Hardware-Based Implementations
of Factoring Algorithms

Factoring Large Numbers with the TWIRL Device

Adi Shamir, Eran Tromer

Analysis of Bernstein’s Factorization Circuit

Arjen Lenstra, Adi Shamir, Jim Tomlinson, Eran Tromer

J13a I
*_.Hu_nm_mw

q____...h+*._h
u.._____ﬂ_q_HLmH
|

u_____:::__?...

g nu__-._-_u__
..q::.:.. :.

The Number Field Sieve
Integer Factorization Algorithm

e Best algorithm known for factoring large integers.
* Subexponential time, subexponential space.

» Successfully factored a 512-bit RSA key
(hundreds of workstations running for many months).

 Record: 530-bit integer (RSA-160, 2003).

e Factoring 1024-bit: previous estimates were trillions
of $xyear.

e Our result: a hardware implementation which can
factor 1024-bit composites at a cost of about
10M $xyear.

NFS — main parts

* Relation collection (sieving) step:
Find many integers satisfying a certain
(rare) property.

e Matrix step:
Find an element from the kernel of a
huge but sparse matrix.

Previous works: 1024-bit sieving

Cost of completing all sieving in 1 year:

e Traditional PC-based: [Silverman 2000]
100M PCs with 170GB RAM each: $5x1012

* TWINKLE: [Lenstra,Shamir 2000, Silverman 2000]"

3.5M TWINKLEs and 14M PCs: ~ $10%!

* Mesh-based Sieving [Geiselmann,Steinwandt 2002]"
Millions of devices, $10! to $10%° (if at all?)
Multi-wafer design — feasible?

e New device: $10M

Previous works: 1024-bit matrix step

Cost of completing the matrix step in 1 year:

e Serial: [Silverman 2000]
19 years and 10,000 interconnected Crays
e Mesh Sorting [Bernstein 2001, LSTT 2002]

273 Interconnected wafers — feasible?!
$4M and 2 weeks.

e New device: $0.5M

Review: the Quadratic Sieve

To factor n:
* Find “random” r,,r, such that r,>=r,? (mod n)
 Hope that gcd(r;-r5,n) IS a nontrivial factor of n.

How?
* Let fi(a)=(a+|n'/2])*=n
fala)=(a+[n'/2])?

* Find a nonempty set SCZ such that

Hfl(a) — T12 ; HfQ(a) — 7022

acsS acsS
over Z for some ry,ryeZ.

* r,2=r,? (mod n)

}

}

}

The Quadratic Sieve (cont.)

How to find S such that H fi(a) is asquare?

acsS
Look at the factorization of f;(a):

£f(0)=102 =2 3 17
(1)=33 = 3 11
£1(2)=1495 = 5 13 23
f.(3)=84 =22 3
fi(4)=616 =23 7 11
fi(5)=145 = 5 29
£.(6)=42 =2 3 7
- Thisijs
II)= 20 & & 7 117 4l eXpiﬁé’tiri;fiZ“f

ac{1,4,6}

The Quadratic Sieve (cont.)

How to find .S such that H fi(a) is asquare?

acS

e Consider only the (B) primes smaller than a bound B.

e Search for integers a for which f;(a) is B-smooth.

For each such a, represent the factorization of f,(a) as
\\eo\\o a vector of b exponents:

O f1(a)=251325S8 7% ... 5 (e),e,...,6p)

 Once b+1 such vectors are found, find a dependency
modulo 2 among them. That is, find S such that

€1 9€9 €3 »€
1] fi(a)=2%13%25%7% ... where e, all even.
acsS

«©

Observations [Bernstein 2001]

 The matrix step involves multiplication of a single huge
matrix (of size subexponential in n) by many vectors.

 On a single-processor computer, storage dominates cost
yet is poorly utilized.

e Sharing the input: collisions, propagation delays.

e Solution: use a mesh-based device, with a small
processor attached to each storage cell.
Devise an appropriate distributed algorithm.
Bernstein proposed an algorithm based on mesh sorting.

e Asymptotic improvement: at a given cost you can factor
Integers that are 1.17 longer, when cost is defined as

throughput cost = runtime X construction cost
|
AT cost

Implications?

* The expressions for asymptotic costs have
the form elwteL)(logn)¥3-(log logn)23

* |s it feasible to implement the circuits with
current technology? For what problem sizes?

e Constant-factor improvements to the
algorithm? Take advantage of the quirks of
available technology?

e \What about relation collection?

The Relation Collection Step

e Task:
Find many integers a for which f;(a) is B-smooth (and
their factorization).

* We look for a such that p|f,(a) for many large p:

Zp:plfl(a) logp > T ~ log f1(a)
e Each prime p “hits” at arithmetic progressions:
{a:p|fi(a)} ={a: fi(a) =0 (modp)}
:UZ{Tz—I—kpkEZ}

where r, are the roots modulo p of f,.
(there are at most deg(f;) such roots, ~1 on average).

The Sieving Problem

Input: a set of arithmetic progressions. Each

progression has a prime interval p and value logp.
(there is about one progression for every prime p smaller than 108)

Output: indices where the sum of values exceeds a
threshold. — IR’

Three ways to sieve your numbers...

indices (a values)

14

Serial sieving, a la Eratosthenes

One contribution per clock cycle.

Counters

TWINKLE: time-space reversal
One index handled at each clock cycle.

Various circuits

TWIRL: compressed time

Parallelization in TWIRL

TWINKLE-like

W

@

Parallelization in TWIRL

TWINKLE-like _ o
TWIRL with parallelization factor s

W

&+

Heterogeneous design

. A progression of |nterval Dy makes a contrrbutlon L
~every p;/s clock oyeles
- :There are a Iot of Iarge prlmes but each contnbutes i

- “There are few small"
. j“are frequent

t e|Olace nL erous Statrons along the p pellne
EaCh St

ation handes progressions whose prime

Example: handling large primes

* Primary consideration:
efficient storage between contributions.

 Each memory+processor unit handle many progressions.
It computes and sends contributions across the bus, where
they are added at just the right time. Timing is critical.

o
é — [+] H] HH HH [H
- © .
o . H [[H H H H ;E
q"% 111 111 I 1 | | I I | | I | | I I I | .!'\\:5:‘1I
i H e I U
5 H =3 [F M-8
% / [H HH [+ H [+ H-H
g v ¥ 2 v nl)
- £

Handling large primes (cont.)

-
(@]
7
Q
(&)
- O
o

Handling large primes (cont.)

The memory contains a list of events of the form (p,,a.),
meaning “a progression with interval p, will make a
contribution to index «,”. Goal: simulate a priority queue.

The list is ordered by increasing a,.
At each clock cycle:

1. Read next event (p;,a)).

2. Send a log p, contribution to
line a, (mod s) of the pipeline.
3. Update a;<a,+p,

4. Save the new event (p;,a;) to the memory location that
will be read just before index a, passes through the
pipeline.

To handle collisions, slacks and logic are added.

23

Handling large primes (cont.)

e The memory used by past events can be reused.
e Think of the processor as rotating around the cyclic

memory:
S
g
S
Q

24

Handling large primes (cont.)

e The memory used by past events can be reused.
e Think of the processor as rotating around the cyclic

memory:
S
)\A ;
S
Q

e By appropriate choice of parameters, we guarantee that
new events are always written just behind the read head.

e Thereis atiny (1:1000) window of activity which is “twirling”
around the memory bank. It is handled by an SRAM-based
cache. The bulk of storage is handled in compact DRAM.

Rational vs. algebraic sieves

* We actually have two sieves: rational and algebraic.
We are looking for the indices that accumulated
enough @ value In both sieves.

 The algebraic sieve has many more progressions,
and thus dominates cost.

k=l
* We cannot compensate by making s much larger,

since the pipeline becomes very wide and the
device exceeds the capacity of a wafer.

26

Optimization: cascaded sieves

* The algebraic sieve will consider only the indices
that passed the rational sieve.

4

!

* |In the algebraic sieve, we still scan the indices at a
rate of thousands per clock cycle, but only a few of
these have to be considered. =

e much narrower bus e s Increased to 32,768

Performance
* Asymptotically: speedup of

s &~ O(\/#progressions)
compared to traditional sieving.

 For 512-bit composites:
One silicon wafer full of TWIRL devices

completes the sieving in under 10 minutes
(0.00022sec per sieve line of length 1.8 x1010).

1,600 times faster than best previous design.
* Larger composites?

28

Estimating NFS parameters

* Predicting cost requires estimating the NFS
parameters (smoothness bounds, sieving
area, frequency of candidates etc.).

o MEthOdOIOgy [Lenstra,Dodson,Hughes,Kortsmit,Leyland 2003]
e Find good NFS polynomials for the RSA-1024 and
RSA-768 composites.

* Analyze and optimize relation yield for these
polynomials according to smoothness probability

functions.

* Hope that cycle yield, as a function of relation
yield, behaves similarly to past experiments.

N
(o}

1024-bit NFS sieving parameters

e Smoothness bounds:
e Rational: 3.5x10°

e Algebraic: 2.6x10%
* Region:
* ae{-5.5x10%,...,5.5x10'%}
e be{l,...,2.7x10%}
e Total: 3x10%3 (x6/TR)

30

TWIRL for 1024-bit composites
« Acluster of 9 TWIRLS (" | /2| R
GDle

can process a sieve line ﬂv
(101° indices) in 34 seconds. @

* To complete the sieving In
1 year, use 194 clusters.

e |nitial investment (NRE): ~$20M

* After NRE, total cost of sieving for a given
1024-bit composite: ~10M $xyear
(compared to ~1T $xyear).

The matrix step

We look for elements from the kernel of a
sparse matrix over GF(2). Using Wiedemann'’s
algorithm, this is reduced to the following:

* |[nput: a sparse Dx D binary matrix A and a
binary D-vector v.

e Qutput: the first few bits of each of the vectors
Av,A%,A3v,...,APv (mod 2).

e Dis huge (e.g.,=109)

32

The matrix step (cont.)

Bernstein proposed a parallel algorithm for
sparse matrix-by-vector multiplication with
asymptotic speedup

O(vD)

Alas, for the parameters of choice it Is inferior
to straightforward PC-based implementation.

We give a different algorithm which reduces
the cost by a constant factor of 45,000.

33

I\/Iatrix-by-vector multiplication

(mod 2)

<ol <oldojolol

34

A routing-based circuit for the matrix step

[Lenstra,Shamir,Tomlinson, Tromer 2002]
Model: two-dimensional mesh, nodes connected to <4 neighbours.

Preprocessing: load the non-zero entries of A into the mesh, one
entry per node. The entries of each column are stored in a square

block of the mesh, along with a “target cell” for the corresponding
vector bit.

ﬂﬂﬂﬂ

O o o] |
ﬂﬁﬂlﬂl

35

Operation of the routing-based circuit

To perform a multiplication:

Initially the target cells contain the vector bits.
These are locally broadcast within each block
(1.e., within the matrix column).

A cell containing a row index : that

receives a “1” emits an @ value
(which corresponds to a () at row). @'g

Each @ value is routed to the PR
target cell of the i-th block E

(which is collecting (‘s for row 7). 1

Each target cell counts the
number of [l values it received.

That’s it! Ready for next iteration.

?‘i“\"‘!
N

C |©

\/
_—_l L

AW,
A’
-

-
T~ ~

R
S %
)

]

S

LS
N

S22

-
a
-

N

nnggﬁu
&)

BEZUNE

©
[

oA

BEoW

W

6

How to perform the routing?

Routing dominates cost, so the choice of algorithm
(time, circuit area) Is critical.

There Is extensive literature about mesh routing.
Examples:

 Bounded-queue-size algorithms
* Hot-potato routing

e Off-line algorithms

None of these are ideal.

37

Clockwise transposition routing on the mesh

 One packet per cell.
* Only pairwise compare-exchange operations ().

e Compared pairs are swapped according to the preference of the
packet that has the farthest

to go along this dimension. - [[[
* Very simple schedule, can be HE BHl EE Bl EE BN
realized implicitly by a pipeline. I

e Pairwise annihilation.
e \Worst-case: m?

* Average-case: ? I

* Experimentally:
2m steps suffice for random

inputs — optimal.
e The point: m? values handled in
time O(m) [Bernstein]

-

L™ EE NN NN BN &

w
(0]

Comparison to Bernstein’s design

e Time:

A single routing operation (2m steps)

vS. 3 sorting operations (8m steps each).
e Circuit area:

e Only the @ move; the matrix entries don't.

e Simple routing logic and small routed values

e Matrix entries compactly stored in DRAM
(~1/100 the area of “active” storage)

e Fault-tolerance
* Flexibility

39

Improvements

* Reduce the number of cells in the mesh
(for small u, decreasing #cells by a factor of u
decreases throughput cost by ~ul/?)

 Use Coppersmith’s block Wiedemann

* Execute the separate multiplication chains of
block Wiedemann simultaneously on one mesh
(for small K, reduces cost by ~K)

Compared to Bernstein’s original design, this

reduces the throughput cost by a constant factor
of 45,000.

40

Implications for 1024-bit composites:

Sieving step: ~10M $xyear

(including cofactor factorization).

Matrix step: <0.5M $xyear

Other steps: unknown, but no obvious
bottleneck.

This relies on a hypothetical design and many
approximations, but should be taken into
account by anyone planning to use 1024-bit
RSA keys.

For larger composites (e.g., 2048 bit) the cost
IS Impractical.

Conclusions

e 1024-bit RSA Is less secure than
previously assumed.

* Tailoring algorithms to the concrete
properties of available technology can
have a dramatic effect on cost.

* Never underestimate the power of
custom-built highly-parallel hardware.

