
�

HardwareHardware--Based ImplementationsBased Implementations
of Factoring Algorithmsof Factoring Algorithms

Factoring Large Numbers with the TWIRL DeviceFactoring Large Numbers with the TWIRL Device

Adi Shamir, Eran TromerAdi Shamir, Eran Tromer

Analysis of BernsteinAnalysis of Bernstein’’s Factorization Circuits Factorization Circuit

Arjen Lenstra, Adi Shamir, Jim Tomlinson, Eran TromerArjen Lenstra, Adi Shamir, Jim Tomlinson, Eran Tromer

�

Bicycle chain sieve [D. H. Lehmer, 1928]Bicycle chain sieve [D. H. Lehmer, 1928]

�

The Number Field Sieve
Integer Factorization Algorithm

• Best algorithm known for factoring large integers.
• Subexponential time, subexponential space.

• Successfully factored a 512-bit RSA key
(hundreds of workstations running for many months).

• Record: 530-bit integer (RSA-160, 2003).

• Factoring 1024-bit: previous estimates were trillions
of $××××year.

• Our result: a hardware implementation which can
factor 1024-bit composites at a cost of about
10M $××××year.

�

NFS – main parts

• Relation collection (sieving) step:
Find many integers satisfying a certain
(rare) property.

• Matrix step:
Find an element from the kernel of a
huge but sparse matrix.

�

Previous works: 1024-bit sieving

Cost of completing all sieving in 1 year:
• Traditional PC-based: [Silverman 2000]

100M PCs with 170GB RAM each: $5×1012

• TWINKLE: [Lenstra,Shamir 2000, Silverman 2000]*

3.5M TWINKLEs and 14M PCs: ~ $1011

• Mesh-based sieving [Geiselmann,Steinwandt 2002]*

Millions of devices, $1011 to $1010 (if at all?)
Multi-wafer design – feasible?

• New device: $10M

�

Previous works: 1024-bit matrix step

Cost of completing the matrix step in 1 year:

• Serial: [Silverman 2000]

19 years and 10,000 interconnected Crays.
• Mesh sorting [Bernstein 2001, LSTT 2002]

273 interconnected wafers – feasible?!
$4M and 2 weeks.

• New device: $0.5M

�

Review: the Quadratic Sieve
To factor n:
• Find “random” r �,r � such that r �

�

≡r �
� (m o d n)

• Hope that g c d (r �-r �,n) is a nontrivial factor of n.
How?
• Let f �(a)= (a+�n � � ��) �

– n
f �(a)= (a+�n � � ��) �

• Find a nonempty set S⊂Z such that

over Z for some r �,r �∈Z.
• r �

�

≡r �
� (mod n)

�

The Quadratic Sieve (cont.)
How to find S such that is a square?

Look at the factorization of f �(a) :

��� �� � �145

�	� �
 � �616

�

��
 �� ��� 42

��
 �� ��� 84

��
 �� ��� 1495

�	
 �� ��� 33

��
 �� ��� 102

11272503224

This is a square, because all exponents are even.

2

23

22

2

295�

117�

23

�

73�

73�

135�

113�

173�

�

The Quadratic Sieve (cont.)
How to find S such that is a square?

• Consider only the π(B) primes smaller than a bound B.

• Search for integers a for which f �(a) is B-smooth.
For each such a, represent the factorization of f �(a) as
a vector of b exponents:
f �(a)= 2 e � 3e � 5e � 7e �

L a (e �,e �,. . . ,e �)

• Once b + 1 such vectors are found, find a dependency
modulo 2 among them. That is, find S such that

= 2 e � 3e � 5e � 7e �

L where e � all even.

Relation

collection

step

Matrix

step

� �

Observations [Bernstein 2001]

• The matrix step involves multiplication of a single huge
matrix (of size subexponential in n) by many vectors.

• On a single-processor computer, storage dominates cost
yet is poorly utilized.

• Sharing the input: collisions, propagation delays.
• Solution: use a mesh-based device, with a small

processor attached to each storage cell.
Devise an appropriate distributed algorithm.
Bernstein proposed an algorithm based on mesh sorting.

• Asymptotic improvement: at a given cost you can factor
integers that are 1.17 longer, when cost is defined as

throughput cost = run time X construction cost

A T cost

=

� �

Implications?

• The expressions for asymptotic costs have
the form e(�+o(1))·(logn)1/3·(log logn)2/3.

• Is it feasible to implement the circuits with
current technology? For what problem sizes?

• Constant-factor improvements to the
algorithm? Take advantage of the quirks of
available technology?

• What about relation collection?

��

The Relation Collection Step
• Task:

Find many integers a for which f �(a) is B-smooth (and
their factorization).

• We look for a such that p|f �(a) for many large p:

• Each prime p “hits” at arithmetic progressions:

where r � are the roots modulo p of f �.
(there are at most d e g (f �) such roots, ~1 on average).

� �

The Sieving Problem
Input: a set of arithmetic progressions. Each
progression has a prime interval p and value logp.

OOOOOOOOOOOO

OOOOOOOOO

OOOOO

OOO

OOO

Output: indices where the sum of values exceeds a
threshold.

(there is about one progression for every prime � smaller than 108)

��

Three ways to sieve your numbers...

OOOOOOOOO3

19
O

O

20

O

21
O

22

O

23
O

24

O

1817161514131211109876543210
OOOOOOOOO2

OOOO5
OO7

OO11
O13

O17
O19

O23
29

O31
37

O41

pr
im

es

indices (� values)

��

T
im

e

OOOOOOOOO3

19
O

O

20

O

21
O

22

O

23
O

24

O

1817161514131211109876543210
OOOOOOOOO2

OOOO5
OO7

OO11
O13

O17
O19

O23
29

O31
37

O41

Memory

One contribution per clock cycle.
Serial sieving, à la Eratosthenes

276–194 BC

� �

C
o

u
n

te
rs

TWINKLE: time-space reversal

OOOOOOOOO3

19
O

O

20

O

21
O

22

O

23
O

24

O

1817161514131211109876543210
OOOOOOOOO2

OOOO5
OO7

OO11
O13

O17
O19

O23
29

O31
37

O41

Time

One index handled at each clock cycle.

� �

V
ar

io
u

s
ci

rc
u

it
s

TWIRL: compressed time

OOOOOOOOO3

19
O

O

20

O

21
O

22

O

23
O

24

O

1817161514131211109876543210
OOOOOOOOO2

OOOO5
OO7

OO11
O13

O17
O19

O23
29

O31
37

O41

Time

s = 5 indices handled at each clock cycle. (real: s=32768)

� �

0

1

2

3

Parallelization in TWIRL
TWINKLE-like

pipeline
a � ���

�
�

�
� …

��

Parallelization in TWIRL
TWINKLE-like

pipeline Simple parallelization with factor s
a � ��� s� �s� …

TWIRL with parallelization factor s
a � ��� s� �s� …a � ���

�
�

�
� …

��

OOOOOOOOO
O

O

O

O

O

O

O

OOOOOOOOO

OOOO
OO

OO
O

O
O

O

O

O

Heterogeneous design

• A progression of interval p � makes a contribution
every p �/s clock cycles.

• There are a lot of large primes, but each contributes
very seldom.

• There are few small primes, but their contributions
are frequent.

We place numerous “stations” along the pipeline.
Each station handles progressions whose prime
interval are in a certain range. Station design varies
with the magnitude of the prime.

� �

Example: handling large primes
• Primary consideration:

efficient storage between contributions.
• Each memory+processor unit handle many progressions.

It computes and sends contributions across the bus, where
they are added at just the right time. Timing is critical.

Memory

P
ro

ce
ss

or

Memory

P
ro

ce
ss

or

� �

Handling large primes (cont.)

Memory

P
ro

ce
ss

or

��

Handling large primes (cont.)
• The memory contains a list of events of the form (p �,a �),

meaning “a progression with interval p � will make a
contribution to index a �”. Goal: simulate a priority queue.

1. Read next event (p �,a �).

2. Send a l o g p � contribution to
line a � (m o d s) of the pipeline.

3. Update a �←a �+p �

4. Save the new event (p �,a �) to the memory location that
will be read just before index a � passes through the
pipeline.

• To handle collisions, slacks and logic are added.

• The list is ordered by increasing a �.
• At each clock cycle:

��

Handling large primes (cont.)
• The memory used by past events can be reused.
• Think of the processor as rotating around the cyclic

memory:

P
ro

ce
ss

or

��

Handling large primes (cont.)
• The memory used by past events can be reused.
• Think of the processor as rotating around the cyclic

memory:

• By appropriate choice of parameters, we guarantee that
new events are always written just behind the read head.

• There is a tiny (1:1000) window of activity which is “twirling”
around the memory bank. It is handled by an SRAM-based
cache. The bulk of storage is handled in compact DRAM.

P
ro

ce
ss

or

��

Rational vs. algebraic sieves
• We actually have two sieves: rational and algebraic.

We are looking for the indices that accumulated
enough value in both sieves.

• The algebraic sieve has many more progressions,
and thus dominates cost.

• We cannot compensate by making s much larger,
since the pipeline becomes very wide and the
device exceeds the capacity of a wafer.

rational algebraic

��

Optimization: cascaded sieves
• The algebraic sieve will consider only the indices

that passed the rational sieve.

algebraic

rational

• In the algebraic sieve, we still scan the indices at a
rate of thousands per clock cycle, but only a few of
these have to be considered. ⇒

• much narrower bus • s increased to 32,768

��

Performance
• Asymptotically: speedup of

compared to traditional sieving.
• For 512-bit composites:

One silicon wafer full of TWIRL devices
completes the sieving in under 10 minutes
(0.00022sec per sieve line of length 1.8×1010).

1,600 times faster than best previous design.
• Larger composites?

��

Estimating NFS parameters

• Predicting cost requires estimating the NFS
parameters (smoothness bounds, sieving
area, frequency of candidates etc.).

• Methodology: [Lenstra,Dodson,Hughes,Kortsmit,Leyland 2003]

• Find good NFS polynomials for the RSA-1024 and
RSA-768 composites.

• Analyze and optimize relation yield for these
polynomials according to smoothness probability
functions.

• Hope that cycle yield, as a function of relation
yield, behaves similarly to past experiments.

��

1024-bit NFS sieving parameters

• Smoothness bounds:
• Rational: 3.5×109

• Algebraic: 2.6×1010

• Region:
• a∈{-5.5×1014,…,5.5×1014}
• b∈{1,…,2.7×108}

• Total: 3×1023 (×6/π2)

��

TWIRL for 1024-bit composites

• A cluster of 9 TWIRLS
can process a sieve line
(1015 indices) in 34 seconds.

• To complete the sieving in
1 year, use 194 clusters.

• Initial investment (NRE): ~$20M
• After NRE, total cost of sieving for a given

1024-bit composite: ~10M $×year
(compared to ~1T $×year).

A

R

R R

R
R

R R

R

� �

The matrix step

We look for elements from the kernel of a
sparse matrix over GF(2). Using Wiedemann’s
algorithm, this is reduced to the following:
• Input: a sparse DxD binary matrix A and a

binary D-vector v.

• Output: the first few bits of each of the vectors
Av,A2v,A3v,...,ADv (mod 2).

• D is huge (e.g., ≈109)

� �

The matrix step (cont.)
• Bernstein proposed a parallel algorithm for

sparse matrix-by-vector multiplication with
asymptotic speedup

• Alas, for the parameters of choice it is inferior
to straightforward PC-based implementation.

• We give a different algorithm which reduces
the cost by a constant factor of 45,000.

� �

Matrix-by-vector multiplication

1

11

1

111

11

11

111

1111

111

1

0

1

0

1

0

1

1

0

1

0

X =

0101011010

?

?

?

?

?

?

?

?

?

?
Σ

1

0

0

0

1

0

1

1

0

1

(mod 2)

��

A routing-based circuit for the matrix step
[Lenstra,Shamir,Tomlinson,Tromer 2002]

98684

231

7546

523

8975

342

101011010

11

111

11

11

111

111

111

111

1

Model: two-dimensional mesh, nodes connected to

�

4 neighbours.

Preprocessing: load the non-zero entries of

�

into the mesh, one
entry per node. The entries of each column are stored in a square
block of the mesh, along with a “target cell” for the corresponding
vector bit.

��

Operation of the routing-based circuit

98684

231

7546

523

8975

342

To perform a multiplication:
• Initially the target cells contain the vector bits.

These are locally broadcast within each block
(i.e., within the matrix column).

• A cell containing a row index i that
receives a “1” emits an value
(which corresponds to a at row i).

• Each value is routed to the
target cell of the i-th block
(which is collecting ‘s for row i).

• Each target cell counts the
number of values it received.

• That’s it! Ready for next iteration.
98684

231

7546

523

8975

342

i

i

i

� �

How to perform the routing?
Routing dominates cost, so the choice of algorithm
(time, circuit area) is critical.
There is extensive literature about mesh routing.
Examples:
• Bounded-queue-size algorithms
• Hot-potato routing
• Off-line algorithms
None of these are ideal.

��

Clockwise transposition routing on the mesh

• Very simple schedule, can be
realized implicitly by a pipeline.

• Pairwise annihilation.
• Worst-case: � �

• Average-case: ?
• Experimentally:

� � steps suffice for random
inputs – optimal.

• The point: � �

values handled in
time

� � � �

. [Bernstein]

1
2

3
4

• One packet per cell.
• Only pairwise compare-exchange operations ().
• Compared pairs are swapped according to the preference of the

packet that has the farthest
to go along this dimension.

��

Comparison to Bernstein’s design

• Time:
A single routing operation (2m steps)
vs. 3 sorting operations (8m steps each).

• Circuit area:
• Only the move; the matrix entries don’t.
• Simple routing logic and small routed values
• Matrix entries compactly stored in DRAM

(~1/100 the area of “active” storage)

• Fault-tolerance
• Flexibility

1/12

1/3
i

��

Improvements

• Reduce the number of cells in the mesh
(for small µ, decreasing #cells by a factor of µ
decreases throughput cost by ~µ1/2)

• Use Coppersmith’s block Wiedemann

• Execute the separate multiplication chains of
block Wiedemann simultaneously on one mesh
(for small K, reduces cost by ~K)

Compared to Bernstein’s original design, this
reduces the throughput cost by a constant factor

1/7

1/15

1/6

of 45,000.

��

Implications for 1024-bit composites:
• Sieving step: ~10M $×year

(including cofactor factorization).
• Matrix step: <0.5M $×year

• Other steps: unknown, but no obvious
bottleneck.

• This relies on a hypothetical design and many
approximations, but should be taken into
account by anyone planning to use 1024-bit
RSA keys.

• For larger composites (e.g., 2048 bit) the cost
is impractical.

� �

Conclusions

• 1024-bit RSA is less secure than
previously assumed.

• Tailoring algorithms to the concrete
properties of available technology can
have a dramatic effect on cost.

• Never underestimate the power of
custom-built highly-parallel hardware.

