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The Number Field Sieve
Integer Factorization Algorithm

• Best algorithm known for factoring large integers.
• Subexponential time, subexponential space.

• Successfully factored a 512-bit RSA key
(hundreds of workstations running for many months).

• Record: 530-bit integer (RSA-160, 2003).

• Factoring 1024-bit: previous estimates were trillions 
of $××××year.

• Our result: a hardware implementation which can 
factor 1024-bit composites at a cost of about
10M $××××year.
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NFS – main parts

• Relation collection (sieving) step:
Find many integers satisfying a certain 
(rare) property.

• Matrix step: 
Find an element from the kernel of a 
huge but sparse matrix.



�

Previous works: 1024-bit sieving

Cost of completing all sieving in 1 year:
• Traditional PC-based: [Silverman 2000]

100M PCs with 170GB RAM each: $5×1012

• TWINKLE: [Lenstra,Shamir 2000, Silverman 2000]*

3.5M TWINKLEs and 14M PCs: ~ $1011

• Mesh-based sieving  [Geiselmann,Steinwandt 2002]*

Millions of devices, $1011 to $1010 (if at all?)
Multi-wafer design – feasible?

• New device: $10M
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Previous works: 1024-bit matrix step

Cost of completing the matrix step in 1 year:

• Serial: [Silverman 2000]

19 years and 10,000 interconnected Crays.
• Mesh sorting [Bernstein 2001, LSTT 2002]

273 interconnected wafers – feasible?!
$4M and 2 weeks.

• New device: $0.5M
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Review: the Quadratic Sieve
To factor n:
• Find “random” r �,r � such that  r �

�

≡r �
� (m o d  n)

• Hope that  g c d (r �-r �,n) is a nontrivial factor of n.
How?
• Let f �(a)= (a+�n � � ��) �

– n  
f �(a)= (a+�n � � ��) �

• Find a nonempty set S⊂Z such that

over Z for some r �,r �∈Z.
• r �

�

≡r �
� (mod n)
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The Quadratic Sieve (cont.)
How to find S such that                    is a square?

Look at the factorization of f �(a ) :
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This is a square, because all exponents are even.
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The Quadratic Sieve (cont.)
How to find S such that                    is a square?

• Consider only the π(B) primes smaller than a bound B. 

• Search for integers a for which f �(a) is B-smooth.
For each such a, represent the factorization of f �(a) as 
a vector of b exponents: 
f �(a)= 2 e � 3e � 5e � 7e �

L   a   (e �,e �,. . . ,e �)

• Once b + 1 such vectors are found, find a dependency 
modulo 2 among them. That is, find S such that

= 2 e � 3e � 5e � 7e �

L  where e � all even.

Relation 

collection

step

Matrix

step
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Observations [Bernstein 2001]

• The matrix step involves multiplication of a single huge 
matrix (of size subexponential in n) by many vectors.

• On a single-processor computer, storage dominates cost 
yet is poorly utilized.

• Sharing the input: collisions, propagation delays.
• Solution: use a mesh-based device, with a small 

processor attached to each storage cell. 
Devise an appropriate distributed algorithm.
Bernstein proposed an algorithm based on mesh sorting.

• Asymptotic improvement: at a given cost you can factor 
integers that are 1.17 longer, when cost is defined as

throughput cost = run time X construction cost

A T cost

=
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Implications?

• The expressions for asymptotic costs have 
the form e( �+o(1))·(logn)1/3·(log logn)2/3.

• Is it feasible to implement the circuits with 
current technology? For what problem sizes?

• Constant-factor improvements to the 
algorithm? Take advantage of the quirks of 
available technology?

• What about relation collection?
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The Relation Collection Step
• Task: 

Find many integers a for which f �(a) is B-smooth (and 
their factorization).

• We look for a such that p|f �(a) for many large p:

• Each prime p  “hits” at arithmetic progressions:

where r � are the roots modulo p of f �.
(there are at most d e g (f �) such roots, ~1 on average).
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The Sieving Problem
Input: a set of arithmetic progressions. Each 
progression has a prime interval p and value logp.

OOOOOOOOOOOO

OOOOOOOOO

OOOOO

OOO

OOO

Output: indices where the sum of values exceeds a 
threshold.

(there is about one progression for every prime � smaller than 108)
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Three ways to sieve your numbers...
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Memory

One contribution per clock cycle.
Serial sieving, à la Eratosthenes

276–194 BC
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TWINKLE: time-space reversal
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TWIRL: compressed time
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Time

s = 5  indices handled at each clock cycle.     (real: s=32768)



� �

0

1

2

3

Parallelization in TWIRL
TWINKLE-like

pipeline
a � ���

�
�

�
� …



��

Parallelization in TWIRL
TWINKLE-like

pipeline Simple parallelization with factor s
a � ��� s� �s� …

TWIRL with parallelization factor s
a � ��� s� �s� …a � ���

�
�

�
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Heterogeneous design

• A progression of interval p � makes a contribution 
every p �/s   clock cycles. 

• There are a lot of large primes, but each contributes 
very seldom. 

• There are few small primes, but their contributions 
are frequent.

We place numerous “stations” along the pipeline. 
Each station handles progressions whose prime 
interval are in a certain range. Station design varies 
with the magnitude of the prime.
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Example: handling large primes
• Primary consideration:

efficient storage between contributions.
• Each memory+processor unit handle many progressions.

It computes and sends contributions across the bus, where 
they are added at just the right time. Timing is critical.
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Handling large primes (cont.)
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Handling large primes (cont.)
• The memory contains a list of events of the form (p �,a �), 

meaning “a progression with interval p � will make a 
contribution to index a �”. Goal: simulate a priority queue.

1. Read next event (p �,a �).

2. Send a l o g  p � contribution to 
line a � (m o d s) of the pipeline.

3. Update a �←a �+p �

4. Save the new event (p �,a �) to the memory location that 
will be read just before index a � passes through the 
pipeline.

• To handle collisions, slacks and logic are added.

• The list is ordered by increasing a �.
• At each clock cycle:
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Handling large primes (cont.)
• The memory used by past events can be reused.
• Think of the processor as rotating around the cyclic 

memory:
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Handling large primes (cont.)
• The memory used by past events can be reused.
• Think of the processor as rotating around the cyclic 

memory:

• By appropriate choice of parameters, we guarantee that 
new events are always written just behind the read head.

• There is a tiny (1:1000) window of activity which is “twirling”
around the memory bank. It is handled by an SRAM-based 
cache. The bulk of storage is handled in compact DRAM.
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Rational vs. algebraic sieves
• We actually have two sieves: rational and algebraic. 

We are looking for the indices that accumulated 
enough         value in both sieves.

• The algebraic sieve has many more progressions, 
and thus dominates cost.

• We cannot compensate by making s much larger, 
since the pipeline becomes very wide and the 
device exceeds the capacity of a wafer.

rational algebraic
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Optimization: cascaded sieves
• The algebraic sieve will consider only the indices 

that passed the rational sieve.

algebraic

rational

• In the algebraic sieve, we still scan the indices at a 
rate of thousands per clock cycle, but only a few of 
these have to be considered.   ⇒

• much narrower bus      • s increased to 32,768
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Performance
• Asymptotically: speedup of

compared to traditional sieving.
• For 512-bit composites:

One silicon wafer full of TWIRL devices 
completes the sieving in under 10 minutes
(0.00022sec per sieve line of length 1.8×1010).

1,600 times faster than best previous design.
• Larger composites?
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Estimating NFS parameters

• Predicting cost requires estimating the NFS 
parameters (smoothness bounds, sieving 
area, frequency of candidates etc.).

• Methodology:  [Lenstra,Dodson,Hughes,Kortsmit,Leyland 2003]

• Find good NFS polynomials for the RSA-1024 and 
RSA-768 composites.

• Analyze and optimize relation yield for these 
polynomials according to smoothness probability 
functions.

• Hope that cycle yield, as a function of relation 
yield, behaves similarly to past experiments.
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1024-bit NFS sieving parameters

• Smoothness bounds:
• Rational: 3.5×109

• Algebraic: 2.6×1010

• Region:
• a∈{-5.5×1014,…,5.5×1014}
• b∈{1,…,2.7×108}

• Total: 3×1023 (×6/π2)
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TWIRL for 1024-bit composites

• A cluster of 9 TWIRLS
can process a sieve line 
(1015 indices) in 34 seconds.

• To complete the sieving in 
1 year, use 194 clusters.

• Initial investment (NRE): ~$20M
• After NRE, total cost of sieving for a given 

1024-bit composite: ~10M $×year
(compared to ~1T $×year).
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The matrix step

We look for elements from the kernel of a
sparse matrix over GF(2). Using Wiedemann’s
algorithm, this is reduced to the following:
• Input: a sparse DxD binary matrix A and a 

binary D-vector v.

• Output: the first few bits of each of the vectors
Av,A2v,A3v,...,ADv (mod 2).

• D is huge (e.g., ≈109)
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The matrix step (cont.)
• Bernstein proposed a parallel algorithm for 

sparse matrix-by-vector multiplication with 
asymptotic speedup

• Alas, for the parameters of choice it is inferior 
to straightforward PC-based implementation.

• We give a different algorithm which reduces 
the cost by a constant factor of 45,000.
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Matrix-by-vector multiplication
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A routing-based circuit for the matrix step
[Lenstra,Shamir,Tomlinson,Tromer 2002]
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Model: two-dimensional mesh, nodes connected to 

�

4 neighbours.

Preprocessing: load the non-zero entries of 

�

into the  mesh, one 
entry per node. The entries of each column are stored in a square 
block of the mesh, along with a “target cell” for the corresponding 
vector bit. 
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Operation of the routing-based circuit
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To perform a multiplication:
• Initially the target cells contain the vector bits. 

These are locally broadcast within each block
(i.e., within the matrix column).

• A cell containing a row index i that 
receives a “1” emits an       value
(which corresponds to a       at row i).

• Each       value is routed to the
target cell of the i-th block
(which is collecting      ‘s for row i).

• Each target cell counts the
number of       values it received.

• That’s it! Ready for next iteration.
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How to perform the routing?
Routing dominates cost, so the choice of algorithm 
(time, circuit area) is critical.
There is extensive literature about mesh routing. 
Examples:
• Bounded-queue-size algorithms
• Hot-potato routing
• Off-line algorithms
None of these are ideal.
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Clockwise transposition routing on the mesh

• Very simple schedule, can be 
realized implicitly by a pipeline.

• Pairwise annihilation. 
• Worst-case: � �

• Average-case: ? 
• Experimentally:

� � steps suffice for random 
inputs – optimal.

• The point: � �

values handled in 
time 

� � � �

.     [Bernstein]

1
2

3
4

• One packet per cell.
• Only pairwise compare-exchange operations (       ).
• Compared pairs are swapped according to the preference of the 

packet that has the farthest
to go along this dimension.
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Comparison to Bernstein’s design

• Time: 
A single routing operation (2m steps)
vs. 3 sorting operations (8m steps each).

• Circuit area:
• Only the      move; the matrix entries don’t.
• Simple routing logic and small routed values
• Matrix entries compactly stored in DRAM 

(~1/100 the area of “active” storage)

• Fault-tolerance
• Flexibility

1/12

1/3
i
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Improvements

• Reduce the number of cells in the mesh
(for small µ, decreasing #cells by a factor of µ
decreases throughput cost by ~µ1/2)

• Use Coppersmith’s block Wiedemann

• Execute the separate multiplication chains of
block Wiedemann simultaneously on one mesh
(for small K, reduces cost by ~K)

Compared to Bernstein’s original design, this 
reduces the throughput cost by a constant factor

1/7

1/15

1/6

of 45,000.
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Implications for 1024-bit composites:
• Sieving step: ~10M $×year

(including cofactor factorization).
• Matrix step: <0.5M $×year

• Other steps: unknown, but no obvious 
bottleneck.

• This relies on a hypothetical design and many 
approximations, but should be taken into 
account by anyone planning to use 1024-bit 
RSA keys.

• For larger composites (e.g., 2048 bit) the cost 
is impractical.
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Conclusions

• 1024-bit RSA is less secure than 
previously assumed.

• Tailoring algorithms to the concrete 
properties of available technology can 
have a dramatic effect on cost.

• Never underestimate the power of 
custom-built highly-parallel hardware.


