve/abort mech-
anisms, and moreover we experimentally show that OC can be imple-
mented using very little hardware: one LED and one switch.
Second, we provide a new Message Recognition Protocol (MRP) that
allows devices associated using oblivious comparison to exchange au-
thenticated messages without the use of public-key cryptography (which
exceeds the capabilities of many IoT devices). This protocol improves
upon previously proposed MRPs in several respects.
Third, we propose a robust de�nition of security for MRPs that is based
on universal composability, and show that our MRP satis�es this de�ni-
tion.

1 Introduction

Devices that compute and communicate need to ensure that they communicate
with the intended party rather than an attacker. Achieving this goal requires two
main components: a mechanism for the user to specify the intended parties, and a
protocol that allows secure (authenticated and perhaps private) communication
between the intended parties. These should be proven secure under a well-de�ned
model and de�nition, that capture the capabilities of pertinent adversaries. Many
recent work address this challenges for various types for devices; see [32, 6, 20, 34]
for discussions and surveys.

Achieving the same goal with low-power computationally-weak devices with
a very minimal user interface is extremely hard. In fact, the task is considered
so hard that standardization bodies gave up. In both ZigBee and Bluetooth Low
Energy (BLE, also called Bluetooth Smart) the association phase, in which a new
device is added to a mesh network or paired with another device, is completely
vulnerable to simple man-in-the-middle (MITM) attacks1.

The goal of this paper is to show that secure association is possible for the low-
power computationally-weak devices that make up the Internet of Things (IoT),

1 In some cases, this vulnerability is limited to a time window of a few minutes.

2

even if they have a very minimal user interface. Our solutions are applicable to
interoperable devices intended to be deployed by the end consumer. If adopted,
our solutions can rectify severe vulnerabilities in ZigBee and BLE and can secure
emerging IoT standards.

To address this problem, this paper addresses the three components that are
necessary for secure association. First, we propose (in Section 2) an abstract user-
interface primitive for specifying the intended parties in an association (pairing)
process. The speci�cation is passive; the devices are told to associate (without
telling them with whom to associate), for example by pressing a button on each
device. They then attempt to �nd a willing party. If successful, they present
to the user enough information to allow the user to decide whether the two
parties are the intended ones or not. If yes, she approves the association (say by
pressing the button again). If not, she aborts the association attempt (e.g. by not
pressing the button until a timeout elapses). We show that wireless devices with
only a single LED as a display device can present su�cient information to the
user to allow her to reliably approve or abort associations. This primitive, which
we call oblivious comparison (OC), generalizes several concrete user-interface
mechanisms that have been proposed for devices with richer user interfaces.

Once the intended parties are established using OC, they need a protocol for
secure exchange of (logical) messages over the insecure (physical) connection.
Establishes an authenticated and private channel, in this setting, seems to re-
quire public-key cryptography, which is too expensive for many IoT devices (as
is indeed the assumption in both ZigBee and BLE). Instead, we pursue (in Sec-
tions 4 and 5) the notion of message recognition protocol (MRP): informally, a
protocol to exchange authenticated messages but without ensuring privacy. This
allows lightweight implementations that rely only on symmetric-key cryptogra-
phy. MRPs have been discussed in the literature, but without adequate formal
de�nitions, and indeed we show that ad-hoc security de�nitions for MRPs can
completely fail to authenticate messages if the attacker can somehow a�ect the
choice of transmitted messages (a chosen-message attack). We propose stronger
de�nitions, in both the chosen-message stand-alone setting and in the framework
of universal composability (UC) [4]; we show them equivalent to each other, and
strictly stronger than the weaker de�nition.

Finally, we propose (in Section 6) a new MRP: the PEBIUS protocol. PE-
BIUS improves on prior MRPs in being (1) bidirectional, thereby more e�cient,
(2) can run forever, whereas some of the prior MRPs in the literature are limited
to an a priori �xed number of rounds, and (3) is proved secure under the UC
sense, and in particular is secure against chosen-message attacks.

2 User Interaction for Secure Association

Protocols for secure association of two devices (and transitively of a device into
a network) require a mechanism to install information about one of the de-
vices into the other. Some protocols require both devices to have information
about the other. The type of information required varies among protocols: it
may constitute a public key, a secret symmetric key, a commitment, etc. Many

3

IoT devices have only one rich interface to the outside world, namely a data
radio. The radio cannot be used to transfer identifying information for secure
pairing because doing so leaves devices vulnerable to MITM attacks. (ZigBee
does use this mechanism in its so-called standard-security mode, which transfers
the network's master key over the air and in the clear; this mode is fundamen-
tally insecure.) What other mechanisms can be used to transfer this information
into IoT devices?

2.1 Background on Unsuitable or Ine�ective Mechanisms

One mechanism relies on preinstallation of this information. One example is Zig-
Bee's high-security mode that assume that the network's master key is stored
at manufacture time or at �rmware-update time. This is infeasible for interop-
erable IoT devices intended to be deployed by consumer, and as a consequence,
no ZigBee device that we are aware of uses it. Another common example of
preinstallation is the inclusion of prestored cryptographic certi�cates in main-
stream operating systems (e.g., CA root certi�cates). This mechanism appears
to be inappropriate for IoT devices because (1) there is no usable and reliable
mechanism to invalidate/replace compromised certi�cates on IoT devices, (2)
the mechanism requires public-key computations that are considered too expen-
sive for ZigBee and Bluetooth Low Energy (BLE) devices, and (3) the stored
certi�cates allow authentication of a named party in a protocol (e.g., domain
name), but many IoT devices are nameless (some devices may be large enough
to carry a printed identifying name, similar to a MAC address, but this is not
a common practice). Even if the di�culties with certi�cates are overcome, they
only allow association if at least one of the devices has a rich enough interface
to allow the user to specify or approve the name of the other device; this is not
the case when two simple IoT devices need to be associated (e.g., a light bulb
and a controlling switch). We that this mechanism is unsuitable for IoT.

Another class of mechanisms relies on out-of-band data transfer. In these
mechanisms, one device provides the user with the information to transfer (e.g.,
encodes it and displays it on a screen), which the user types into the other device
(e.g., using a keyboard). This mechanism is used in Bluetooth's [12] passkey-entry
association mode (unfortunately, the implementation of this mode in Bluetooth 4
is insecure [18], and so is the similar PIN mode in Bluetooth 2.0 [11][31]). The
data can be transferred not only by a human user, but also using high-bandwidth
input devices such as a high-resolution camera [24]. There are numerous sug-
gested methods for out-of-band data transfer (see [6, 14] and the references
therein).

However, analysis of the mechanisms described so far suggests that they
are still too expensive for very small IoT devices, due to severe constraints in
hardware interfaces, power, storage, chip sizes and deployment scenarios. This
leaves us with one class of e�ective mechanisms, some new and some known,
which we describe in the following.

4

2.2 Out-of-Band Oblivious Comparisons

We now show that a number of user-interaction mechanisms, in existing stan-
dards and literature, all implement an abstract primitive that we call oblivious
comparison (OC). This common functionality has not been recognized and de-
�ned in the literature. In the following, we provide a de�nition of oblivious
comparison, and review prior implementations. In Section 2.3 we describe a
new implementation using very little hardware, and in Section 5 we discuss a
universally-composable de�nition of OC

De�nition 1. An out-of-band oblivious comparison between devices A and B
consists of the following steps. Initially, A and B hold values, vA and vB re-
spectively (derived from their previous interaction, which in our setting is over
a non-con�dential and unauthenticated bidirectional channel). They would like
check whether vA = vB.

1. Each of A and B sends the value they derived from the �rst step to a veri�er
(e.g., a human user). The (unidirectional) channel to the veri�er must allow
the veri�er to ascertain that the values came from A and B, and to determine
whether the sent values are identical.

2. The veri�er informs A and B whether the values were identical, via a (uni-
directional, non-con�dential) channel that cannot be spoofed (e.g., a button).

In Bluetooth's numeric comparison mode [17], the two devices attempt to
agree on a string (six decimal digits). The negotiation is done in-band on the
not-yet-authenticated wireless channel. Both then display the string to the user
(this is the �rst channel; the veri�er is the human user and she ascertains the
identity of the devices by visual inspection and hand-eye coordination). The user
presses a switch on each device to tell it whether the two strings are identical, in
which case the association succeeds (this is the second channel). Note that the
user only has to compare the values, and not remember them. In the Bluetooth
standard, the string is essentially a hash of the concatenation of the public keys
of the two devices, which are also transmitted in-band.

Bluetooth's numeric comparison requires a rich out-of-band user interface (a
numeric display), but the literature contains other mechanisms that essentially
implement oblivious comparison, using less resources.

Saxena et al. proposed a mechanism that uses an LED on one device and a
video camera on the other [30]. The device with the LED blinks it in a pattern
that represents the value. The device with the camera observes the blinking
and compares it to the value it stores. This device also serves as a veri�er. If the
values are identical, the device with the camera tells the user (e.g., using an LED
or a display) to tell the other devices that the comparison passed. The human
is used to implement the third channel; physical proximity and the direction of
the camera are used to implement the second.

Roth et al. [29] proposed Press-to-advance, an implementation of out-of-band
oblivious comparison using bi-color LEDs or an LED and a graphical display.
Whenever the user presses a button on one of the devices, both encode the next
bit of the value as a color and display it (on the green/red LED or as a dot on

5

the display). The sequence advances manually by one bit every time the user
presses a key on the device that she holds. If the colors di�er, the user aborts
the association. If both devices display the same value, they associate when the
entire bit string has been presented.

Prasad and Saxena [28] describe an alternative, where the user copies a bit
pattern from one device to the other by pressing a button every time an LED
blinks. They also propose Blink-Blink [28], based on a human comparing the
blinking and glowing patterns of LEDs (two LEDs on each device), as well as
Blink-Beep and Beep-Beep variants. We discuss this further below. Note that
press-to-advance, Blink-Blink and 1-LED OC (described below) all contradict
an assertion by Kuo et al. [15] who claimed that devices with only a button and
an LED cannot be securely paired.

Goodrich et al. [10], and [28] in their Beep-Beep scheme, propose a mechanism
based on the human ability to tell whether two simultaneous series of audio tones
are identical. The authenticity of the display channel relies on identi�cation
of audio sources; this mechanism is appropriate for headsets, perhaps not to
loudspeakers. Combinations of audio and visual signals are also possible.

Transitive OC. Association protocols based on OC can be easily extended
from pairwise association to network-wide association. Suppose that in a commu-
nication network, nodes A and T have established an authenticated channel and
that nodes B and T have established such a channel. Nodes A and B can now
associate so that they can communicate directly (they can obviously exchange
authenticated messages through the trusted party T , but direct communication
is usually more e�cient). They attempt to agree on a value v using an unau-
thenticated channel (�rst channel in the de�nition) and then both send the value
they believed they agreed on to the veri�er T using the authenticated channels.
T checks whether the two values are identical and informs both parties of the
result, also using the authenticated channels. For example, in a ZigBee network
a user might associate a new node A with a nearby router T that is already part
of a mesh network with trust center B. Now A and B establish an authenticated
communication channel through T .

2.3 1-LED Oblivious Comparison

We propose a new oblivious comparison mechanism, �1-LED OC�, that requires
merely a single LED and a single button in each device, and moreover require
minimal input from the user (a single button press). The devices simultaneously
blink their LED using an on-o� pattern derived the value that the devices agreed
upon, and the user decides whether the patterns are identical or very di�erent,
pressing the buttons accordingly, as explained next.

In 1-LED OC, the parties A and B proceed as follows. First, each party
obtains its local value, vA or vB , by executing a protocol that uses the OC
primitive. They synchronize their real-time-clocks using a radio channel. In the
�rst step, A sends to B a random number RA, and likewise B sends to A a
random RB . A then blinks its LED in a pattern derived from h(vA, RA, R̂B),

and concurrently B blinks its LED in a pattern derived from h(vB , R̂A, RB).

6

Fig. 2.1. The LED comparison experiment.

Here, h is a hash function, that we formally model as a random oracle, and
concretely instantiate using SHA-256. The hat values, R̂A and R̂B , represents
the corresponding received value, which might be corrupted. The encoding of a
string s into a blinking pattern is as follows: we derive a pseudorandom sequence
S from s, by using s as the seed into a pseudorandom generator (e.g., any stream
cipher); then for each bit Si of S, in sequence, the LED is turned o� for a �xed
period τ if Si = 0, and turned on for a period τ if Si = 1. The two devices
perform the blinking synchronously (up to the accuracy of their shared clock),
until their respective buttons are pressed by the user.Figure 2.1 shows a physical
realization

The blink period τ can be pretty short: our experiments below suggest that
τ ≈ 66ms works well. Practically, delays and clock drifts are insigni�cant at
the time scale of human perception. Low-power low-cost RF devices can easily
synchronize their clocks to within better than a millisecond, and their real-time
clocks are accurate to 100ppm or better. These translate to a drift of about
4.4ms over 256 periods of 66ms each2. For comparison, Steinmetz researched the
human perception of media synchronization [33], and found that humans fail to
detect synchronization error of ±80ms. Moreover, if drift becomes a problem,
the two devices can wirelessly re-synchronize while blinking.

Comparison to Blink-Blink. The aforementioned Blink-Blink scheme [28] is
also based on comparing LED, but takes a di�erent approach. Blink-Blink uses
a Short Authentication String protocol and requires bit-accurate comparison of
short strings (15 bits). It thus uses slow blinking rates (300ms to 800ms), and
uses two LEDs per device to ensure synchronization of the strings. 1-LED OC,
instead, compares long pseudorandom, relying not on bit-level accuracy but on
the ability to distinguish identical sequences from nearly-independent sequences;
we can thus use a blinking rate that is an order of magnitude faster (40ms to
66ms), and do not need an extra LED for synchronization.

Experimental methodology. To demonstrate the feasibility of the 1-LED
OC, we tested this mechanism on human subjects. The devices were bare Tmote

2 In the extreme case, each device deviate from the desired time by 256·66µs·100ppm =
1.7ms, so in total 3.4ms, plus at most 1ms due to message latency.

7

Sky boards running Contiki that we custom programmed for this task. The
devices were attached to �at surface to keep the LEDs exactly 7cm from each
other (see Figure 2.1). The devices coordinated the values and the timing using
radio messages. They also recorded the interaction for analysis.

Human subjects were presented with LED blinking sequences on these de-
vices. They were instructed to press the button on the rightmost device once they
decided whether the sequences are identical: a long press (3 seconds or longer)
if the user believed the sequences are identical, and a short press (less than 3
seconds) if di�erent. The next sequence was presented 3 seconds after the button
press. To help subjects understand the task, the �rst 6 sequences were training
sequences. In these sequences, a green LED would light after the user's input if
the user was right and a red LED would light if she was wrong. The training runs
were excluded from the analysis. After the training runs, which were displayed
at a rate of 15bps, the user classi�ed 8 sequences at the same rate. They were
followed by 2 training sequences at 25bps and then 8 test sequences at 25bps.

The experiment was conducted on 10 volunteers, age 14�66, of both genders.3

Experimental results. Most of the subjects gave the correct answer to all
of the sessions. In a few cases, the subject classi�ed the sequence correctly but
accidentally pressed the button incorrectly; if the subject immediately indicated
verbally that he knows that he was wrong, we regarded such answers as cor-
rect, under the assumption that in a real scenario, the user would immediately
dissociate the devices after mis-pressing the validation button.

All except one subject classi�ed all sequences correctly. That single subject
had 2 false-positive answers (out of 16). We conclude that the oblivious compar-
ison using blinking LEDs is an easy task for humans.

3 Message Authenticity With Privacy

In the previous section, we discuss how to transfer a short bit string authentically.
In this section and the rest of the paper, we discuss how to bootstrap from a
shared string into exchanging authenticated messages: a Message Authentication
Protocol (MAP).

In this section we discuss association models which can provide both authen-
tic and private communication channel. All the methods in this section aim to
establish a shared secret key between two devices. Once the key is established,
the devices can communicate securely using standard symmetric primitives (sym-
metric encryption and MAC, or signcryption such as CCM-AES).

Preinstallation. If both devices are manufactured by the same origin, and
the devices are intended to communicate with each other in advance, then the
manufacturer can install the secret keys for the communication in both devices
in advance.

Out of band (OOB). By out of band we mean that the secrets does not relay
over the RF channel. If one device has an input interface and the other one has

3 The experiment is ongoing. The �nal version of the paper will include a larger subject
population and more detailed statistics.

8

an output interface such that a (short) bit string can be transferred securely
(authentically and con�dentially), then both devices can generate their secret
key and output them to such interface. A human user then can take these keys
and enter them into the input interface of the respective other device. Examples
of such mechanisms are the Bluetooth's passkey-entry[12] and barcode-camera
pairing mechanism [24].

Public key infrastructure (PKI). PKI is very common way to bootstrap a
secure channel in the Internet. Loosely speaking, in PKI there is a trusted third
party (Certi�cate Authority, CA), which holds the bit strings to be authenticated
(public-keys) of servers. Whenever a client in the Internet wants to initiate a
secured connection with a server, it asks the server for its public key and a
certi�cation for that key, signed by the CA. By verifying this certi�cate the
client can be sure that the public key belongs to the server.

Anonymous channel. This protocol [5] assumes the existence of an anony-
mous channel between the devices. Anonymous channel is a broadcast channel
that hides the origin of the messages. In this protocol, A can send the secret
bit 1 to B by broadcasting an (empty) packet with the source �eld set to A.
Similarly, A can send the secret bit 0 to B by broadcasting an (empty) packet
with the source �eld set to B. Only B can identify the real source of the packet
(since it did not send it, the source is A), and can recover the secret bit (1 if the
source is set to A or 0 otherwise). An eavesdropper cannot retrieve the secret bit
since it cannot �gure out whether the packet was actually sent by A or B. By
randomly generating n such packets A and B can agree on an n-bit secret key.
While the theoretical idea is very elegant, it is unclear whether such anonymous
channels can be implemented at reasonable cost, given the numerous methods
available for �ngerprinting and geometrically locating devices.

Accelerometer. This method [23] assumes that both devices have an ac-
celerometer peripheral. The human user holds these two devices, and shakes
them together. Using the accelerometer, the devices tracks the movements of
the device, and generates a bit string based on this information. Since the de-
vices are shaken in the similar way, they will generate similar bit strings. By
assuming that humans can create random bit strings by shaking the devices,
this bit string is the shared secret.

Bluetooth's numeric comparison. Bluetooth [12] o�ers some association
models for initiating secure connection. One of them is the numeric comparison
association model. In this model, each device outputs to a screen a string, and
a human user is requested to compare them, and inform the devices with the
answer. Loosely speaking, Bluetooth uses Di�e-Hellman to exchange the public-
keys between the parties, and asks the human user whether the parties agrees
on the same public-keys. After that, the parties can agree on a new common
private-key con�dentially, using the authenticated public-key. This protocol was
proved to be secured by Lindell [17].

In 2.2, we generalized this association method into a primitive we call obliv-
ious comparison, and in Section 4 we will show that it can be used to provide
authenticity (but not privacy) even without using PKC.

9

Figure 3.1 compares these methods and explains why they infeasible for low-
power devices. As can be �gured out from the table, these association models
are not suitable for low-power devices. In the next section, we show that if au-
thenticity (without secrecy) su�ces, then there exist alternatives that surmount
all of these hurdles.

Method Assumptions Hurdle

Preinstallation Devices are created by Interoperability requirement
the same manufacturer

OOB Both devices have input/output Very simple interfaces
interface for bit strings

PKI A trusted third party exists; Generally no trusted third party;
both devices can use PKC PKC requires too much

computational power

Anonymous An anonymous channel exists Questionable security
channel [5]

Accelerometer Accelerometer exists on both devices; Accelerometer does not
[23] humans can create exists on all devices

random bit strings by shaking

Numeric The user can compare short strings Currently implemented using PKC.
comparison [12] We show how to

implement without PKC.

Fig. 3.1. Comparison of bootstrapping methods for initial shared secret between two
devices.

4 Message Authenticity Without Privacy

Many existing mechanisms in the literature and standards provide message au-
thentication protocols using public-key cryptography (PKC). For example: (1)
public-key infrastructure uses trusted third party to authenticate servers in the
internet and (2) classic Bluetooth's simple pairing mechanism [12], whose nu-
meric comparison mode comply with our OC abstraction. Although they achieve
all desired functionality (authenticity and privacy), PKC operations are usually
not suitable for cheap-low power devices, because of the relatively high computa-
tional requirements of PKC and the perception that it would be too slow or too
expensive for such devices (the increased cost is due to the increased silicon area
required for memory and computation, as well as power consumption on battery-
powered devices). PKC can be avoided if we give up on con�dentiality, and focus
just on authenticity of messages. This trade-o� makes sense in many IoT appli-
cations. For example, letting the adversary to know when a door is opened is less
signi�cant than letting the adversary to open a door. One previously suggestion,
that uses just symmetric-key cryptographic and achieves only authenticity is the
TESLA broadcast authentication protocol [27]. Although providing a stronger

10

primitive (broadcasting), this approach requires the devices to be synchronized4

� which in turn is achievable using heavy tools such as PKC [27].
Another approach, that does not require synchronization (but does not pro-

vide broadcasting), is several protocols called Message Recognition Protocol [1,
35, 13, 19, 21, 8, 22]. In this section, we focus on this notion, and see how it can
be combined with OC to achieve message authentication protocol.

Recognition vs. Authentication. MRP provides a weaker security guaran-
tee than the standard message authentication protocol (MAP). While the for-
mer provides guarantee that the messages originated by a party he negotiated in
the past, the latter provides guarantee that the messages originated by a party
with a particular identity (expressed by knowledge of some identity-speci�c se-
cret). For example, consider a standard Di�e-Hellman key agreement protocol,
in which there is no exchange of certi�cate or other involvement of third party.
The protocol ends with agreement on a symmetric key which is used later for au-
thenticating messages (by means of MAC) of each other. This protocol provides
message recognition, since the messages can be recognized to be originated by
the same party which was involved in the Di�e-Hellman key exchange. However,
the identity of that party is not assured, since it is vulnerable to MITM attack;
thus this protocol does not provide message authentication. In this section will
show a generic method which utilizes OC and MRP to achieve authentication.

4.1 De�ning Message Recognition Protocols

Weimerskirch and Westhof [35] provided a candidate message recognition pro-
tocol, without clearly stating its security property. Subsequently, Hammel et al.
[13] implemented that protocol and introduced the term �message recognition�
for its claimed security property, but their de�nition and treatment were still
informal (and indeed that protocol was later found out to be completely inse-
cure [19]). Mashatan and Vaudenay [22] they gave a di�erent protocol, with an
ad-hoc de�nition of Message Recognition Protocol tailored to their construction.
Informal tailored de�nitions were also used in other papers [19, 21, 8], and as
we discuss in 5, this leave crucial aspects unde�ned. One such aspect is who
chooses the logical messages to be transmitted, with what computational power
and with what knowledge. Although message choice arises within Gehrmann's
proof style [7], used by some of those papers, it is impossible to infer that from
the informal security de�nitions. We address this gap by providing a formal,
general de�nition of Message Recognition Protocol (MRP).

Our de�nition focuses on the upward interface of the protocol in the protocol
stack, as it will be used by higher layers, separately from the trivial downward
interfaces of the protocol (plain, insecure "transmit" and "receive"). For simpli-
fying the notation, we chose to use the formalism of Interactive Turing Machine
(ITM), as used previously in the literature (such as in [4]), which are randomized
and encapsulate the reception and transmission of the underlying messages.

4 Here the synchronization lasts during all of the session. This should not be confused
with the synchronization discussed in the context of OC (Section 2.2), which lasts
for short time in the initialization, and thus is a simpler task.

11

De�nition 2 (Message Recognition Protocol). Let k ∈ N ∪ {∞}. A k-
Message Recognition Protocol (k-MRP) is a tuple of interactive algorithms Π =
(AI , BI , AD, BD). The initialization-phase algorithms AI and BI exchange mes-
sages with each other.5 AI outputs the initial state sA0 for the data phase. Sim-
ilarly, BI outputs sB0 . The data phase algorithms AD and BD can exchange
messages with each other over the underlying insecure channel; we call these
physical messages. At iteration i of the data phase, AD receives as input: (1)
a state sAi−1, and (2) a string to transmit mA

i called the logical message. AD
outputs: (1) a new state sAi ; (2) a binary value of acceptance/rejection of the
session bAi , and (3) a logical message that was allegedly sent by the other BD
machine m̂B

i ; (4) . Then, in that iteration, BD receives as input sBi−1 and mB
i ,

and outputs sBi , b
B
i and m̂A

i . Without adversary interference, mA
i = m̂A

i and
mB
i = m̂B

i for all k ≥ i ∈ N.

Adversarial model. The adversary is modeled as stateful interactive algo-
rithm M which can passively eavesdrop on AI and BI , and actively corrupt
communication between AD and BD. The adversary cannot observe or corrupt
the local state maintained by A (i.e., AI and AD) or B (i.e., BI and BD). To
model the eavesdropping on the initialization step, we let the initial state sM0 of
M be the whole transcript of AI and BI . Thereafter, the state of M , denoted
sMi , is updated during the execution of AD and BD.

M receives as input a state sMi−1 and returns as output a new state sMi . For
simplicity, we de�ne that running a protocol Π in the presence of an adversary
M is done by passing the whole message exchanged between AD and BD through
M , so the adversary can perform any MITM operation on their communication
(change, delay, reorder or instantiate new messages).

Protocol execution. Each party receives the logical message to be sent from
the higher layer in the network protocol stack. We model it here by the functions
GenMsgP (P ∈ A,B), which receives as input all of the messages received till now
from the other party.6 The execution de�ned in De�nition 3 using Algorithm 1,
and demonstrated in Figure 4.1. We use the hat notation (̂·) to represent the
corresponding received value, which might be corrupted by the adversary.

De�nition 3. Let Π = (AI , BI , AD, BD) be an MRP. Let M be an adversary.
The k-execution of these instances of the protocol alongside the adversary M is
de�ned by running Algorithm 1, and denoted by EXECkΠ,M .7

5 Note that some protocols limit the number of logical messages that can be sent
(because of implementation issues). This number is represented here by k. To handle
this case, we require the protocol instance to output bPi = 0 when it reaches this
limit.

6 Alternative ways to model the message choice are discussed in Section 5.
7 In the �rst iteration (i = 1), since the parties have not sent yet any message, AD and
BD have no message for output (mA

0 and mB
0 are not de�ned). We de�ne mA

0 and
mB

0 to be the empty message, and expect AD and BD to output it in this iteration.

12

Algorithm 1 Adversarial game

1. Run AI and BI , and let
(
sA0
)
← AI() and

(
sB0
)
← BI().

2. Denote by t the whole transcript of the execution of AI and BI .
3. Start running AD, BD and M .
4. sM0,B ← t.
5. For i from 1 to k do:

(a) Run M :
(
sMi−1,A

)
←M(sMi−1,B)

(b) mA
i ← GenMsgA

(
mB

0 , . . . ,m
B
i−1

)
(c)

(
sAi , b

A
i , m̂

B
i

)
← AD

(
sAi−1,m

A
i

)
(d) If bAi = 1 and mB

i−1 6= m̂B
i−1, return win. Else if bAi = 0, return fail.

(e) Run M :
(
sMi,B

)
←M(sMi−1,A)

(f) mB
i ← GenMsgB

(
mA

0 , . . . ,m
A
i

)
(g)

(
sBi , b

B
i , m̂

A
i

)
← BD

(
sBi−1,m

B
i

)
(h) If bBi = 1 and mA

i−1 6= m̂A
i−1, return win. Else if bAi = 0, return fail.

6. Return fail.

De�nition 4 (Non-chosen-message secure k-MRP). Let Π = (AI , BI , AD, BD)
be an k-MRP. Let k ∈ N∪ {∞}. We say that Π is a non-chosen-message secure
k-MRP if for any n ∈ N, for any k' s.t. k ≥ k′ = K(n), where K is any polyno-
mial function, any functions GenMsgA and GenMsgB, and any e�cient (PPT)

adversary M , Pr
[
EXECk

′

Π,M = win
]
= negl(n).

Delay. Some approaches to optimize the overhead of the protocol (in terms of
communication, memory and computation) use information across iterations. For
that, these data phase ITMs (AD and BD) need to bu�er the messages received
and verify the correctness of the messages only in future iterations. This delay
can be captured by our non-chosen-message security de�nition by modifying the
data phase ITMs to return the bu�ered message (instead of the current), and
the execution algorithm (Algorithm 1) to verify the correctness of these bu�ered
messages. De�nition 5 formalizes these modi�cations, by introducing the delay
parameter d ∈ N0. Note that protocols with delay d > 0 can be easily modi�ed to
hold the original non-chosen-message security de�nition (De�nition 4) with d =
0, by sending a dummy empty logical messages d times after each logical message
sent. (Of course, this modi�cation in�uence the communication, memory and
computation overhead). In Section 6 we show our delayed secure MRP with
d = 1, and in Section 7 we proof that this protocol satis�es De�nition 5.

De�nition 5. [Delayed non-chosen-message secure k-MRP] Delayed non-chosen-
message secure k-MRP with delay d ∈ N0 is de�ned similarly to De�nition 4, with
the following modi�cations: (1) The data phase ITMs, AD and BD, are modi�ed
to return the m̂B

i−d and m̂A
i−d, respectively

8. (2) In Algorithm 1, the correctness

check of the messages, mA
i 6= m̂A

i and mB
i 6= m̂B

i , are replaced by mA
i−d 6= m̂A

i−d

8 For brevity, we assign mP
j = λ for all 1 > j ∈ N, P ∈ {A,B}.

13

s
A

0

AI BI

AD M BD

s B
0

sAi sBi

sA0 = t

sMi,B

m̂B
i

bAi

If bAi = 1 and m̂B
i 6= mB

i , win

m̂A
i

bBi

If bBi = 1 and m̂A
i 6= mA

i , win

A
ft
er
k
it
er
a
ti
o
n
s,
fa
il

GenMsgA(·)

mA
i

GenMsgB(·)

mB
i

t

physical messages input/output

Fig. 4.1. Demonstration of MRP execution algorithm (Algorithm 1).

and mB
i−d 6= m̂B

i−d, respectively. (3) In Algorithm 1, the logical messages gener-

ation of AD is modi�ed to be generated by GenMsgA
(
mB

0 , . . . ,m
B
i−1−d

)
, and the

logical messages generation of BD is modi�ed to be generated by GenMsgB
(
mA

0 , . . . ,m
A
i−d
)
.

4.2 General MRP framework

In the following, we describe a uni�ed framework that is common to the various
MRP protocols in the literature.

Stateful protocols. All of the proposals of an MRP protocol are stateful. That
means that each party maintains and updates information about the session. In
these protocols, the state of each party consists of (1) a transient key that is
secret to that party; (2) authenticated non-secret commitment to some secret
information held by the other party; and (3) possibly other information, based
on the speci�c MRP. The protocols proceed by iterations. During each iteration,
each party can transfer one logical message authentically to the other party, while
opening the commitment and revealing the key in the old state, and updating
the state to contain a new commitment and a new key. The protocols vary in
the way they update the state. There are two basic approaches.

The �rst approach is based on hash chains [35, 19, 8, 22]. Let h : {0, 1}∗ →
{0, 1}n be a CRH. Hash-chains of length k are series of secrets of the form
ai = h(ai−1), ∀0 < i < k, and a0 ← {0, 1}n. In this approach, during the
initialization phase, each party generates an hash-chain, ai and bi respectively.
The i-th state of party A contains as a key the index of the current chain's item
ak−i and as the commitment on the current key of the other party the value of
bk−i+1. The state of party B is symmetrically similar. From the preimage and
collision resistance of CRH-s, knowing the commitment to a key does not provide
the adversary to ability to forge a key in this chain. The main disadvantage of

14

this approach is the need to hold the whole\part of the chain of length k in the
memory. Choosing small k results in signi�cant limitation on the messages to
transmit, and large k results in memory waste. However, it seems to be easier
to prove the correctness of protocol based on such approach.

The second approach generates a new state �on-the-�y� [1, 21]. The keys are
not generated in advance during the initialization phase. Instead, during each
iteration, each party x generates a new key, computes a commitment on that key,
and sends the commitment to the other party y. The key is revealed only after
verifying that y received (but not yet accepted) any message of that iteration.
For that, upon receiving any message, y should reveal a committed secret of
his own, and x should verify that the secret matches this commitment. The
commitments for the next iteration is added to the current iteration's messages.
The authenticity of the commitment of the next iteration is implied by the
authenticity of the message of the current iteration. As oppose to the former
approach, in this one the parties are not limited on the number of messages to
send/receive, and should not store many keys in advance.

Phases. Each protocol consists of two phases. The initialization phase is per-
formed once at the beginning of each session and usually lasts for short time.
The main mission of this phase is to established initial state for both parties.
The phase basically consists of the following steps for each party: (1) generation
of secret(s); (2) generation of commitment(s) on the secret(s); (3) authenticated
exchange of the commitment on a secret; (4) completion of initial state estab-
lishment. It is possible to replace the transmission of this authenticated data
by our suggestion of oblivious comparison of Section 2.2, as we explain later in
this section. If this phase �nishes correctly (that means, the adversary does not
changed the authenticated data), the parties move to the next phase.

The data phase consists of the iterations mentioned above, and lasts till the
end of the session. The main mission of this phase is to perform the transmission
of logical messages between the parties. The general structure of each iteration
consists of the following general steps for each party: (1) transmission of a new
message with some authentication data about it; (2) transmission of the current
secret information (and thus making it public); (3) receiving of the current se-
cret information of the other party and authenticating it using the authenticated
commitment; (4) receiving a new message from the other party and authenticat-
ing it by similar way9; (5) updating the state, as discussed above.

Table 4.2 compares existing MRPs .

4.3 Discussion

Constructing MAP from MRP. Recall that MRP guarantees merely that
incoming messages in the MRP data phase have been sent by the same party
as in the MRP initialization phase; but does not guarantee the identity of that
party (so MRP is vulnerable to MITM attack during initialization). However,

9 In case of �on-the-�y� approach of state management, the party should receive a new
commitment, and it should be authenticated in the same way of the message itself.

15

Limited
#messages

cryptographic
primitives

Proved under Notes

Guy Fawkes [1] no hash no proof
Remote User no MAC no proof high

Authentication [25] commnic.
ZCK [35, 13] yes OWF insecure [19]
Jane Doe [19] yes MAC, hash nonstandard assumptions

Goldberg et al [8] yes MAC, hash nonstandard assumptions
Mashatan and no hash nonstandard assumptions Resync
Stinson [21] �awed [26]
Mashatan and yes MAC, PRF standard assumptions
Vaudenay [22]

PEBIUS no MAC, hash nonstandard assumptions / bidirectional
(this paper) random oracle

Fig. 4.2. Comparison of several MRPs. The "hash" primitive refers to hash functions
with either well-de�ned but nonstandard properties, unde�ned properties, or modeled
as random oracles (see "Proved under").

by combining MRPs with Oblivious-Comparison (Section 2.2), we can achieve
MAP-like protocol, as follows. Both parties executes the initialization phase of
the MRP over the insecure channel. Thereafter, OC is used to authenticate the
conversation in the MRP initialization phase, to ensure the correct parties are
involved. Subsequently, in the data phase, the exchanged messages are assured
to be generated by same (hence, correct) parties as in the initialization phrase.

MRP-based MAPs vs PKC-based MAPs. Table 4.3 quantitatively com-
pares an MRP-based MAP (using the recent MRP of [22]) to PKC-based MAPs
and some other alternatives.

Synchronization. MRPs are inherently vulnerable to denial-of-service attacks
because their states must remain synchronized. Some suggestion for resynchro-
nization process were made [35, 21], but later proved to be �awed [19, 26].
Resynchronization is impossible without public-key cryptography [9].

Bidirectional protocol. We de�ne MRP as bidirectional protocol, since most
targeted devices of interest here require authenticated bidirectional communica-
tion channel (for example, a remote controller asks a sensor for a command, and
the sensor sends back the response). Most of the current MRPs are designed as
unidirectional (A sends logical messages, and B receives them). One can convert
an existing (unidirectional) MRP into bidirectional one, by instantiating two in-
stances of the protocol at each party: one as A (the sender) and the other as B
(the receiver). The drawback of this method is a doubling of the communication
and memory overhead. But in some MRPs, state and messages can be shared
between the instances, getting bidirectional communication nearly for free. More
speci�cally, one can use the secret information in B (the receiver party), which
is used to re-establish a new commitment, to also transfer also a logical message
of B; but this must be done and analyzed carefully, since for hash-chain-based
protocols it was proven to be insecure [19].

16

Basis of the protocol
Cryptographic
primitives

Cryptographic
schemes

Initial
communication
overhead

Message
communication
overhead

State
(memory)
overhead

Digital sig.
with CRH

Sig, CRH Hashed-RSA-2048
SHA-256

|pk|
(2048)

|d|
(256)

|pk|
(2048)

Public-key enc.
with MAC

PKE, MAC RSA-2048
AES-CBC-MAC-128

|pk|+ |key|
(2176)

|tag|
(128)

|key|
(128)

One-time sig. OTS Lamport [16]
4 |owf| l
(512l)

|key| l + 2 |owf| l
(384l)

Various

One-time sig.
with CRH

OTS, CRH Lamport [16]
SHA-256

4 |owf| |d|
(131, 072)

(|key|+ 2 |owf|) |d|
(98, 304)

Various

One-time sig.
with UOWHF

OTS, UOWHF Lamport [16]
SHA-256

4 |owf| |d|
(131, 072)

(|key|+ 2 |owf|) |d|
(98, 304)

Various

Recent MRP [22] PRF, MAC AES
AES-CBC-MAC-128

|d|
(128)

2 |idx|+ 3 |d|+ 2 |sk|
(704)

|idx|+ 2 |d|
+ |sk| (448)

Fig. 4.3. Comparison of our suggestion to the alternatives. OWF is one way function,
PKE is public-key encryption, Sig is digital signature scheme, CRH is collision resistant
hash function, OTS is one time signature and UOWHF is universal one way hash
function. For overhead calculations, |pk| denotes the length of the public-key, |owf|
denotes the length of the output of the OWF, |d| denotes the length of the digest of
the hashes/PRF, |key| denotes the length of the secret key of MACs, symmetric-key
encryption or secret preimage of OWF, |tag| denotes the length of the tag of the MAC,
|idx| is an incremental index of the current message to send and l denotes the length of
the message. The overhead is the extra communication requires (on top of the logical
messages), in bits, when the protocol is instantiated using the speci�ed scheme. Where
the Lamport [16] scheme is used, for concreteness we instantiate using AES-128.

5 Chosen-Message Attacks and Composability

In the formalization of the security of MRP, there arises the question of modeling
the generation of logical messages. Obviously, these sent messages can depend on
the previously-received messages, but they may also depend on additional inputs,
perhaps adversarially-controlled, which are not modeled as network communica-
tion. For example, consider a sensor which transmits some physical measurement
to a remote server. An adversary which has some control over the sensor's en-
vironment can thereby a�ect its logical messages � exceeding the above model
and de�nition.

5.1 Chosen-Message Resistance

The parties A and B are supposed to generate logical messages (provided as
inputs to AD and BD). In deployment within a larger system, these logical mes-
sages are chosen by some application at the higher layer of the network stack.
These messages may of course depend on the logical messages reported as re-
ceived by the MRP, but ideally the sent messages would not depend on the
internal execution (i.e., transcript and randomness) of the MRP. However, an
adversary may in�uence the choice of logical messages produced by the high-level
application logic, e.g., when that logic contains �quote and forward� functionality
or when it depends on external sensors. The behavior of the high-level applica-
tion, and the extent to which it is a�ected by adversarial inputs, is potentially
complex, and � essentially � unknown to the lower level MRP. Thus, in mod-

17

eling security of the MRP, we should make the worst case assumption that the
adversary chooses the logical messages.

Hence, we extend De�nition 4 to handle this issue. We model the choice of
logical messages by instructing the parties to receive them from the adversary
(which can choose them as any e�ciently-computable function of the transcript
thus far). For that, we modify De�nition 4 and Algorithm 1, so the adversary
outputs (in addition to the other values) also the logical message to be sent, and
the adversarial game just forwards it to the respective party as an input.

De�nition 6 (Chosen-message secure k-MRP). Chosen-message secure k-
MRP is similar to non-chosen-message secure k-MRP (De�nition 4), with the
following modi�cations: (1) The adversary have an additional output value, which
represents the logical message to be generated by the respective party. In Algo-
rithm 1, this value is named mA

i for the former call to the adversary, and mB
i to

the latter. (2) In Algorithm 1, the (two) calls of GenMsgP function are removed.

We can gain the delayed version of the chosen-message version by applying
to De�nition 6 the same modi�cations done by De�nition 5 to De�nition 4.
De�nition 7 captures this notion.

De�nition 7 (Delayed chosen-message secure k-MRP). The delayed chosen-
message secure k-MRP de�nition is obtained from De�nition 4 by applying the
modi�cations of both De�nition 5 and De�nition 6.

5.2 Importance of Chosen-Message Security

We now show that chosen-message attacks can indeed break schemes that are
secure in the non-chosen-message sense. Intuitively, the adversary can observe
the physical messages exchanged between πA and πB to learn information about
their randomized internal state, and exploit this to maliciously choose logical
messages that will interact badly this internal state. Theorem 1 shows that such
an attack could exist, even against a protocol that is secure against non-chosen-
message adversaries.

Theorem 1. Assume there exists an MRP π which is chosen-message secure
(ful�lls De�nition 6). Then there exists an MRP π′ which is not chosen-message
secure, but is non-chosen-message secure (ful�lls De�nition 4).

Proof. Consider any MRPs, π that is chosen-message secure by De�nition 6. i.e.,
resistant to MITM even when the logical message are chosen by the adversary.
We shall construct a new protocol, π′ protocol, which is not secure in this sense,
but is still secure by De�nition 4 (i.e., without chosen-messages). protocol π′

proceeds like π, with the following modi�cation. Whenever a π′ instance π′A is
initialized for party A, a random number t, called the trapdoor, is drawn and
sent verbatim in a physical message to B. Party B simply ignore this message
(but the adversary observes it). From this point on, π′A keeps track of whether it
has ever been asked to send a logical message equal to the trapdoor t. Once that
happens, π′A enters �failure mode� and simply output the �xed logical message
0 whenever it receives a physical message.

18

In the chosen-message case, the adversary (who eavesdropped the trapdoor
can then cause A to send the trapdoor as a logical message. Thereafter π′A will
always claim to receive the message 0, which clearly violates security.

However, π′ is still secure under De�nition 4, since π′A has a negligible proba-
bility of entering failure mode. Indeed, if the adversary cannot choose the logical
messages (but can perform any MITM operation), then the logical messages are
generated by functions (GenMsgP) which depend only on the previous received
logical messages, and not the randomly chosen trapdoor value. Hence there is
negligible probability that π′A will be asked to send the trapdoor value. ut

5.3 Universal Composability Overview

The previous discussion, of the separation between the two de�nition, was born
as a result of careful analysis of recent MRP's security proofs, which revealed
the absence of consideration in chosen-message attack. After revealing that, one
may wonder if there is more considerations about the protocol's environment
that should be made, and how to handle them? Since such an issue applies for
many other protocols (even beyond the context of authentication), we decided
to look for a more standardized methodology to handle composition of protocols
of our concern.

The Universal Composability (UC) methodology can be used for handling
this issue. Loosely speaking, UC adopts an indistinguishability approach for
proving properties of security protocols in such a way that make it easy to
compose these protocols with other protocols, preserving the security properties
guaranteed for each protocol alone. Here we give a short introduction to the
notion of Universal Composability framework; here we use the UC variant de�ned
in [4, Section 4.4.1], and the terminology and notation of [4] for interactive Turing
machine (ITM), and �public delayed output� (which means an output that the
ideal functionality generates to a party, and the adversary can read it and delay
its delivery).

The adversary in UC is called the environment (recall that we regard to the
dummy-adversary alternative de�nition of UC as de�ned in [4, Section 4.4.1]),
which represents whatever is external to the current protocol execution (includ-
ing other protocols and their adversaries, the human users, physical message
transmission, etc.). The environment outputs a binary value (0 or 1). The secu-
rity is de�ned by indistinguishability of the output of the environment between
two execution models.

In the real model, the environment communicated with parties, who executes
an instance of the protocol to be proved secure. The parties receive input and
produce output to the environment, and exchanges physical messages between
themselves via the environment (so these messages may be modi�ed by the
environment).

In the ideal model, a new principal is introduced, called the ideal functional-
ity, FIDEAL, which can be thought as a trusted third party. FIDEAL is essentially
an ITM, which communicated securely (providing both secrecy and authentic-
ity) with the parties. FIDEAL performs the required task locally, and sends to

19

each party the result of the protocol's calculations. The actual parties are repre-
sented by dummy parties, who just provides the input to the ideal functionality
FIDEAL, and receives from it the output. In addition, there is a simulator S,
which can communicate with the ideal functionality, and suppose to convince
the environment that she works in the real model, rather than the ideal model.

UC realization. A protocol π is said to realize an ideal functionality FIDEAL,
if for each environment E , there exists a simulator S such that the environment
can distinguish (by outputting 0 or 1) between execution in the real model and
execution in the ideal model, with at most negligible probability. That is, π
mimics the operation of the ideal functionality correctly. By de�ning an FIDEAL,
one is basically de�nes the security in the UC methodology.

Universal composition. Let π be some arbitrary protocol where the parties
make ideal calls to some ideal functionality FIDEAL. That is, in addition to the
standard set of instructions, π may include instructions to provide instances of
FIDEAL with some input values, and to obtain output values from these instances
of FIDEAL. We call such protocols FIDEAL-hybrid protocols. Now, let ρ be a pro-
tocol that UC-realizes FIDEAL, according to the above de�nition. Construct the
composed protocol πρ by starting with protocol π, and replacing each invocation
of a new instance of FIDEAL with an invocation of a new instance of ρ. Similarly,
inputs given to an instance of FIDEAL are now given to the corresponding in-
stance of ρ, and any output of an instance of ρ is treated as an output obtained
from the corresponding instance of FIDEAL. The universal composition theorem
states that running protocol πρ, with no access to FIDEAL, has essentially the
same e�ect as running the original FIDEAL-hybrid protocol π.

5.4 De�ning UC-secure MAP

Another methodology to handle this issue is Universal Composability (UC) [4].
Security de�nitions in the UC style are guaranteed to �compose�, i.e., security
can be analyzed for a single instance of the protocol, but is guaranteed to hold
even when the protocol runs concurrently with other instances of itself and of
other protocols (a property which is nontrivial, and often false for other de�nition
styles). This includes, in particular, the case where inputs to the protocol are
a�ected by the adversary, i.e., chosen-message attacks.

In the UC framework, security is de�ned by specifying an ideal functionality,
that describes the correct functionality of the protocol. Proving that a protocol
satis�es such security de�nition is done by proving that the protocol and the ideal
functionality are indistinguishable to the surrounding environment (including the
adversary), and thus the latter cannot gain advantage, beyond what's permitted
by the ideal functionality, from corrupting the protocol's execution. Here we give
the security de�nition for multiple message authentication in UC, by de�ning
the ideal functionality, and show how MRP can be combined with OC to provide
UC-secure message authentication.

Ideal functionality for multiple message authentication. An ideal func-
tionality for single-message authentication protocol, called FAUTH, was given in
[4]. That ideal functionality transmits a single message from one party to the

20

other. Multiple messages can be transferred with authentication, and bidirec-
tionally, by composing that ideal functionality multiple times (which is indeed
secure, by the universal composition theorem of [4, Section 2.3]). However, in our
context this yields an impractical protocol, since every session of the protocol
requires an oblivious comparison (involving the human user) in the initialization
phase. To allow the results of a single OC to be stored and reused for multiple
messages, we extend the ideal functionality into a new one, FAUTHk , captur-
ing message authentication protocol that are bidirectional and transmit up to
k back-and-forth messages (where k ∈ N ∪ {∞}).10 Basically, FAUTHk operates
much like FAUTH of [4], but is extended to multiple messages, as follows.

De�nition 8 (FAUTHk). Let k ∈ N ∪ {∞}. The ideal functionality FAUTHk is
de�ned as follows.

1. For rounds i = 1, 2, 3, . . . , k do:
(a) Await an input

(
Send, sid,B,mA

i

)
from party A, and generate a public

delayed output
(
Sent, sid,A,mA

i

)
to B.

(b) Await an input
(
Send, sid,B,mB

i

)
from party B, and generate a public

delayed output
(
Sent, sid,B,mB

i

)
to A.

2. Upon receiving a message (Abort, sid, P,m) from the adversary, where P ∈
{A,B}, send (Abort, sid, P,m) to the other party, and halt.

3. Upon receiving (Corrupt-party, A, sid,m′) from the adversary, if the (Sent, A,
sid,m) output is not yet delivered to B, then output (Sent, A, sid,m′) to B.

4. Upon receiving (Corrupt-party, B, sid,m′) from the adversary, if the (Sent, B,
sid,m) output is not yet delivered to A, then output (Sent, B, sid,m′) to A.

The two last lines in De�nition 8 capture the notion of party corruption [4].
Note that party corruption is not a signi�cant issue for us, since we do not deal
with secrecy, but we included that notion inside the de�nition for completeness.

Ideal functionality for oblivious comparison . In order to realize the mes-
sage authentication protocols we discussed in this paper to the ideal functionality
FAUTHk , we need to use the oblivious-comparison primitive, that compares bit
strings between two parties (see Section 2.2). To express this in the UC frame-
work, we de�ne its ideal functionality, FOC, as follows

11.

De�nition 9 (Oblivious comparison ideal functionality: FOC).

1. Upon receiving
(
Send, sid,A, xA

)
from A and

(
Send, sid,B, xB

)
from B:

(a) If xA = xB then generate public delayed output (Sent, sid,OC,Equal) to
B and (Sent, sid,OC,Equal) to A.

(b) else generate public delayed output (Sent, sid,OC,Unequal) to B and
(Sent, sid,OC,Unequal) to A.

10 We support a limit k on the number of logical messages transferred by ideal func-
tionality, since many existing MRPs support only an a priori bounded number of
messages. Our �PEBIUS� MRP, in Section 6, supports k =∞.

11 We omitted the explicit corrupting handling from FOC, because it is instantiated
out-of-band (e.g. by human, who see the LEDs).

21

A FOC B

Run AI Run BI

Transcript of AI Transcript of BI

Run FOC

result result

If result = Unequal, If result = Unequal,

then abort then abort

else run AD k times Else run BD k times

Fig. 5.1. The hybrid protocol πAUTHk .

5.5 Attaining UC-secure MAP

Analogously to Section 4, we show here how to create an MAP from an MRP,
given access to FOC, the ideal functionality of oblivious comparison. That is, how
to create a FOC-hybrid protocol that realizes the FAUTHk ideal functionality.12

Given an k-MRP, πMRPk = (AI , BI , AD, BD), the corresponding FOC-hybrid
protocol πAUTHk is speci�ed in Figure 5.1.

Theorem 2. Let πMRPk = (AI , BI , AD, BD) be a chosen-message secure k-MRP
(De�nition 6). Let πAUTHk be its hybrid protocol, as speci�ed in Figure 5.1. Then
πAUTHk UC-realizes FAUTHk in the FOC-hybrid model.

Proof. We need to prove that if for each chosen-message adversaryM ,M cannot
break the adversarial game of De�nition 6, then there exists a simulator S such
that for each environment E , EXECF

AUTHk ,S,E ≈ EXECπ,E .
We shall construct the simulator S as an ITM that interacts with an envi-

ronment E and the ideal functionality FAUTHk by emulating the instances of the
protocol, as follows (see Figure 5.2). On startup, S initializes two instances of
the protocol: πA, πB . The exchange of physical messages between πA and πB is
done by communicating with E (so E can modify these messages). Whenever E
12 Formally, there is a di�culty here: the oblivious-comparison protocols Section 2.2,

involving physical devices and human beings, are not built of �interactive Turing
machines� as necessitated by the de�nitions of [4]. To model this rigorously, one may
appeal to the extended Church-Turing thesis about the polynomial-time equivalence
of the aforementions, i.e., to the existence of polynomial-time Turing-machines that
simulate the physical setup. Alternatively, one may note that the relevant properties
of the oblivious-comparison protocol are its external interface (and indeed interface
via ITM tapes is in principle equivalent to the digital interface of the electronic
devices) and the fact that its computational power is inadequate for breaking speci�c
cryptographic assumptions (which we assume holds for the physical devices and their
human operator).

22

S

πA πB

FAUTHk

E

A M B

se
n
d
lo
g
m
sg

rc
v
lo
g
m
sg

&
a
b
o
rt sen

d
lo
g
m
sg

rcv
lo
g
m
sg

&
a
b
o
rt

le
a
k

p
h
y
s
m
sg

incoming log msg

p
h
y
s
m
sg

outgoing log msg

If got abort, abort FAUTHk

φA φB

Fig. 5.2. The simulator S.

sends a logical message to FAUTHk (via a dummy party φA, φB), FAUTHk leaks
the message to S, and upon receiving such a leaked logical message sent by
P ∈ {A,B}, S forwards that message to πP (as a logical message to be sent
by P). Consequentially, πP generates physical message(s) and transmits them;
these are routed by S into E . When πP outputs a logical message (supposedly
received from the other party), S tells FAUTHk to release the delayed logical
message (even in the case of wrong logical message). When πP outputs abort, S
sends (abort, sid, P,m) to FAUTHk .

By proving that the simulator S indeed succeeds in fooling the environment
(i.e., simulating the real model), we infer that EXECF

AUTHk ,S′,E ≡ EXECπ,E , as
desired. ut

Let us now argue that the simulator S indeed succeeds in fooling the environ-
ment (i.e., simulating the real model). To do so, let us de�ne another simulator
S ′, similarly to S but for the following modi�cation. When S ′ invokes πA and
the latter produces a logical message m̂B

i allegedly sent by B, instead of ignoring
the content of m̂B

i that message, S ′ checks whether this message is correct (i.e.,
matches mB

i that was earlier leaked by FAUTHk). If m̂B
i 6= mB

i then S ′ will not
ignore this (as S does) but instead forward the incorrect message m̂B

i to E (by-
pass FAUTHk) and moreover block (i.e. delay the sending of the message forever)
the sending of the correct message mB

i from FMRP to E . The analogous change
is also made in the other direction (when πB outputs m̂A

i allegedly sent from A).
Note that S ′ is not a valid simulator as required by UC, because the UC ideal
model does not allow the simulator to talk directly to the environment; but as
we will show in Lemma 2, S ′ behaves essentially the same as S.

Let us �rst show that the ideal model with simulator S ′ is essentially the
same as the chosen-message secure MRP model (Lemma 1), and thus essentially

23

the same as the UC real model (Corollary 1). For that, we de�ne the notion of
view, as follows.

De�nition 10 (View). Let π be an MRP, and S ′ as de�ned above.

� De�ne the view V
F

AUTHk

E,S′ of an execution of FAUTHk in the UC ideal model
with environment E and simulator S ′ as the concatenation of: (1) the physical
(but not logical) messages that M receives; (2) the logical messages the each
dummy party receives as input and (3) the randomness of the environment
E.

� De�ne the view V πM of an adversary M in the chosen-message de�nition
as the concatenation of: (1) the physical (but not logical) messages that M
receives; (2) the logical messages the each party receives as input and (3) the
randomness of the adversary M .

Note that the view de�nition should not include the physical/logical mes-
sages that outputted to the environment/adversary, because it is given by the
randomness and the other parts of the view.

Lemma 1. Let π be an MRP, and S ′ as de�ned above. For each environment

E, there exists a chosen-message adversary ME , such that V
F

AUTHk

E,S′ ≡ V πME .

Proof. Let E be a UC environment. We de�ne the chosen-message adversary
ME to behave as E : ME operates in the same way as E does with regard to
exchanging the physical messages, operates in the same way E does with regard
to generation of logical messages of A,B respectively.

Consider the execution of π in the chosen-message model in the presence of
the adversary ME , versus the execution of π in the UC ideal model with E and
S ′, when �xing identical randomness for the analogous principals (e.g., the πA
ITI in the chosen-message execution vs. the πA ITI inside S′ in the UC ideal
execution). We shall show that the two executions essentially identical, i.e., the
same messages are exchanges between the analogous principals. This invariant
follows from the essentially identical handling of all messages, as follows.

Indeed, in both models, the logical messages are generated in the same way
(by E in the UC ideal model, and similarly by de�nition, by ME in the chosen-
message model), and are received as input by πA and πB . The intervention in
the physical message communication between πA and πB is also done in the
same way (by E in the UC ideal model, and similarly by de�nition, by ME in
the chosen-message model). Therefore, πA and πB produces the same physical
messages and outputs in both executions.

Let us verify that the outputs of πA are handled identically in both model
(the analysis for πB is analogous). There are three cases. (1) πA outputs abort
in the chosen-message model, and A aborts. In the ideal model, S ′ sends abort
to FAUTHk , which causes φA to abort as well. (2) πA outputs the correct logical
message in the chosen-message model. In the ideal model, S ′ tells FAUTHk to send
the correct logical message the A, so A also receives the correct logical message.
(3) πA outputs a wrong logical message in the chosen-message model. In the

24

ideal model, S ′ understands that the message is wrong, and bypasses FAUTHk so
A receives the wrong message as well. ut

Let π be an MRP, and E be an environment. Let ME be the chosen-message
adversary given by Lemma 1. In the real model of UC, the parties run the proto-
col instances πA and πB . Note that the environment is involved in their physical
messages exchange, and controls the generation of logical messages, exactly as
in the chosen-message execution. Thus, the chosen-message execution of π with
ME and the execution in the real model of UC of π are essentially equivalent,
because their respective views are equivalent, by Lemma 1 (the environment E
and the adversary ME have the same view distribution, so they have the same
output distribution).

It follows, in particular, that the ideal-model execution with S ′ is equivalent
to the real-model UC execution:

Corollary 1. EXECF
AUTHk ,S′,E ≡ EXECπ,E

There remains to show that S ′ is essentially the same as S:

Lemma 2. EXECF
AUTHk

,S,E ≈ EXECF
AUTHk

,S′,E

Proof. Let BADEπ be the event that during the execution of E against S and
FAUTHk , πA or πB (which are emulated inside S) ever output wrong logical
message. The probability that E will output 1 when running with S and FAUTHk

is, by Bayes's theorem:

Pr
[
EXECF

AUTHk
,S,E = 1

]
=

Pr
[
EXECF

AUTHk
,S,E = 1|BADEπ

]
Pr
[
BADEπ

]
+ Pr

[
EXECF

AUTHk ,S,E = 1|BADEπ
]
Pr
[
BADEπ

]
Similarly for S′:

Pr
[
EXECF

AUTHk ,S′,E = 1
]
=

Pr
[
EXECF

AUTHk
,S′,E = 1|BADEπ

]
Pr
[
BADEπ

]
+ Pr

[
EXECF

AUTHk ,S′,E = 1|BADEπ
]
Pr
[
BADEπ

]
Observe that S and S ′ behaves identically outside the event BADEπ, so above,

the two last terms are equal. Thus the di�erence in the probability of the envi-
ronment's output is at most:

|Pr
[
EXECF

AUTHk ,S,E = 1
]
− Pr

[
EXECF

AUTHk
,S′,E = 1

]
| =

|Pr
[
EXECF

AUTHk ,S,E = 1|BADEπ
]
− Pr

[
EXECF

AUTHk
,S′,E = 1|BADEπ

]
|

· Pr
[
BADEπ

]
≤ 1 · Pr

[
BADEπ

]
There remains to show that Pr

[
BADEπ

]
= negl(n).

25

Let ME be the adversary given by Lemma 1. By the premise that π satis�es
De�nition 4,ME cannot convince a party to receive a wrong logical message with
non-negligible probability, so Pr

[
BADEπ

]
= negl(n). Now, because the views are

equivalent (V
F

AUTHk

E,S′ ≡ V πME), it follows that EXECF
AUTHk

,S,E ≈ EXECF
AUTHk ,S′,E .

ut

Corollary 2. EXECF
AUTHk ,S,E ≈ EXECπ,E

6 PEBIUS MRP

We present the PEBIUS MRP, a Perpetual Bidirectional UC-Secure message
recognition protocol. PEBIUS is secure under the strongest de�nitions given
above: it is UC-secure and, equivalently, chosen-message secure). Our protocol
di�ers from prior MRPs (see Section 4.2), as follows.

Most prior MRPs [8, 19, 22, 35] used hash chains, which entailed two draw-
backs: an a-priori limit on the number of logical messages that can be sent, and
expensive storage (or recomputation) of the hash chain. Some also use a trusted
third party, or a high network overhead.

To avoid such issues, PEBIUS generate fresh key in each session, as done in
[21]. However, PEBIUS is also inherently bidirectional and thus more e�cient
than using a unidirectional MRP in both directions (see Section4.3).

6.1 Cryptographic Primitives for PEBIUS

PEBIUS use the following cryptographic primitives.

Message Authentication Code (MAC). We denote the usage of this func-
tion by MAC(k, x), where k is the private key and x is the (variable length)
message to be authenticated. The key generation of the MAC is denoted by
GenKey(). One such MAC that we can use is AES-CBC-MAC. We note that this
method should deal properly with variable-length messages. Otherwise, it will
be vulnerable to message concatenation, as described in [2] .

Hash function. For simplicity here, we model this as a random oracle f(x),
where x is the input to the functions. In Section 7.3, we discuss the concrete and
plausible (though nonstandard) properties requires of the hash function, which
are indeed all ful�lled by random oracles. Practically, f(x) would be implemented
by a standard cryptographic hash, such as SHA-256.

6.2 The PEBIUS Protocol

We next describe the PEBIUS MRP Π = (AI , BI , AD, BD), which (as shown
Section 7) is a delayed chosen-message secure ∞-MRP (De�nition 7). Following
Theorem 2, Π is also universally composable. Let f be a random oracle and
MAC be a message authentication code, as de�ned above.

Intuitive explanation. The protocol consists of theoretical in�nite iterations.
During each iteration, each party sends one logical message to the other party
using fresh keys (i.e. keys that were not used by earlier logical messages), and
a MAC of the logical message. At the beginning of each iteration, each of the

26

AI() BI()

KA
1 ← GenKey(), CA1 ← f(KA

1) KB
0 ← GenKey(), CB0 ← f(KB

0)

KB
1 ← GenKey(), CB1 ← f(KB

1)

CA1

CB0 , C
B
1

m̂B
0 ← λ K̂A

0 ← 0n,ĈA0 ← f(K̂A
0),m̂A

0 ← λ

σ̂A0 ← MAC(K̂A
0 ,
〈
ĈA0 , m̂

A
0

〉
)

σB0 ← MAC(KB
0 ,
〈
CB0 ,m

B
0

〉
)

σB0

Return (sB0) Return (sB0)

see

footnote1

Fig. 6.1. The PEBIUS initialization phase, Π. The state variable sA0 contains all of
the local variables used in AI ; and analogously for B.

parties has a commitment on the key of the other party, and the keys are revealed
at the next iteration. As a result, when each of the parties receives the key, he
can verify that the key is correct (using the commitment on the key) and that
the logical message is correct (using the correct key and the MAC on the logical
message). In order to be able to send other logical messages at the following
iterations, we need new keys. We achieve that by transferring a commitment on
the fresh keys inside the logical message of each iteration.

Initialization phase. The goal of the initialization phase (implemented by AI
and BI , see Figure 6.1) is to transfer commitments on the �rst keys to each party.
Recall that in MRP we assume that this phase is executed with authenticity (but
without con�dentiality), so each party can trust these commitments. Each party
generates keys: KA

1 of A and KB
0 ,K

B
1 of B, and commitments on these keys:

CA1 , C
B
0 , C

B
1 , respectively. We note that during the data phase, A sends the �rst

logical message, and that is the reason of this asymmetric (that B generates two
keys and A generates just one). In the following lines, in order to simplify the
description of the data phase, we generate some dummy variables to compensate
on this asymmetric.

1 These lines address a technicality in de�nition of the data phase. The �rst iteration

of the data-phase refers to "previous logical messages" (m̂A
0 , m̂

B
0), "previous key"

(K̂A
0), "previous commitment" (ĈA0) and "previous signatures" (σ̂A0 , σ̂

B
0) variables,

so we de�ne dummy values for these variables. Alternatively (but less elegantly), the
�rst iteration of the data-phase can be modi�ed to be special, in that it does not
verify or refer to such past variables.

27

AD(s
A
i−1,mA

i
) BD(s

B
i−1,mB

i
)

1. KA
i+1 ← GenKey(),CAi+1 ← f(KA

i+1)

2. σAi ← MAC
(
KA
i ,
〈
CAi+1,m

A
i

〉)
3.

〈
KA
i−1, C

A
i+1,m

A
i , σ

A
i

〉
4. If ĈAi−1 6=f(K̂A

i−1) or

5. σ̂Ai−1 6=MAC
(
K̂A
i−1,

〈
ĈAi , m̂

A
i−1

〉)
,

6. then return (sBi , 0,⊥).

7. KB
i+1 ← GenKey(), CBi+1 ← f(KB

i+1)

8. σBi ← MAC
(
KB
i ,
〈
CBi+1,m

B
i

〉)
9.

〈
KB
i−1, C

B
i+1,m

B
i , σ

B
i

〉
10. If ĈBi−1 6=f(K̂B

i−1) or Return (sBi , 1, m̂
A
i−1).

11. σ̂Bi−1 6=MAC
(
K̂B
i−1,

〈
ĈBi , m̂

B
i−1

〉)
,

12. then return (sAi , 0,⊥).

13. Return (sAi , 1, m̂
B
i−1).

Fig. 6.2. Iteration i (i >= 1) of the PEBIUS data phase, Π. The state variable sAj
(j ∈ N) contains all of the local variables of party A at the end of the j-th iteration of
AD; and analogously for B.

Data phase. During each iteration of the data phase (i.e., a single execution
of AD and BD, see Figure 6.2), each party sends one logical message to the other
party. Both parties start by generating a fresh new key for the next iteration
and a commitment on this key. Then, they use the key of the current iteration to
produce a signature on the logical message and the new commitment. Thereafter,
A sends the logical message, the new commitment and the signature on them.
Upon reception, B responds with symmetrical values, plus the key of the previous
iteration. Upon receiving this key, A can recognize that the key, the logical
message and the commitment are generated by the previously-negotiated entity
(of the initialization phase) and accept the message, or reject, if the veri�cation
fails. Then, A sends a key to B, which performs similar veri�cations.

7 Security Proof of PEBIUS

7.1 Conversations

We de�ne here the notion of matching conversations, in the spirt of the de�nition
in [3]. Basically, a conversation is the transcript of the executed protocol, as
seemed by an involved party. Two conversations are matching conversations if

28

they represents the transcript of the protocol executed by them (one conversation
for A, and the other one of B), without interference of any adversary.

De�nition 11 (Conversation). Let EXECkΠ,M be an execution of the protocol.
For any party P ∈ A,B we can capture its conversation (for this execution) by
a sequence:

K = (τ1, α1, β1) , (τ2, α2, β2) , . . . , (τm, αm, βm) .

This sequence encodes that at time13 τ1 party P was asked α1 and responded
with β1; and then, at some time τ2 > τ1, party P was asked α2 and answered
β2; and so forth, until, �nally, at time τm party P was asked αm and answered
βm.

De�nition 12 (Matching conversations). Let EXECkΠ,M be an execution of
the protocol with R = 2ρ− 1 moves. Let K and K′ be the conversations of A and
B, respectively.

1. We say that K′ is a matching conversation to K if there exist τ0 < τ1 <
· · · < τR and α1, β1, . . . , αρ, βρ such that K is pre�xed by

(τ0, λ, α1) , (τ2, β1, α2) , (τ4, β2, α3) , . . . , (τ2ρ−4, βρ−2, αρ−1) , (τ2ρ−2, βρ−1, αρ)

and K′ is pre�xed by

(τ1, α1, β1) , (τ3, α2, β2) , (τ5, α3, β3) , . . . , (τ2ρ−3, αρ−1, βρ−1) .

2. We say that K is a matching conversation to K′ if there exist τ0 < τ1 <
· · · < τR and α1, β1, . . . , αρ, βρ such that K′ is pre�xed by

(τ1, α1, β1) , (τ3, α2, β2) , (τ5, α3, β3) , . . . , (τ2ρ−3, αρ−1, βρ−1) , (τ2ρ−1, αρ, ∗)

and K is pre�xed by

(τ0, λ, α1) , (τ2, β1, α2) , (τ4, β2, α3) , . . . , (τ2ρ−4, βρ−2, αρ−1) , (τ2ρ−2, βρ−1, αρ) .

Figure 7.1 illustrates the matching conversation notion.

De�nition 13. Let a ≤ b ∈ N and let K be a conversation. A conversation
that consist from (b− a+ 1)-tuples of K starting at the a-tuple till the b-tuple
is a sub-conversation of K. We denote such conversations by Ka,b, and use the
shorthand Kb = K1,b.

By convention, for each conversation K we denote by K0 = λ the empty
conversation. Matching-conversations are de�ned for conversations. We de�ne a
similar notion for sub-conversations:

13 Here, time is any monotonically increasing function of the protocol's progress, e.g.,
the number of messages sent so far.

29

K

K′

(τ0, λ, α1) , (τ2, β1, α2), (τ4, β2, α3), (τ6, β3, α4)

(τ1, α1, β1), (τ3, α2, β2), (τ5, α3, β3), (τ7, α4, β4)

K3

K′3

Fig. 7.1. The relations between conversations and sub-conversations. In this �gure:

De�nition 14. Let EXECkΠ,M be an execution of the protocol with R = 2ρ − 1
moves. Let K and K′ be the conversations of A and B, respectively. Let b ∈ N.
We say that K is a matching-sub-conversation to K′ of length b, and denote

K
b
≈ K′, if K is a matching-conversation to K′ when setting ρ = b+1 (and thus,

R = 2b+ 1).

In other words, in case A is the initiator, K
b
≈ K′ if Kb+1 is a matching

conversation to K′b. Note that if A is the initiator, for b = 0 the sub-conversations

are Kb+1 = (τ0, λ, α1) and K′b = λ, so K
0
≈ K′ trivially. Figure 7.1 shows the

relations between conversations and sub-conversations.

7.2 The Proof

The proof consists of some groundwork which is done by proving some claims,
and it is concluded in Theorem 3. The proof involves an argument by induction
on the protocol's iteration counter, i. For clarity, we divide the proof into several
claims, to be used in Theorem 3. In the lemma and all of the claims below, we
let f be a random oracle and MAC(.) be a MAC function.

We �rst note a property of acceptance (outputting a value to sPi variables,
P ∈ A,B) during the protocol execution. Intuitively, if each of the parties ac-
cepted the k-th logical message, then he accepted also all of the earlier logical
messages. (The trivial proof is omitted.)

Claim. EXECkΠ,M be an execution of the protocol. Let P ∈ A,B. Let j ∈ N. If
PD outputs sPj = 1, then for each 1 ≤ i ≤ j, PD sets sPi = 1. �

The essential insight about the protocol is that the following �iteration-
invariant� holds in the beginning of each iteration of the parties during the
protocol. Intuitively, it says that in the beginning of the i-th iteration, both par-
ties have already generated new secret keys, which have not been sent yet (so
the adversary do not know them), but the image of these keys under f is known
to the other party. Formally:

30

De�nition 15. Let EXECkΠ,M be an execution of the protocol. We say that the
iteration-invariant holds for i if at the beginning of the i iteration of AD:

1. AD generated KA
i ← GenKey() , and BD generated KB

i−1 ← GenKey(),KB
i ←

GenKey().

2.
〈
CAi , C

B
i−1, C

B
i

〉
=
〈
ĈAi , Ĉ

B
i−1, Ĉ

B
i

〉
, except for negligible probability.

3. For each K ∈
{
KA
i ,K

B
i−1,K

B
i

}
, the only value depending on K that M

received from the parties, up to this time, is f(K).

We will use the following claim in the proof. Intuitively, knowing f(K) does
not help the adversary to forge signatures on messages of his choice,

Claim. Let M be a PPT, K be a randomly-chosen key, f be a random oracle
and MAC be a message authentication code. Assume that M receives as an
input C = f(K). The probability (over the choice of f and MAC) that M will
succeed to output a message m and a signature σ such that σ = MAC (K,m) is
negligible.

Proof. Assume by contradiction that M outputs such m and σ. Then we can
construct M ′, based on M , except that M ′ �rst samples C̃ ← {0, 1}|f(K)|, dis-
cards the original value of C and assigns C ← C̃. The resulting PPTM ′ operates
essentially like M , so M ′ also outputs m and σ such that σ = MAC (K,m), with
non-negligible probability. This contradicts the de�nition of MACs. ut

We wish to prove that the iteration-invariant holds for all i ∈ N. We prove
that by induction in Claim 7.2, which uses claims 7.2 for proving the induction
base, and Claim 3 for proving the induction step. The following proves that the
iteration-invariant holds for i = 1, i.e., immediately after the initialization phase.

Claim. Let EXECkΠ,M be an execution of the protocol. The iteration-invariant
holds for i = 1 (i.e., at the end of the initialization phase).

Proof. Condition 1 holds trivially from the protocol. Because the AI and BI

interacts authentically, we infer that
〈
CA1 , Ĉ

B
0 , Ĉ

B
1

〉
=
〈
ĈA1 , C

B
0 , C

B
1

〉
, and

equivalently
〈
CA1 , C

B
0 , C

B
1

〉
=
〈
ĈA1 , Ĉ

B
0 , Ĉ

B
1

〉
so condition 2 holds too. For each

K ∈
{
KA

1 ,K
B
0 ,K

B
1

}
, K is chosen uniformly and independently from previous

executions of the protocol, and the only information that the adversary receives
about it is C = f(K), as desired by condition 3. ut

Now, we prove that the iteration-invariant holds for i > 1. First, note the
�rst two iterations are a little bit di�erent from the others, because they rely on
the authenticity of the initialization phase rather than the previous iterations.
We wish to prove them in the same manner as the others. Recall that we de�ned
some pseudo-variables in the initialization phase for simplifying this issue in the
protocol de�nition, so we can use them in the proof too.

The following claim proves an important property about the data phase.
Intuitively, the claim says that if the parties have matching-sub-conversations

31

of length i − 1 and iteration-invariant holds for the i-th iteration, then the
parties have matching sub-conversations of length i. Note that ∀j ∈ N, αj =〈
KA
j−1, C

A
j+1,m

A
j , σ

A
j

〉
, βj =

〈
KB
j−1, C

B
j+1,m

B
j , σ

B
j

〉
.

Lemma 3. Let EXECkΠ,M be an execution of the protocol. Let i ∈ N. Assume

that KA
i−1
≈ KB and that the iteration-invariant holds for i. If AD outputted bAi =

1 and BD outputted bBi = 1, then KA
i
≈ KB , except for negligible probability.

Proof. Because KA
i−1
≈ KB, we can denote the last matching tuple of each conver-

sation as the following: KAi,i = (τ2i−2, βi−1, αi), KBi−1,i−1 = (τ2i−3, αi−1, βi−1).

So βi−1 = β̂i−1, namely:〈
KB
i−2, C

B
i ,m

B
i−1, σ

B
i−1
〉
=
〈
K̂B
i−2, Ĉ

B
i , m̂

B
i−1, σ̂

B
i−1

〉
(7.1)

In order to prove that KA
i
≈ KB (except for negligible probability), we need to

prove that the next tuple of each of these conversations,KAi+1,i+1 =
(
τ2i, β̂i, αi+1

)
,

KBi,i = (τ2i−1, α̂i, βi), are correct. More explicitly:

1. τ2i−1 > τ2i−2
2. τ2i > τ2i−1
3. α̂i = αi
4. β̂i = βi

The intuition of this proof relies on the observation that each key (except KB
0)

ful�lls two goals. Let P ∈ {A,B} be the sender party, and Q ∈ {A,B} be the
receiver party. Consider the key KP

i (i ∈ N). The �rst goal of this key is guaran-
teeing that the receiver of the logical message mQ

i+1 received any logical message

before the sender reveals the key KQ
i+1 (which may also be incorrect logical mes-

sage, but the receiver will not consider any new bits to be part of this message
afterwards). The second goal of the key is verifying the correctness of the logical
message mP

i to be generated by P . We de�ne 2 claims in this proof. Claim 3
deals with the �rst goal, and Claim 3 deals with the second goal.

The following claim will help us to prove that the timestamps are correct and
the keys sent inside the messages are correct, except for negligible probability.

Claim. Let P,Q ∈ {A,B} be parties (x 6= y) and j ∈ N s.t j ≤ i. Let τ ′

be the time when QD sends KQ
j and τ ′′ be the time when PD receives K̂Q

j . If

ĈQj = f(K̂Q
j), then K̂

Q
j = KQ

j and τ ′′ > τ ′, except for negligible probability.

Proof. ĈQj = CQj because KA
i−1
≈ KB (for j = 1, this is true because the iteration-

invariant holds for i = 1), and j ≤ i. In order to satisfy ĈQj = f(K̂Q
j), the

adversary should send at time τ ′′ a valid preimage of CQj . Since f is a random

oracle, and since KQ
j was chosen uniformly by QD, then the probability that

32

she succeed to guess it correctly before τ ′ is negligible, so we can consider only
the case that she sends the preimage KQ

j she learned after time τ ′ . Namely

K̂Q
j = KQ

j and τ ′′ > τ ′. ut
We now use Claim 3 four times:

1. We assumed that bBi = 1, which means that during iteration i + 1 of BD,

the veri�cation at line 4 has passed, namely ĈAi = f(K̂A
i). So, by setting:

P = B, Q = A, j = i, τ ′ = τ2i, τ
′′ = τ2i+1, Claim 3 implies that K̂A

i = KA
i

and τ2i+1 > τ2i, except for negligible probability.
2. We assumed that bAi = 1, which means that during iteration i + 1 of AD,

the veri�cation at line 10 has passed, namely ĈBi = f(K̂B
i). So, by setting:

P = A, Q = B, j = i, τ ′ = τ2i+1, τ
′′ = τ2i+2, Claim 3 implies that

K̂B
i = KB

i and τ2i+2 > τ2i+1, except for negligible probability.
3. Using Claim 7.2 we can do the same as the two above again, but for i − 1

instead of i and infer that K̂A
i−1 = KA

i−1 , K̂B
i−1 = KB

i−1and τ2i > τ2i−1 >
τ2i−2, except for negligible probability.

So far we proved items 1 and 2 (that the times are correct: τ2i+2 > τ2i+1 >
τ2i > τ2i−1 > τ2i−2, except for negligible probability) and just part of 3 and 4

(that keys are correct: K̂A
i−1 = KA

i−1, K̂
B
i−1 = KB

i−1,K̂
A
i = KA

i , K̂
B
i = KB

i ,
except for negligible probability). The following claim will help us to prove that
the other part of items 3 and 4 are also correct, except for negligible probability.

Claim. Let P,Q ∈ {A,B} be parties (x 6= y). If σ̂Qi = MAC

(
K̂Q
i ,

〈
ĈQi+1, m̂

Q
i

〉)
,

then

〈
ĈQi+1, m̂

Q
i , σ̂

Q
i

〉
=
〈
CQi+1,m

Q
i , σ

Q
i

〉
except for negligible probability.

Proof. Let τ ′ be the time QD sends KQ
i and τ ′′ be the time PD receives

〈
ĈQi+1, m̂

Q
i , σ̂

Q
i

〉
.

We have already proved that τ ′′ < τ ′ (using Claim 3). Before time τ ′′, the only

information depends on KQ
i that the adversary received from the parties is

CQi = f(KQ
i). By using Claim 7.2, we infer that the probability that she will

succeed to guess a triplet 〈C,m, σ〉 that satisfy σ = MAC
(
KQ
i , 〈C,m〉

)
is negli-

gible, so she must choose

〈
ĈQi+1, m̂

Q
i , σ̂

Q
i

〉
=
〈
CQi+1,m

Q
i , σ

Q
i

〉
, except for negli-

gible probability. ut
We now use Claim 3 twice, once for each message direction:

1. From the assumption that bBi = 1, using Claim 7.2 we infer that bBi−1 = 1,
which means that during iteration i of BD, the veri�cation at line 5 has

passed, namely σ̂Ai = MAC
(
K̂A
i ,
〈
ĈAi+1, m̂

A
i

〉)
. So, by setting: P = B, Q =

A, we infer that
〈
ĈAi+1, m̂

A
i , σ̂

A
i

〉
=
〈
CAi+1,m

A
i , σ

A
i

〉
, except for negligible

probability.

33

2. From the assumption that bAi = 1, using Claim 7.2 we infer that bAi−1, which
means that during iteration i of AD, the veri�cation at line 11 has passed,

namely σ̂Bi = MAC
(
K̂B
i ,
〈
ĈBi+1, m̂

B
i

〉)
. So, by setting: P = A, Q = B, we

infer that
〈
ĈBi+1, m̂

B
i , σ̂

B
i

〉
=
〈
CBi+1,m

B
i , σ

B
i

〉
, except for negligible probabil-

ity.

Concluding the proof of Lemma 3. We found that, except for negligible
probability:

τ2i > τ2i−1 > τ2i−2

α̂i =
〈
K̂A
i−1, Ĉ

A
i+1, m̂

A
i , σ̂

A
i

〉
=
〈
KA
i−1, C

A
i+1,m

A
i , σ

A
i

〉
= αi

β̂i =
〈
K̂B
i−1, Ĉ

B
i+1, m̂

B
i , σ̂

B
i

〉
=
〈
KB
i−1, C

B
i+1,m

B
i , σ

B
i

〉
= βi

as desired. Thus, KA
i
≈ KB , except for negligible probability.

ut

Using the above lemma and claims, we can prove that the iteration-invariant
holds for all i ∈ N:

Claim. Let EXECkΠ,M be an execution of the protocol. For each i ∈ N, if the
execution completed the i-th iteration with bAi = 1 and bBi = 1 at end, then

the iteration-invariant holds for i, and moreover KA
i
≈ KB , except for negligible

probability.

Proof. By induction.

Induction base. Claim 7.2 proves that the iteration-invariant holds for i = 1.

Also, as discussed in Section 7.1, KA1 = (τ0, λ, α1) and KB0 = λ, and thus KA
0
≈

KB . Now, using Claim 3 with i = 1 we infer that KA
1
≈ KB , except for negligible

probability.

Induction step. Let 1 < i ∈ N. Assume that the following holds: If bAi−1 = 1

and bBi−1 = 1, then the iteration-invariant holds for i − 1, and that KA
i−1
≈ KB .

We wish to prove that if bAi = 1 and bBi = 1, then the iteration-invariant holds

for i, and that KA
i
≈ KB .

Assume bAi = 1 and bBi = 1. From Claim 7.2 we can infer that bAi−1 and b
B
i−1,

so from the induction assumption, the iteration-invariant holds for i − 1, and

that KA
i−1
≈ KB . Thus, except for negligible probability:

τ2i−2 > τ2i−3 > τ2i−4

α̂i−1 =
〈
K̂A
i−2, Ĉ

A
i , m̂

A
i−1, σ̂

A
i−1

〉
=
〈
KA
i−2, C

A
i ,m

A
i−1, σ

A
i−1
〉
= αi−1

β̂i−1 =
〈
K̂B
i−2, Ĉ

B
i , m̂

B
i−1, σ̂

B
i−1

〉
=
〈
KB
i−2, C

B
i ,m

B
i−1, σ

B
i−1
〉
= βi−1

34

So ĈAi = CAi and ĈBi = CBi , except for negligible probability. Also, since the

iteration-invariant holds for i−1 (except for negligible probability), ĈBi−1 = CBi−1,
except for negligible probability. So condition 2 of the iteration-invariant holds
for i. Condition 1 holds trivially from the description of the protocol. Recall
that KB

i−1,K
A
i ,K

B
i are sent in times τ2i−1 < τ2i < τ2i+1, respectively, and

that the beginning of the i iteration of the initiator is at time τ2i−2, for which
τ2i−2 < τ2i−1. So for each K ∈

{
KA
i ,K

B
i−1,K

B
i

}
, K is chosen uniformly and

independently from the past, and the only information depending on K that the
adversary receives from the parties is C = f(K), so condition 3 holds as well.
So the iteration-invariant holds for i. Now we can use Claim 3 with i and infer

that KA
i
≈ KB .

ut

In Claim 7.2 we proved that the probability that the parties will fail to
reveal the adversary's interference in an individual iteration of the execution is
negligible. Now we want to prove that the probability that the probability that
they will fail to reveal it in any iteration is negligible. We do so in Claim 7.2, by
applying union bound on the individual iterations,

Claim. Let EXECkΠ,M be an execution of the protocol. The probability that there

exists i ∈ N such that the execution completed the i-th iteration with bAi = 1

and bBi = 1 at end, but KA
i
≈ KB does not hold, is negligible.

Proof. The adversary is e�cient, so she can do only polynomial-time iterations.
LetK(n) be a polynomial function and Let k = K(n) be the number of iterations
that the adversary perform in the execution. Let BADi be the event that the
execution completed the i-th iteration with bAi = 1 and bBi = 1 at end, but

KA
i
≈ KB does not hold. By using Claim 7.2, we infer that for all k ≥ i ∈ N,

Pr [BADi] = negl(n). By applying union bound, we get

Pr

 ⋃
k≥i∈N

BADi

 ≤ ∑
k≥i∈N

BADi = k · BADi = k · negl(n) = negl(n)

The �rst move is the union bound. The last move is true because k is poly-
nomial. ut

The security of the protocol follows:

Theorem 3. Let f be a random oracle and let MAC(.) be a MAC function.
PEBIUS is a delayed chosen-message secure ∞-MRP (De�nition 7 with delay
d = 1.

Proof. Let n ∈ N, k = K(n) where K is any polynomial function. Let GenMsgA

and GenMsgB be any functions. Let M be any e�cient (PPT) adversary. We

need to prove that Pr
[
EXECkΠ,M = win

]
= negl(n).

35

In order to return win, there should be P,Q ∈ {A,B}, P 6= Q and i ∈ N,
such that bPi = 1 and mQ

i−1 6= m̂Q
i−1. Assume by contradiction that such P,Q, i

exists with non-negligible probability. From Claim 7.2, we infer that KA
i
≈ KB ,

except for negligible probability. In particular, mA
i−1 = m̂A

i−1 and mB
i−1 = m̂B

i−1,
in contradiction. ut

7.3 Tightening the Cryptographic Primitives

Our security prove of the protocol in the random oracle model, because there is
no provable truely secure random function construction. Alternatively, we can
avoid using random oracles by replacing the cryptographic primitives by two
other primitives f,MAC, which satisfy the following criteria:

De�nition 16. Two functions f,MAC are su�cient for our protocol, if f is
a collision-resistant hash function (CRH), MAC is a message authentication
code (MAC), and no e�cient adversary A can win the following game win non-
negligible probability:

1. k ← GenKey()
2. µ, σ ← A(f(k))
3. Win i� σ = MAC(k, µ)

To see why it is true, pay attention that in the proof of Section 7, we could
swap the random oracle f by a CRH and leave the proof as is, except for
Claim 7.2. However, the requirement in De�nition 16 essentially matches this
claim.

8 Conclusion

We are already surrounded by large numbers of small devices that sense, com-
pute, communicate, and actuate. Today these devices use the Bluetooth, ZigBee,
and proprietary wireless protocols. In the future, it is expected that many of
these devices will use Internet protocols. It is crucial to be able to form secure
network links between such devices. Yet, current standards for low-power devices
(ZigBee and Bluetooth Smart) are vulnerable to simple MITM attacks, due to
the perception that security would be too expensive in computation, power and
user-interface components.

This paper disproves that widely-held belief. Current devices already include
simple user-interface components (a lamp and a switch) to initiate and report the
state of insecure association protocols. We show that these components can be re-
purposed in software to implement an abstract use-interface primitive that can
enable secure association. This user-interface primitive, oblivious comparison,
can enable both the public-key based �secure simple pairing� protocol, which
provides both authentication and privacy, and a range of message-recognition
protocols that provide only message authentication but require no public-key
computations. We also argue that the latter should and can be secure in a strong
sense, using the Universal Composability framework, which guarantees security

36

when the protocol is used by arbitrary high-level applications and in the presence
of arbitrary other protocols. Finally, we presented our MRP, named PEBIUS,
and proved that it holds the strongest security de�nition for MRP that we de�ned
in this paper.

The Internet of Things needs to be secure. It can be secure. This paper shows
how to do it.

References

1. Ross Anderson, Francesco Bergadano, Bruno Crispo, Jong-Hyeon Lee, Charalam-
pos Manifavas, and Roger Needham. A new family of authentication protocols.
SIGOPS Oper. Syst. Rev., 32(4):9�20, 1998.

2. Mihir Bellare, Joe Kilian, and Phillip Rogaway. The security of the cipher block
chaining message authentication code. J. Comput. Syst. Sci., 61(3):362�399.

3. Mihir Bellare and Phillip Rogaway. Entity authentication and key distribution. In
CRYPTO 1993, CRYPTO '93, pages 232�249. Springer, 1994.

4. Ran Canetti. Universally composable security: A new paradigm for cryptographic
protocols. Cryptology ePrint Archive, Report 2000/067, 2000.

5. Claude Castelluccia and Pars Mutaf. Shake them up!: a movement-based pair-
ing protocol for cpu-constrained devices. In International conference on Mobile
Systems, Applications, and Services (MobiSys), pages 51�64. ACM, 2005.

6. Ming Ki Chong, Rene Mayrhofer, and Hans Gellersen. A survey of user interaction
for spontaneous device association. ACM Computing Surveys (CSUR), 47(1):8,
2014.

7. Christian Gehrmann. Multiround unconditionally secure authentication. Designs,
Codes and Cryptography, 15(1):67�86, 1998.

8. Ian Goldberg, Atefeh Mashatan, and Douglas R. Stinson. A new message recog-
nition protocol with self-recoverability for ad hoc pervasive networks. In Michel
Abdalla, David Pointcheval, Pierre-Alain Fouque, and Damien Vergnaud, editors,
ACNS, volume 5536 of LNCS, pages 219�237.

9. Madeline Gonzalez Muniz and Peeter Laud. On the (im) possibility of perennial
message recognition protocols without public-key cryptography. In ACM Sympo-
sium on Applied Computing 2011, pages 1510�1515. ACM, 2011.

10. Michael T. Goodrich, Michael Sirivianos, John Solis, Claudio Soriente, Gene
Tsudik, and Ersin Uzun. Using audio in secure device pairing. IJSN, 4(1/2):57�68,
2009.

11. Bluetooth Special Interest Group. Speci�cation of the Bluetooth system, 2007.

12. Bluetooth Special Interest Group. Speci�cation of the Bluetooth system, 2010.

13. Jonathan Hammell, Andre Weimerskirch, Joao Girao, and Dirk Westho�. Recog-
nition in a low-power environment. In Workshop on Wireless Ad Hoc Networking,
held in conjunction with IEEE International Conference on Distributed Computing
Systems. WWAN2005, ICDCS2005.

14. Arun Kumar, Nitesh Saxena, Gene Tsudik, and Ersin Uzun. Caveat eptor: A
comparative study of secure device pairing methods. In Pervasive Computing and
Communications (PerCom) 2009, pages 1�10. IEEE, 2009.

15. Cynthia Kuo, Jesse Walker, and Adrian Perrig. Low-cost manufacturing, usability,
and security: An analysis of bluetooth simple pairing and wi-� protected setup.
In Sven Dietrich and Rachna Dhamija, editors, Financial Cryptography and Data
Security, volume 4886 of LNCS, pages 325�340. Springer, 2007.

37

16. L. Lamport. Constructing digital signatures from a one-way function. Technical
Report CSL-98, SRI International, Oct 1979.

17. Andrew Y. Lindell. Comparison-based key exchange and the security of the nu-
meric comparison mode in Bluetooth v2.1. In Marc Fischlin, editor, CT-RSA,
volume 5473 of LNCS, pages 66�83. Springer.

18. Andrew Y. Lindell. Attacks on the pairing protocol of Bluetooth v2.1, 2008.
19. Stefan Lucks, Erik Zenner, Andre Weimerskirch, and Dirk Westho�. Concrete se-

curity for entity recognition: The jane doe protocol. In Dipanwita Roy Chowdhury,
Vincent Rijmen, and Abhijit Das, editors, INDOCRYPT, volume 5365 of LNCS,
pages 158�171. Springer.

20. Yasir Arfat Malkani and L Das Dhomeja. Secure device association for ad hoc and
ubiquitous computing environments. In International Conference on Emerging
Technologies (ICET) 2009, pages 437�442. IEEE, 2009.

21. Atefeh Mashatan and Douglas R. Stinson. A new message recognition protocol for
ad hoc pervasive networks. IACR Cryptology ePrint Archive, 2008:294.

22. Atefeh Mashatan and Serge Vaudenay. A message recognition protocol based on
standard assumptions. In Jianying Zhou and Moti Yung, editors, ACNS, volume
6123 of LNCS, pages 384�401.

23. Rene Mayrhofer and Hans Gellersen. Shake well before use: Authentication based
on accelerometer data. In Anthony LaMarca, Marc Langheinrich, and KhaiN.
Truong, editors, Pervasive Computing, volume 4480 of LNCS, pages 144�161.
Springer, 2007.

24. J.M. McCune, A Perrig, and M.K. Reiter. Seeing-is-believing: using camera phones
for human-veri�able authentication. In IEEE Symposium on Security and Privacy
2005, pages 110�124, 2005.

25. Chris J. Mitchell. Remote user authentication using public information. In Ken-
neth G. Paterson, editor, IMA International Conference on Cryptography and Cod-
ing, volume 2898 of LNCS, pages 360�369. Springer, 2003.

26. Madeline Gonzalez Muniz and Rainer Steinwandt. Cryptanalysis of a message
recognition protocol by mashatan and stinson. In Information, Security and
Cryptology�ICISC 2009, pages 362�373. Springer, 2010.

27. Adrian Perrig, Ran Canetti, J Doug Tygar, and Dawn Song. The TESLA broadcast
authentication protocol. 2005.

28. Ramnath Prasad and Nitesh Saxena. E�cient device pairing using �human-
comparable� synchronized audiovisual patterns. In Applied Cryptography and Net-
work Security, pages 328�345. Springer, 2008.

29. Volker Roth, Wolfgang Polak, Eleanor Rie�el, and Thea Turner. Simple and ef-
fective defense against evil twin access points. In ACM Conference on Wireless
Network Security, WiSec '08, pages 220�235. ACM, 2008.

30. N. Saxena, J.-E. Ekberg, K. Kostiainen, and N. Asokan. Secure device pairing
based on a visual channel. In IEEE Symposium on Security and Privacy 2006,
pages 6 pp.�313, 2006.

31. Yaniv Shaked and Avishai Wool. Cracking the Bluetooth PIN. In in USENIX/ACM
Conf. Mobile Systems, Applications, and Services (MobiSys), pages 39�50, 2005.

32. Frank Stajano. The resurrecting duckling. In Security Protocols, pages 183�194.
Springer, 2000.

33. R. Steinmetz. Human perception of jitter and media synchronization. IEEE Jour-
nal on Selected Areas in Communications, 14(1):61�72, 1996.

34. Jani Suomalainen, Jukka Valkonen, and N Asokan. Standards for security asso-
ciations in personal networks: a comparative analysis. International Journal of
Security and Networks, 4(1):87�100, 2009.

38

35. Andre Weimerskirch and Dirk Westho�. Zero common-knowledge authentication
for pervasive networks. In Workshop Selected Areas in Cryptography (SAC '03),
pages 73�87, 2003.

	Secure Association for the Internet of Things

