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Bicycle chain sieve  [D. H. Lehmer, 1928]Bicycle chain sieve  [D. H. Lehmer, 1928]
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The Number Field Sieve
Integer Factorization Algorithm

• Best algorithm known for factoring large 
integers.

• Subexponential time, subexponential space.

• Successfully factored a 512-bit RSA key in 
1999 (hundreds of workstations running for 
many months).

• Record: 530-bit integer factored in 2003.
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NFS: Main steps
Matrix step: 

Find a linear 
dependency among the 
numbers found.

Relation collection 
(sieving) step:
Find many numbers 
satisfying a certain (rare) 
property.
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NFS: Main steps

Cost dramatically 
reduced by 
[Bernstein 2001] 
followed by [LSTT 2002] 
and [GS 2003].

This work

Matrix step: 

Find a linear 
dependency among the 
numbers found.

Relation collection 
(sieving) step:
Find many numbers 
satisfying a certain (rare) 
property.
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Cost of sieving for RSA-1024 in 1 year

• Traditional PC-based: [Silverman 2000]

100M PCs with 170GB RAM each: $5×1012

• TWINKLE: [Lenstra,Shamir 2000][Silverman 2000]*

3.5M TWINKLEs and 14M PCs: ~ $1011

• Mesh-based sieving  [Geiselmann,Steinwandt 2002]*

Millions of devices, $1011 to $1010 (if at all?)
Multi-wafer design – feasible?

• Our design: $10M using standard silicon 
technology (0.13um, 1GHz).
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The Sieving Problem
Input: a set of arithmetic progressions. Each 
progression has a prime interval p and value logp.
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Output: indices where the sum of values exceeds a 
threshold.
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1024-bit NFS sieving parameters

• Total number of indices to test: 3×1023.

• Each index should be tested against all 
primes up to 3.5×109.
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Three ways to sieve your numbers...
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Memory

One contribution per clock cycle.
PC-based sieving, à la Eratosthenes

276–194 BC
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TWINKLE: time-space reversal
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Time

One index handled at each clock cycle.The Weizmann 
Institute Key 

Locating Engine

[Shamir 99]
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TWIRL: compressed time
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s=5 indices handled at each clock cycle.     (real: s=32768)The Weizmann 
Institute Relation 

Locator
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Parallelization in TWIRL
TWINKLE-like
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Parallelization in TWIRL
TWINKLE-like

pipeline Simple parallelization with factor s
a � ��� s�
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TWIRL with parallelization factor s
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Example (simplified): handling large primes
• Each prime makes a contribution once per 10,000’s of clock 

cycles (after time compression); inbetween, it’s merely 
stored compactly in DRAM.

• Each memory+processor unit handles 10,000’s of 
progressions. It computes and sends contributions across 
the bus, where they are added at just the right time. Timing 
is critical.
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Handling large primes (cont.)
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Implementing a priority queue of events
• The memory contains a list of events of the form (p �,a �), 

meaning “a progression with interval p � will make a 
contribution to index a �”.  Goal: implement a priority queue.

1. Read next event (p �,a �).

2. Send a log p � contribution to 
line a � (m od s) of the pipeline.

3. Update a �←a �+p �

4. Save the new event (p �,a �) to the memory location that 
will be read just before index a � passes through the 
pipeline.

• To handle collisions, slacks and logic are added.

• The list is ordered by increasing a �.
• At each clock cycle:
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Handling large primes (cont.)
• The memory used by past events can be reused.
• Think of the processor as rotating around the cyclic 

memory:
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Handling large primes (cont.)
• The memory used by past events can be reused.
• Think of the processor as rotating around the cyclic 

memory:

• By assigning similarly-sized primes to the same processor 
(+ appropriate choice of parameters), we guarantee that 
new events are always written just behind the read head.

• There is a tiny (1:1000) window of activity which is “twirling”
around the memory bank. It is handled by an SRAM-based 
cache. The bulk of storage is handled in compact DRAM.
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Rational vs. algebraic sieves

• In fact, we need to perform two 
sieves: rational (expensive) and 
algebraic (even more expensive).

• We are interested only in indices 
which pass both sieves.

• We can use the results of the 
rational sieve to greatly reduce the 
cost of the algebraic sieve.

algebraic

rational
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Notes

• TWIRL is a hypothetical and untested 
design. 

• It uses a highly fault-tolerant 
wafer-scale design.

• The following analysis is based on 
approximations and simulations.
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TWIRL for 512-bit composites

One silicon wafer full of TWIRL devices 
(total cost ~$15,000) can complete the 
sieving in under 10 minutes.

This is 1,600 times faster than the best 
previous design.
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TWIRL for 1024-bit composites

• Operates in clusters of 3 
almost independent wafers.

• Initial investment (NRE): 
~$20M

• To complete the sieving in 1 year
• Use 194 clusters (~600 wafers).
• Silicon cost: ~$2.9M
• Total cost: ~$10M   (compared to ~$1T).
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