Factoring Large Numbers
with the TWIRL Device

Adi Shamir, Eran Tromer



.u :
fair T

311 10an)] - et
_qu_h_u_u.

mH..—.“_-_-q_.u....._..-.q..“—.r

:...,

RPN EFRNARR AL
SESSRERERRRET
FEREFIRELE

R |

111




The Number Field Sieve
Integer Factorization Algorithm

e Best algorithm known for factoring large
Integers.

* Subexponential time, subexponential space.

e Successfully factored a 512-bit RSA key In
1999 (hundreds of workstations running for
many months).

* Record: 530-bit integer factored in 2003.



NFS: Main steps

Relation collection Matrix step:
(sieving) step:
Find many numbers Find a linear

satisfying a certain (rare) |dependency among the
property. numbers found.




NFS: Main steps

Relation collection Matrix step:

(sieving) step:

Find many numbers Find a linear

satisfying a certain (rare) |dependency among the
property. numbers found.

Cost dramatically
reduced by

[Bernstein 2001]
followed by [LSTT 2002]
and [GS 2003].

This work




Cost of sieving for RSA-1024 in 1 year

e Traditional PC-based: [Silverman 2000]
100M PCs with 170GB RAM each: $5x1012

 TWINKLE: [Lenstra,Shamir 2000][Silverman 2000]
3.5M TWINKLEs and 14M PCs: ~ $1011

* Mesh-based sieving [Geiselmann,Steinwandt 2002]°
Millions of devices, $1011 to $1010 (if at all?)
Multi-wafer design — feasible?

e Our design: $10M using standard silicon
technology (0.13um, 1GHz).



The Sieving Problem

Input: a set of arithmetic progressions. Each
progression has a prime interval p and value logp.

Output: indices where the sum of values exceeds a

threshold. — R’




1024-bit NFS sieving parameters

e Total number of indices to test: 3x102°.

AR W=

 Each index should be tested against all
primes up to 3.5x10°.



Three ways to sieve your numbers...

indices (a values)



PC-based sieving, a la Eratosthenes

One contribution per clock cycle.

gﬁaﬁgﬁgﬁgﬁaﬁgﬁgﬁgﬁaﬁ - T

Memory 0



TWINKLE: time-space reversal

ed at each clock cycle.

The Weizmann
Institute Key
Locating Engine

[Shamir 99]

Counters



Various circuits

TWIRL: compressed time

Institute Relation
L ocator

J The Weizmann dled at each clock cycle (.real:'s:327‘68) |

...................................................................................................................................................................

..............................................................................................................................................................

0 8 9101112131415161718192021222324

MﬁWﬁWﬁ :

Time
12



Parallelization in TWIRL

TWINKLE-like




Parallelization in TWIRL

TWINKLE-like : L
TWIRL with parallelization factor s

| %:‘:
[+




Example (simplified): handling large primes

e Each prime makes a contribution once per 10,000’s of clock
cycles (after time compression); inbetween, it's merely
stored compactly in DRAM.

e Each memory+processor unit handles 10,000’s of
progressions. It computes and sends contributions across
the bus, where they are added at just the right time. Timing

Is critical.
2
O = Es & B E] &x (]
- S .
o ] ] ] H H ] E
1 R T O
| | | it
5 ; i i E ks NI
@
= S ] ] ] ] ] =
ol




Handling large primes (cont.)

-
@]
7
Q [
(&)
- O
al




Implementing a priority queue of events

 The memory contains a list of events of the form (p,,a,),
meaning “a progression with interval p, will make a

contribution to index a,”. Goal: implement a priority queue.
 The list is ordered by increasing a,.

e At each clock cycle:
1. Read next event (p;,a,).

2. Send a log p, contribution to
line a, (mod s) of the pipeline.

3. Update a;<a,+p,

4. Save the new event (p,;,a;) to the memory location that
will be read just before index a, passes through the
pipeline.

 To handle collisions, slacks and logic are added.

17



Handling large primes (cont.)

e The memory used by past events can be reused.
e Think of the processor as rotating around the cyclic

memory:
S
] 8

S

Q

18



Handling large primes (cont.)

e The memory used by past events can be reused.
e Think of the processor as rotating around the cyclic

memory:
)
)\A ;
S
Q.

e By assigning similarly-sized primes to the same processor
(+ appropriate choice of parameters), we guarantee that
new events are always written just behind the read head.

e Thereis atiny (1:1000) window of activity which is “twirling”
around the memory bank. It is handled by an SRAM-based
cache. The bulk of storage is handled in compact DRAM.

19



Rational vs. algebraic sieves

* |n fact, we need to perform two
sieves: rational (expensive) and
algebraic (even more expensive).

 We are interested only in indices
which pass both sieves.

* We can use the results of the
rational sieve to greatly reduce the
cost of the algebraic sieve.

20



Notes

* TWIRL is a hypothetical and untested
design.

* |t uses a highly fault-tolerant
wafer-scale design.

* The following analysis Is based on
approximations and simulations.



TWIRL for 512-bit composites

One silicon wafer full of TWIRL devices
(total cost ~$15,000) can complete the
sieving In under 10 minutes.

This I1s 1,600 times faster than the best
previous design.



TWIRL for 1024-bit composites
* Operates In clusters of 3 Ab B
G0lC

almost independent wafers. ﬂv

* Initial investment (NRE):
~$20M
* To complete the sieving Iin 1 year
e Use 194 clusters (~600 wafers).
* Silicon cost: ~$2.9M
e Total cost: ~$10M (compared to ~$1T).






