
.

.

Latest updates: hps://dl.acm.org/doi/10.1145/3689031.3696085
.

.

RESEARCH-ARTICLE

CAPSys: Contention-aware task placement for data stream processing

YUANLI WANG, Boston University, Boston, MA, United States
.

LEI HUANG, Boston University, Boston, MA, United States
.

ZIKUN WANG, Boston University, Boston, MA, United States
.

VASILIKI KALAVRI, Boston University, Boston, MA, United States
.

IBRAHIM MAHER MATTA, Boston University, Boston, MA, United States
.

.

.

Open Access Support provided by:
.

Boston University
.

PDF Download
3689031.3696085.pdf
06 January 2026
Total Citations: 2
Total Downloads: 1613
.

.

.

.

Published: 30 March 2025
.

.

Citation in BibTeX format
.

.

EuroSys '25: Twentieth European
Conference on Computer Systems
March 30 - April 3, 2025
Rotterdam, Netherlands
.

.

Conference Sponsors:
SIGOPS

EuroSys '25: Proceedings of the Twentieth European Conference on Computer Systems (March 2025)
hps://doi.org/10.1145/3689031.3696085

ISBN: 9798400711961

.

https://dl.acm.org
https://www.acm.org
https://libraries.acm.org/acmopen
https://dl.acm.org/doi/10.1145/3689031.3696085
https://dl.acm.org/doi/10.1145/3689031.3696085
https://dl.acm.org/doi/10.1145/contrib-99660051160
https://dl.acm.org/doi/10.1145/institution-60019674
https://dl.acm.org/doi/10.1145/contrib-99660993237
https://dl.acm.org/doi/10.1145/institution-60019674
https://dl.acm.org/doi/10.1145/contrib-99661546481
https://dl.acm.org/doi/10.1145/institution-60019674
https://dl.acm.org/doi/10.1145/contrib-83058808057
https://dl.acm.org/doi/10.1145/institution-60019674
https://dl.acm.org/doi/10.1145/contrib-81100587208
https://dl.acm.org/doi/10.1145/institution-60019674
https://libraries.acm.org/acmopen
https://dl.acm.org/doi/10.1145/institution-60019674
https://dl.acm.org/action/exportCiteProcCitation?dois=10.1145%2F3689031.3696085&targetFile=custom-bibtex&format=bibtex
https://dl.acm.org/conference/eurosys
https://dl.acm.org/conference/eurosys
https://dl.acm.org/sig/sigops
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3689031.3696085&domain=pdf&date_stamp=2025-03-30

CAPSys: Contention-aware task placement for data
stream processing

Yuanli Wang∗

Boston University

Boston, Massachusetts, USA

yuanliw@bu.edu

Lei Huang∗

Boston University

Boston, Massachusetts, USA

lei@bu.edu

Zikun Wang
Boston University

Boston, Massachusetts, USA

zikunw@bu.edu

Vasiliki Kalavri
Boston University

Boston, Massachusetts, USA

vkalavri@bu.edu

Ibrahim Matta
Boston University

Boston, Massachusetts, USA

ma�a@bu.edu

Abstract

In the context of streaming data�ow queries, the task place-

ment problem aims to identify a mapping of operator tasks to

physical resources in a distributed cluster. We show that task

placement not only signi�cantly a�ects query performance

but also the convergence and accuracy of auto-scaling con-

trollers. We propose CAPSys, an adaptive resource controller

for data�ow stream processors, that considers auto-scaling

and task placement in concert. CAPSys relies on Contention-

Aware Placement Search (CAPS), a new placement strategy

that ensures compute-intensive, I/O-intensive, and network-

intensive tasks are balanced across available resources.

We integrate CAPSys with Apache Flink and show that

it consistently achieves higher throughput and lower back-

pressure than Flink’s strategies, while it also improves the

convergence of the DS2 auto-scaling controller under vari-

able workloads. When compared with the state-of-the-art

ODRP placement strategy, CAPSys computes the task place-

ment in orders of magnitude lower time and achieves up to

6× higher throughput.

CCS Concepts: • Information systems→ Stream man-

agement.

Keywords: StreamProcessing, Distributed systems, Resource

management, Scheduling

ACM Reference Format:

Yuanli Wang, Lei Huang, ZikunWang, Vasiliki Kalavri, and Ibrahim

Matta. 2025. CAPSys: Contention-aware task placement for data

stream processing. In Twentieth European Conference on Computer

∗Equal contribution.

This work is licensed under a Creative Commons Attribution International
4.0 License.
EuroSys ’25, March 30–April 3, 2025, Rotterdam, Netherlands
© 2025 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-1196-1/25/03.

https://doi.org/10.1145/3689031.3696085

Systems (EuroSys ’25), March 30–April 3, 2025, Rotterdam, Nether-

lands. ACM, New York, NY, USA, 17 pages. https://doi.org/10.1145/

3689031.3696085

1 Introduction

Stream processing systems (SPSs) are complex distributed

frameworks that require careful expert con�guration and

oversight to achieve good performance [12, 21, 25, 37]. The

problem of automatically tuning the con�guration of SPSs

has received wide attention, with recent works focusing on

resource allocation [20, 22, 30, 32, 43, 49], batch size tun-

ing [16], task scheduling [36, 50], and dynamic partition-

ing [24, 34, 38]. In this work, we turn our attention to auto-

matic task placement: deciding how to assign streaming tasks

to available workers in a distributed cluster of resources.

Stateful SPSs, like Apache Flink and Storm [1, 3], adopt

the slot-oriented resource allocation model established by

Hadoop, Dryad, Yarn, and Mesos [26, 28, 46]. Unlike sys-

tems that perform real-time �ne-grained scheduling [39, 50],

slot-based systems compute a static task assignment at job

deployment time or upon recon�guration. However, the de-

fault task assignment strategies in modern SPSs are random,

under the assumption of homogeneity [2, 40]. This simplistic

approach is problematic, as streaming tasks can have diverse

resource requirements. A typical streaming query can in-

clude simple stateless tasks, such as lightweight �lters and

transformations, as well as stateful windows, joins, and ma-

chine learning inference [8, 9, 27]. As a result, the mapping

of tasks to available slots is critical for query performance

and resource e�ciency.

Moreover, we �nd that task placement has major implica-

tions for streaming auto-scaling and signi�cantly impacts

the convergence and accuracy of elasticity controllers [30].

Ignoring task placement has two major implications for re-

source auto-scaling. First, if the original task placement is

poor, the elasticity model is informed by inaccurate met-

rics and may underestimate the processing capacity of task

slots, leading to overshooting. Second, if a sub-optimal task

placement is chosen when e�ecting the scaling decision, the

654

https://doi.org/10.1145/3689031.3696085
https://doi.org/10.1145/3689031.3696085
https://doi.org/10.1145/3689031.3696085
https://www.acm.org/publications/policies/artifact-review-and-badging-current
https://www.acm.org/publications/policies/artifact-review-and-badging-current
https://www.acm.org/publications/policies/artifact-review-and-badging-current
https://creativecommons.org/licenses/by/4.0/

EuroSys ’25, March 30–April 3, 2025, Ro�erdam, Netherlands Wang and Huang, et al.

controller eventually triggers additional scaling steps, taking

longer to converge.

We believe the reason behind the prevalence of random

and rule-based strategies in systems like Apache Flink and

Storm [1, 3] is that the optimal task placement problem is NP-

hard.While sophisticated approaches have been proposed for

wide-area streaming analytics [15, 29, 51], relevant research

targeting data center environments is scarce. The few non-

trivial task placement solutions that have been proposed in

the literature are either prohibitively expensive for online

settings [13, 14] or require expert user input [40].

To address these challenges, in this paper we propose

Contention-Aware Placement Search (CAPS), a new placement

strategy that considers the e�ect of co-locating resource-

intensive tasks on the same worker. We introduce an analyt-

ical cost model that captures compute, storage, and network

usage of distributed workers and aims to minimize resource

imbalance in the cluster. We further propose various opti-

mizations and empirically-veri�ed heuristics to prune the

vast search space of alternative task assignments.

To demonstrate the practical value of CAPS, we implement

CAPSys, an adaptive resource controller for Apache Flink.

CAPSys augments Flink’s auto-scaling controller with an

online placement optimizer that ensures compute-intensive,

I/O-intensive, and network-intensive tasks are balanced acro-

ss available resources. CAPSys can quickly identify a set of

good plans to consider on recon�guration and it is very

e�cient even for large deployments and variable workloads.

Our evaluation results show that CAPSys reduces back-

pressure and increases throughput without additional re-

sources, when compared to the default and state-of-the-art

placement policies in modern SPSs. When used jointly with

DS2, CAPSys alleviates oscillations and requires up to 8 fewer

recon�guration steps compared to the baseline. Further, we

evaluate CAPSys in a large-scale, multi-tenant setting with

144 task slots and show it is the only placement strategy that

can achieve the target performance for all queries.

Our contributions. We review existing task placement

strategies and analyze their limitations (§ 2.2). We then per-

form a comprehensive empirical study of task placement in

SPSs and we experimentally validate the implications of task

placement on query performance (§ 3). Based on the results

of our study, we formulate a cost model that captures the

co-location degree of resource-intensive tasks in alternative

placement plans (§ 4.2). We formalize the task placement

problem and propose a new strategy for identifying good

placement plans, called CAPS (§ 4.3-4.4). CAPS automatically

eliminates plausibly low-performing plans and applies var-

ious optimizations to prune the search space further and

return a placement plan with minimal cost. Finally, we de-

sign and implement CAPSys, an adaptive resource controller

for streaming data�ows powered by auto-scaling and task

placement co-design (§ 5). We integrate CAPSys with the

sinkop2op2op2 op1op1 srcsrc

Worker 1

Worker Cluster
?

logical operator

task

data stream

physical data

channel

compute slot

Physical Execution Graph

src op1
op2

op2

op2

sink

op1src
Logical Graph

src op1 op2 sink

?

Worker 2 Worker 3 Worker 4

Task Placement Plan: {<W1, [src, op1]>, <W2, [src, op2]>,

 <W3, [op1, op2]>, <W4, [op2, sink]>}

Figure 1. Streaming data�ow deployment steps

Apache Flink SPS and evaluate it across diverse queries and

variable workload scenarios (§ 6).

2 Preliminaries and motivation

We revisit fundamentals of data�ow stream processing, intro-

duce necessary terminology, and describe the task placement

problem. Then, we discuss existing task placement strategies

and analyze their limitations.

2.1 Streaming data�ow concepts

In the streaming data�ow model [8, 21], a query is repre-

sented as a logical directed acyclic graph, where vertices

denote logical operators and edges describe data streams.

Upon deployment, the logical graph is translated to a phys-

ical execution graph (1© in Figure 1), where each logical

operator is replicated to multiple tasks and each data stream

is instantiated to multiple physical data channels that con-

nect tasks of the upstream and downstream operators. All

tasks of a logical operator execute an identical processing

logic on disjoint data partitions, and the number of tasks, or

the parallelism of a logical operator, can be set manually

by the user or automatically by an auto-scaling policy, such

as DS2 [30]. Streaming tasks are scheduled on workers ac-

cording to a task placement strategy and are long-running.

Once deployed, tasks remain on their assigned worker until

an explicit recon�guration action is triggered.

Resource model. Figure 1 shows a general resource model

that is adopted by popular stream processing systems (SPS),

such as Apache Flink [1] and Apache Storm [3]. In this

model, resources are exposed to the SPS scheduler as a set

of homogeneous workers (e.g., virtual machines, contain-

ers, bare-metal nodes) connected by the datacenter network.

Each worker contains a �xed number of compute slots, such

that one slot can accommodate at most one task. A slot cor-

responds to one processing thread in the implementation,

however, tasks assigned to the same worker share other re-

sources, such as memory, network, and I/O bandwidth. A

slot is the smallest unit of compute that can be performed

on a worker. The number of slots that are assigned to each

logical operator is equal to its parallelism.

655

CAPSys: Contention-aware task placement for data stream processing EuroSys ’25, March 30–April 3, 2025, Ro�erdam, Netherlands

Task placement is the process of assigning each task in the

physical execution graph to a compute slot in theworker clus-

ter. An example is shown in Figure 1 2©. The task placement

plan is a mapping from each worker to a subset of physical

tasks. Given a physical execution graph and a worker cluster,

there exists a large space of possible placement plans. In this

work, our goal is to quickly and e�ectively select one plan

that delivers good performance.

2.2 Limitations of existing task placement strategies

The placement plan is crucial to query performance, as co-

located tasks share underlying resources. We �nd that place-

ment strategies employed by industry-level and academic

SPSs su�er from at least one of the following limitations:

Task homogeneity assumption. The default task place-

ment strategies in systems like Apache Flink and Storm as-

sume that tasks of di�erent operators are homogeneous with

respect to resource requirements. Speci�cally, Flink’s default

policy iterates over workers, �lling up all of a worker’s avail-

able slots before moving on to the next. However, the tasks to

be scheduled are selected at random and placement plans, as

well as their performance, can vary signi�cantly across di�er-

ent runs of the same query on the same worker cluster. Flink

and Storm also provide resource-aware strategies [2, 40],

though, under the assumption of homogeneity, they evenly

distribute the number of tasks to available workers rather

than balance the actual load.

Necessity for manual tuning. A better approach has been

recently proposed as an extension to the Storm scheduler [40],

where users can specify the resource requirements of opera-

tors and the resource capacity of worker nodes. Flink’s �ne-

grained resource management module [4] is a similar feature

that allows users to match tasks to slots of con�gurable size.

Though these e�orts are a step in the right direction, they

place the burden of resource pro�ling and task placement

on the user. This is both error-prone, as users may not be

experts in resource pro�ling, as well as time-consuming.

Long decision time and poor scalability.ODRP [13, 14] is

a notable work that proposed solving parallelism assignment

and task placement jointly, as an integer linear program-

ming (ILP) problem. ODRP’s objective function considers

response time, network tra�c usage, monetary cost, and

availability of resources. Though this approach is able to

�nd the optimal placement under the user-speci�ed con-

straints, the ILP-based solver needs to exhaustively explore

the search space. Furthermore, as the formulation does not

specify an objective to sustain the input rate, it might return

trivial under-provisioned plans that place all tasks in a single

worker. We also found the model cumbersome to tune, as

users are expected to set the weights of the multi-objective

function. In Section 6.3, we experimentally show that ODRP

is only practical for simple queries and does not scale well

with the number of tasks.

3 Task placement matters

To address the aforementioned limitations and enable auto-

matic, e�cient, and resource-aware task placement, we per-

form an empirical evaluation study with two principal goals:

(i) to quantify the e�ects of task placement on query per-

formance and (ii) to understand resource contention caused

by co-locating di�erent types of tasks. The results of our

study motivate the design of our proposed contention-aware

placement search strategy at the core of CAPSys.

3.1 Experimental methodology

We use three queries with diverse characteristics and com-

plexity. Q1-sliding is a simple stateful query that consists

of a map operator followed by a sliding window. Q2-join is

a more complex query with two sources, two map operators,

and a tumbling window join that can accumulate large state.

Q3-inf is a network-intensive query that performs image

processing and model inference [27].

We deploy a Flink cluster on 5 AWS EC2 r5d.xlarge in-

stances. Each worker has 2 cores, 4 vCPUs, 32GB of memory,

and 150GB of SSD storage. The default network bandwidth

within the cluster is 10Gbps. We use 1 worker to deploy the

Flink Job Manager (JM) and 4 workers to deploy 4 Flink Task

Managers (TM) with 4 slots per TM. We use RocksDB as the

state backend and enable bu�er debloating [19].

For each query, we con�gure the target input rate to match

the capacity of the resource cluster by gradually increasing

the input rate until it saturates all workers, and use DS2 [30]

to assign parallelism to operators and generate the physical

execution graph. We run each experiment for 15minutes and

start collecting metrics after a warm-up period of 10minutes.

We record metrics every 5s and plot the average values,

unless otherwise speci�ed. We report backpressure at the

source instead of latency, as Flink’s latency measurements

do not re�ect the queuing delay at the source [33].

3.2 Exhaustive placement plan search

We �rst perform an exhaustive evaluation using Q1-sliding.

Deploying this query on our 4-worker cluster with 16 slots

results in 80 possible placement plans. We execute the query

using every plan and collect performance metrics. In Fig-

ure 2, we plot throughput and backpressure for the 3 best-

performing plans, P1 - P3, and the 3 worst-performing plans,

P4 - P6 (The performance of all possible plans can be found

in the full technical report [47]). The results reveal a vast per-

formance gap between the best and worst placement plans.

With P1, the query achieves 14: records/s throughput and

6.8% backpressure, while with P6, the throughput drops to

9: records/s and backpressure climbs to 86.4%.

656

EuroSys ’25, March 30–April 3, 2025, Ro�erdam, Netherlands Wang and Huang, et al.

S T K

source (2) transform (5) window (8) sink (1)

W

Worker 1

Worker 2

Worker 3

Worker 4

T WS

T WT

T WS W

W

W

W WT K

Placement 1 Placement 2

W WS

T WT

T WS W

K

W

T WT W

T WT

T WT

S WS W

W

W

W WT K

Placement 3

T TS

W WW

T TS T

K

W

W WW W

Placement 4

T TT

W WW

S TS T

K

W

W WW W

Placement 5

T TT

W WW

S TS K

T

W

W WW W

Placement 6

Figure 2. 6 out of 80 alternative placement plans that achieve

the best and worst performance for Q1-sliding on a 4-

worker cluster with 16 slots.

By analyzing the results for all 80 plans, we found that a

random placement strategy leads to sub-optimal throughput

and high backpressure with high probability. In fact, only 3

out of 80 plans meet the target performance. We compared

the characteristics of plans that deliver high throughput and

those that do not and we observed that they di�er in the

way they group sliding window tasks. Speci�cally, when

window tasks are co-located on a few nodes, like in P4 -

P6, performance su�ers. On the contrary, when window

tasks are balanced across multiple workers, as in P1 - P3,

the query achieves high throughput and low backpressure.

Our hypothesis is that the performance penalty is caused

by resource contention, as co-located window tasks compete

for shared compute and I/O. We investigate the e�ect of

co-locating resource-intensive tasks in more detail next.

3.3 Co-locating resource-intensive tasks

To verify our hypothesis, we examine the contention caused

by three resource types: compute, disk I/O, and network. We

use Q2-join and Q3-inf to explore each resource type indi-

vidually. An exhaustive evaluation is impractical for these

complex queries, as the number of possible plans is 665 and

950, respectively, for our experimental setup. Therefore, for

the experiments in this section, we manually select place-

ment plans with varying degrees of resource contention.

Co-locating compute-intensive tasks. We use Q3-inf,

a stateless workload, to explore the e�ect of co-locating

compute-intensive tasks. In particular, we focus on the infer-

ence operator that performs model inference on images and

has high compute requirements. This operator also triggers

garbage collection that introduces periodic CPU utilization

spikes. We select plans with low contention, P1 - P3, that

balance inference tasks across all workers, plans with high

contention, P7-P9, that co-locate all inference tasks on the

same worker, and plans with medium contention, P4-P6.

We deploy the query with all 9 plans and plot throughput

and backpressure metrics in Figure 3a. The results verify

our hypothesis that the co-location degree of inference tasks

determines the performance of the query. Low-contention

P1 P2 P3 P4 P5 P6 P7 P8 P9
1000

1500

re
c/
s

Throughput

P1 P2 P3 P4 P5 P6 P7 P8 P9
0

50

%

Backpressure
Low-contention Med-contention High-contention

(a) Q3-inf: contention on compute

P1 P2 P3 P4 P5 P6 P7 P8 P9
75k

100k

re
c/
s

P1 P2 P3 P4 P5 P6 P7 P8 P9
0

25%

(b) Q2-join: contention on state access

P1 P2 P3 P4 P5 P6 P7 P8 P9

1000

1500

re
c/
s

P1 P2 P3 P4 P5 P6 P7 P8 P9
0

25%

(c) Q3-inf: contention on network

Figure 3. E�ect of co-locating resource-intensive tasks of

di�erent types on query performance.

plans consistently achieve higer throughput and lowe back-

pressure than high-contention plans.

Co-locating I/O-intensive tasks.We now explore the ef-

fect of co-locating stateful tasks using Q2-join. The most

I/O-intensive operator in this query is the tumbling window

join. This operator frequently accesses the local state back-

end to bu�er incoming events and retrieve join results when

the window triggers. We run this query using 9 placement

plans with varying degrees of contention indicated by the

number of tumbling window join tasks that are co-located

on a single worker. Figure 3b shows the performance re-

sults for the selected placement plans. Co-locating many

stateful tasks causes high disk I/O utilization and contention

in the RocksDB state backend. Speci�cally, P1-P3 achieve

high throughput of 110k rec/s and low backpressure of up

to 4%, while throughput for P7-P9 drops to 91k rec/s and

backpressure increases to 32%.

Co-locating network-intensive tasks. In this experiment,

we useQ3-inf and we limit the outbound bandwidth of each

worker to 1 Gbps to study the impact of network contention.

Q3-inf presents an interesting case, as it contains multiple

operators that consume and produce large records (images)

and can potentially compete for network bandwidth. We con-

sider these tra�c-intensive tasks from multiple operators

when selecting representative placement plans. The results

in Figure 3c verify our hypothesis. The average throughput

of low-contention plans is 1555 rec/s and it drops to 1185

rec/s when contention is high. Correspondingly, backpres-

sure increases from 12% on average to 37%.

4 Contention-Aware Placement Search

Motivated by the results of our empirical study, in this section

we propose the Contention-Aware Placement Search (CAPS)

657

CAPSys: Contention-aware task placement for data stream processing EuroSys ’25, March 30–April 3, 2025, Ro�erdam, Netherlands

Notation Description

�? Physical execution graph

#? Number of logical operators in �?

+? Set of streaming tasks in �?

�? Set of physical data links in �?

�F Worker cluster

+F Set of workers in �F

�F Set of network links between workers in �F

B Number of compute slots per worker

5 (·) A task placement plan that maps each task in +?
to a worker in +F

� The set of all possible placement plans

*2?D (C) CPU utilization of task C ∈ +?
*8> (C) State access rate of task C ∈ +?
*=4C (C) Output data rate of task C ∈ +?
)2?D/8>/=4C Set of tasks with highest *2?D/8>/=4C among all

tasks in +? where |)=4C | = B

� (C) Set of physical downstream data links that origi-

nate from task C (-1 for sink tasks)

�A (5 , C) Set of cross-worker physical data links originat-

ing from task C under placement 5

Table 1. Notation used in this paper

strategy. As shown before [13], computing an optimal task

placement is NP-hard. Therefore, �nding an exact solution

is prohibitive for streaming deployments where dynamic

workloads require frequent recon�guration. To address this

challenge, CAPS captures the cost of a placement plan by

considering the co-location degree of resource-intensive tasks.

After de�ning the task placement problem (§ 4.1), we intro-

duce the CAPS cost model (§ 4.2) and describe a set of opti-

mizations that we employ to aggressively prune the search

space of valid placement plans (§ 4.4). We provide a summary

of the notation used throughout this section in Table 1.

4.1 Problem de�nition

Given the physical execution graph�? of a streaming data�-

ow, where operator parallelism is determined by the auto-

scaling controller (e.g. DS2 [30]), and a �xed worker cluster

denoted by�F , our objective is to �nd a task placement plan

that minimizes resource contention in �F . Speci�cally,

• �? = (+? , �?) de�nes the physical execution graph of

the streaming job.+? describes the task vertices, where

each C ∈ +? belongs to a logical operator. �? is the set

of all edges, where ; ∈ �? denotes a physical data link

between two tasks.

• �F = (+F, �F) describes the cluster resources. +F in-

cludes all workers, where each F ∈ +F is annotated

with a �xed number of slots, compute resources, disk,

and network bandwidth. �F is the set of end-to-end

network edges between workers, annotated with prop-

agation delay and bandwidth.

We de�ne a task placement plan as a task-to-worker map-

ping 5 : +? → +F such that each task is assigned to exactly

one worker (cf. Eq. 1) and the number of assigned tasks per

worker does not exceed its available slots B (c.f. Eq. 2):

∀C ∈ +? , ∃!F ∈ +F BD2ℎ Cℎ0C 5 (C) = F (1)

∀F ∈ +F, |{C |C ∈ +? ∧ 5 (C) = F}| ≤ B (2)

Given a pair of �? and �F , we denote the set of all plans

that respect constraints (1) and (2) as � . We also de�ne a

cost function 2 : 5 → ®- that assigns a cost vector to a

placement plan. Our objective is to identify the plan 58 with

the minimum cost, so that:

2 (58) < 2 (59),∀59 ∈ � \ {58 } (3)

We describe the cost model in detail in Section 4.2.

Model assumptions. To keep our formulation concise, we

consider the resource model described in Section 2, where

the resources per worker and the number of slots are �xed.

We also assume the total number of compute slots in �F is

su�cient to deploy all tasks in �? . As a result, tasks of the

same logical operator are considered identical and any e�ects

of data skew must be addressed by a separate mechanism,

such as custom partitioning [38, 42], before task placement.

We discuss integration with skew mitigation techniques and

other practical considerations in Section 5.2.

4.2 Cost model

The intuition of our cost model is to capture the resource

imbalance in the worker cluster, as the di�erence of the bot-

tleneck worker’s load from the ideal load, wherein all workers

are assigned an equally resource-intensive workload. We

express this imbalance across three dimensions: (i) compute

cost, (ii) state access cost, and (iii) network cost. We describe

each of these cost functions next.

Compute cost. Let !2?D (5) (Equation 5) denote the highest

CPU load among all workers under placement plan 5 and

!<8=
2?D (Equation 6) be the per-worker CPU load of a perfectly-

balanced compute allocation, where the total CPU load is

equally distributed to all workers. Let also !<0G
2?D , given in

Equation 7, denote the worst-case CPU load when the most

compute-intensive tasks,)2?D , are co-located on the same

worker. Equation 4 gives the compute cost of a placement

plan 5 , as the di�erence of !2?D (5) from !<8=
2?D , normalized by

the worst possible di�erence of CPU load. The case of !<0G
2?D =

!<8=
2?D corresponds to the case when all possible placement

plans are equivalent. This can happen either when�F has a

single worker or when the number of tasks is equal to the

number of slots and all tasks are identical.

�2?D (5) expresses the amount of additional compute re-

quirements imposed on the bottleneck worker in the cluster,

compared to the ideal allocation. The value of �2?D (5) is
between 0 and 1, with 0 indicating a perfectly balanced as-

signment and 1 indicating the worst-case.

658

EuroSys ’25, March 30–April 3, 2025, Ro�erdam, Netherlands Wang and Huang, et al.

�2?D (5) =





0 if !<0G
2?D = !<8=

2?D
!2?D (5)−!

<8=
2?D

!<0G
2?D −!<8=

2?D

otherwise.
(4)

!2?D (5) = max
F∈+F

∑

{C ∈+? | 5 (C)=F}

*2?D (C) (5)

!<8=
2?D =

∑
C ∈+? *2?D (C)

|+F |
(6)

!<0G
2?D =

∑

C ∈)2?D

*2?D (C) (7)

State access cost.Wede�ne the state access cost�8> (5) anal-
ogously, by replacing the corresponding loads, !8> (5), !

<8=
8> ,

and !<0G
8> , in Equations 4-7. !8> (5) represents the highest

state access load among all workers. !<8=
8> and !<0G

8> denote

the perfectly-balanced and the most imbalanced allocation

for disk I/O resources. The state access load of a task *8> (C)
is de�ned as the sum of read and write disk I/O rate.

Network cost. De�ning the network cost, �=4C (5), is not
straightforward because a task’s outbound network tra�c is

a�ected by its placement. As a result, calculating !<8=
=4C and

the !<0G
=4C requires computing the placement plan itself. To

address this challenge, we approximate !<8=
=4C and !<0G

=4C as

follows. We set !<8=
=4C = 0 to indicate the case when all tasks

are placed on the same worker without incurring any net-

work tra�c. We further assume that !<0G
=4C corresponds to the

case of co-locating tasks with the highest output data rate,

denoted by)=4C , on the same worker. Given these approxi-

mations, we de�ne the network load of plan 5 in Equation 8:

!=4C (5) = max
F∈+F

∑

{C ∈+? | 5 (C)=F}

(*=4C (C) ·
|�A (5 , C) |

|� (C) |
) (8)

We calculate the network load of a worker as the sum of

outbound network tra�c of all tasks placed on that worker.

We assume that the output data rate of a task C , *=4C (C), is
equally distributed to its downstream data links � (C). We

note that only cross-worker downstream data links�A (5 , C) ⊆
� (C) contribute to the outbound network tra�c of theworker.

Objective functions. The cost values for compute, state

access, and network resources form the three dimensions in

the cost vector ®� = [�2?D ,�8> ,�=4C] of a placement plan. We

employ three independent objective functions in our formula-

tion: (i)min5 �2?D (5), (ii)min5 �8> (5), and (iii)min5 �=4C (5).

We de�ne the pareto-optimal solution with respect to ®� as a

placement plan whose cost is not dominated by any other

feasible plan across all dimensions. Our goal is to �nd such

a pareto-optimal solution and discard plans that are strictly

more costly than others.

4.3 Exploring the placement plan space

We represent the search space of feasible plans as a tree

which we navigate in depth-�rst-search (DFS) order. We

employ a 2-step process: (i) the outer search explores one

computation stage (operator) as a layer of the DFS tree, and

(ii) the inner search expands each node by considering all

workers of the cluster. We illustrate the process with the

example of Figure 4.

Outer search. The problem of Figure 4-a consists of a query

with 4 operators and a cluster of 3 workers. The outer search,

shown in Figure 4-b, explores operators in topological order S

→ T→ I→ K. To create a node, we place tasks of the current

operator to the worker cluster. Non-leaf nodes correspond to

a partial placement plan, while leaf nodes identify a complete

task assignment. Each layer includes all feasible placement

plans for the current operator as separate branches. Since

slots, workers, and tasks of the same operator are homoge-

neous, there are two options in Layer 1: (i) to separate the

source tasks on any 2 workers (node 1), or (ii) to co-locate

the source tasks on any single worker (node 2).

Inner search. Each node created in the outer search step in-

vokes an inner search process to consider alternativeworkers.

In Figure 4-c, node 3 is expanded to discover task placements

for the inference tasks, exploring one worker per layer. In

this example, the inner search produces the children nodes

4 and 5, which are added to the tree.

Duplicate elimination. The inner search may produce leaf

nodes that correspond to equivalent placement plans. We

eagerly eliminate these duplicates, as shown in Figure 4-c:

nodes 6 and 7 are identi�ed as leading to duplicate branches

and one of them is terminated. Two workers of the same

node are handled as possible duplicates if they have been

assigned the same set of tasks (e.g., workers 2 and 3 of node

3). In this case, the number of tasks allowed to be placed

on a possible duplicate worker is restricted by the number

of tasks placed on its parent in the tree. In Figure 4-c, the

rightmost branch is terminated as Worker 2 has already been

assigned two instances of task I.

4.4 Search space pruning

The cost of searching all feasible plans can become untenable,

even for small deployments. As an example, we calculated

3.25million alternative placement plans and 31million nodes

in the search tree for query Q3-inf (§ 3.1), given a cluster

with 8 workers and 4 slots each. In this section, we propose

two pruning techniques that can e�ectively reduce the search

space and make CAPSys practical for the online setting.

4.4.1 Threshold-based pruning. The �rst pruning tech-

nique relies on the critical observation that the load !8 (8 ∈
[2?D, 8> , =4C]) of a worker increases monotonically at each

layer of the search tree. As more tasks are placed on a worker,

its resource consumption grows, allowing us to safely prune

659

CAPSys: Contention-aware task placement for data stream processing EuroSys ’25, March 30–April 3, 2025, Ro�erdam, Netherlands

SS

S

S

T

S TS

TT

SS

T

T

SS

I IT

I IT

SS

IT

I IT

S IS

I IT

I IT

S KS

I KT

I IT

S IS

... ...

... ...

Layer 1

(×2)

(b) Outer search: traverse operators (c) Inner search: traverse workers

T

T

SS

... ... T

T

SS

T

T

S IS

I IT

T

SS

I IT

I IT

SS

IT

T

S IS

I IT

T

S IS

IT

I IT

S IS X

source

transform

inference

sink

Physical execution graph

worker 1

worker 2

worker 3

Resource cluster (3×3)

placement

duplicate

(a) Task placement problem

S

Layer 2

(×2)

Layer 3

(×4)

Layer 4

(×1)

T

I

K

S

S

T

T

I

I

I

I

K

S

T

I

K

Possible task placements for the current operator

Invoke Inner search

for the next operator

node 1 node 2

node 3

node 5

node 4

node 6 node 7

Worker 1

Worker 2

Worker 3

Figure 4. Outer and Inner DFS tree of an example execution. The streaming data�ow has 4 logical operators: S → T → I → K

with parallelism 2, 2, 4, 1. The resource cluster has 3 homogeneous workers with 9 compute slots.

5k 6k 7k
(a) C_cpu vs. Tput

0.0

0.1

0.2

C_
cp

u

5k 6k 7k
(b) C_io vs. Tput

0.0

0.1

0.2

C_
io

5k 6k 7k
(c) C_net vs. Tput

0.25

0.30

0.35

C_
ne

t

High-performance Med-performance Low-performance

Figure 5. Compute, state access, and network cost of the

sample placement plans for Q1-sliding

branches once the load of a partial placement plan exceeds

some value. Speci�cally, we de�ne a con�gurable threshold

vector ®U = [U2?D, U8> , U=4C], such that the cost �8 (5) (8 ∈
[2?D, 8> , =4C]) of resulting placement plans must satisfy the

following inequality:

�8 (5) ≤ U8 , s.t. 8 ∈ [2?D, 8>, =4C], U8 ∈ [0, 1] (9)

Given Equation 4, we can derive the following inequality

that the cost !8 (5) (8 ∈ [2?D, 8> , =4C]) must satisfy:

!8 (5) ≤ !<8=
8 + U8 (!

<0G
8 − !<8=

8) (10)

A partial placement plan can be eliminated if its accumulated

load on any worker violates Equation 10 during the search.

Figure 5 visualizes the relationship between plan costs

and their respective throughput for query Q1-sliding of

Section 3.2. We see that high-performing plans can be ef-

fectively separated by setting cost threshold values (dashed

lines) across the resource dimensions. We note that 2=4C is

not a dominant performance factor, since Q1-sliding is not

network-intensive. Although a query’s sensitivity to each

dimension varies, threshold-based pruning is applicable as

long as performance is sensitive to at least one dimension.

We further consider task placement of Q3-inf on a cluster

with 8 4-slot workers and we report the search space size

for various compute thresholds U2?D in Table 2. The lower

the threshold value ®U , the more aggressively branches are

pruned during the search. We describe how to automatically

con�gure the pruning factor ®U in Section 5.2.

U2?D ∞ 0.5 0.2 0.1 0.05 0.03 0.01

plans 3.25m 2.45m 796k 10k 4465 24 0

#nodes 31m 31m 11m 1.1m 1m 1m 798k

#nodes

w/ reordering
31m 30m 11m 535k 519k 294k 28k

Table 2. Number of discovered plans and search tree size

under various compute threshold factor U2?D

4.4.2 Search tree exploration reordering. Placement

plans exceeding the threshold are pruned at di�erent layers

of the search tree. When an unsatisfactory plan reaches the

threshold at a low-level layer rather than near the root, nodes

are expanded unnecessarily. To avoid this overhead, we pro-

pose reordering the operator exploration sequence in the

outer search procedure to achieve early pruning as follows.

We prioritize operators with higher resource consumption

and explore them at top layers of the tree. Our intuition is

that tasks of resource-intensive operators tend to accumulate

cost faster and approach the threshold earlier than others.

To compute the exploration order, we rank operators based

on their cost values (�2?D , �8> , and �=4C) before initiating

the search. Reordering can be very e�ective in reducing the

search space, as shown by the results in Table 2. We prove

the correctness of the search tree exploration reordering in

the full technical report [47].

5 Implementation and deployment

In this section, we describe the implementation of CAPSys

on Apache Flink and discuss practical deployment issues.

5.1 CAPSys overview

Figure 6 shows the system architecture and work�ow of

query deployment. 1© The user submits a query graph and

the desired target throughput to the Job Manager. 2© Then,

CAPSys deploys a pro�ling job to estimate the resource costs

for each operator. 3©The scaling controller, which is DS2 [30]

660

EuroSys ’25, March 30–April 3, 2025, Ro�erdam, Netherlands Wang and Huang, et al.

in our implementation, decides the parallelism per operator

and generates the physical execution graph. 4© The place-

ment controller computes the task placement and 5© sends

the scheduling information to the Job Manager. 6© Finally,

the Job Manager deploys the query on the worker cluster.

CAPSys scheduler.We have implemented a custom Flink

scheduler that ensures tasks are assigned to workers accord-

ing to a placement plan. The plan is encoded as a mapping

of each task to a location, speci�ed by a Task Manager IP ad-

dress. We extended Flink’s ResourceProfile class with a

new attribute that speci�es the scheduling location for each

task, and implemented a custom SlotMatchingStrategy

to enforce matching tasks to their speci�ed Task Manager.

Metrics collector. The metrics collector component is re-

sponsible for recording Flink and system metrics required

by the pro�ling phase and DS2. Metrics are either reported

periodically from the Task Managers during runtime or are

derived. Speci�cally, we collect useful time per task, observed

and true input and output rates [30], selectivity statistics,

and CPU utilization of each worker. The scaling and place-

ment controllers pull their corresponding metrics on demand

when they need to make a decision.

Cost pro�ling. To pro�le the resource requirements of a

query, we deploy tasks of each operator on a separate Task

Manager and monitor its behavior for a con�gurable pro�l-

ing duration. For each operator, we record (i) the compute

cost, as the CPU utilization of the Task Manager where it

is deployed, (ii) the state access cost, as the sum of uncom-

pressed bytes read from and written to the RocksDB state

backend, and (iii) the network cost, as the number of bytes

the operator emits per second. During the pro�ling phase,

we calculate each operator’s cost value per record for each

dimension, by dividing its respective metric by its observed

output rate. At the end of the pro�ling phase, we store these

metrics on disk. As a result, pro�ling is only run once and

does not need to be repeated on recon�guration. On recon-

�guration, we calculate the cost �2?D (C),�8> (C),�=4C (C) of
each task C ∈ +3B? by multiplying its target rate and its cor-

responding unit cost and provide these values to CAPS. If

workload characteristics change over time, we could use our

current infrastructure to have the Metrics Collector peri-

odically feed metrics to DS2 and CAPS, to support online

pro�ling. We leave this to future work.

Placement controller. The placement controller receives

the physical graph fromDS2 and uses the pro�ling metrics to

calculate the compute, state, and network costs per operator

(c.f.§ 4.2). It then invokes the CAPS algorithm to calculate a

placement plan that satis�es pruning thresholds. Threshold

values can either be provided by the user or automatically set

by the auto-tuning process we describe in Section 5.2. CAPS

parallelizes the search by leveraging a con�gurable thread

pool. Each thread is initially assigned to a random partition of

the search space and can subsequently dynamically o�oad

work to other threads, if they become available. Threads

cache any satisfactory plan they identify locally. When the

search space has been fully explored, threads merge their

results and return the pareto-optimal solution.

5.2 Practical considerations

Threshold auto-tuning. Threshold-based pruning (§ 4.4.1)

requires users to set the factor ®U . However, identifying a good
®U value can be challenging. Ideally, we desire the minimum

feasible threshold that e�ectively reduces the search space

and returns the most resource-balanced placement plan. To

this end, we introduce an auto-tuning procedure that can

automatically identify this threshold factor.

The auto-tuning process takes as input the set of available

resources and the physical query graph and consists of two

phases. In the �rst phase, we identify the minimum feasible

threshold for each dimension (i.e., compute, state, network)

when the other dimensions are disabled. For each dimension,

we start from the tightest possible bound (corresponding to a

perfectly-balanced placement) and gradually relax it until we

�nd a valid plan for our deployment. However, the existence

of feasible plans is not guaranteed when all lower bounds

are jointly applied. In the second phase of auto-tuning, we

�nd the minimum feasible threshold vector by collectively

relaxing all threshold values. For both phases, we de�ne

con�gurable factors that decide the threshold relaxation step

at each iteration. The higher the relaxation factor, the more

aggressively thresholds are increased towards a valid plan.

In our experiments, we set the relaxation factors for both

phases to 1.1. Finally, users can set a timeout value that

allows exiting the search early, to avoid long execution times

for infeasible con�gurations.

Since the auto-tuning results depend only on the query

graph and the available resources, we can pre-compute thresh-

olds for various possible scaling scenarios (combinations of

operator parallelism settings) o�ine and in parallel. The re-

sults can be used to select the pre-calculated thresholds when

scaling is triggered at runtime.

Addressing data skew. CAPS considers all tasks of the

same operator identical with regards to resource consump-

tion. However, in the presence of data skew, one or more

tasks of an operator may experience higher input rate than

others, and hence, have higher resource demands. While

skew mitigation is out of the scope of this paper, the CAPSys

design is compatible with and could be easily integrated with

existing solutions, such as custom partitioning [24, 38]. Such

partitioning techniques could be used to organize tasks of

an operator into placement groups with equal resource de-

mand. Then, each task group can be explored as an individual

outer layer in the CAPS algorithm. Interestingly, during our

evaluation, we found that CAPSys already improves query

661

CAPSys: Contention-aware task placement for data stream processing EuroSys ’25, March 30–April 3, 2025, Ro�erdam, Netherlands

User

Flow direction

?
Job Manager Custom Scheduler

Submit workload

1. Job logical graph:

2. Target throughput:

?

OP1

OP4 OP5

OP2 OP3

CAPSys component Logical operator Task of operator

Task Manager (TM) Cluster compute slot (1 task per slot)

TM1 TM2 TM3 TM4 TM5

Metrics Collector

Scaling Controller

(DS2)

Send scaling

related metrics

Placement search (CAPS)

Pareto-optimal placement plan
Send placement

related metrics

?

Send physical graph

OP1 OP4 OP5

OP2 OP3

OP2 OP3

OP4

OP4

Placement Controller

? Send physical graph + placement plan

? ?

D
e
p
lo

y
 jo

b

CAPSys

OP OP

Deploy profiling job

1. Job physical graph:

2. Placement plan:

OP1

OP4 OP5

OP2 OP3

{<TM1, []>, ..., <TM5, []>}OP1 OP5

?

(optional)

Threshold

auto-tunning

Pre-defined

pruning

threshold

Figure 6. CAPSys system overview and work�ow of query deployment.

performance in the presence of skew, compared to the base-

line strategies. We report these results in the full technical

report [47], but we leave a deeper investigation as future

work.

6 Experimental evaluation

Our experimental evaluation is structured in four parts. In

§ 6.2, we compare CAPSys with the two baseline placement

strategies of Apache Flink. We show results for two settings:

(i) an experiment where each query is deployed in isola-

tion and (ii) a large-scale multi-tenant experiment where

all queries are deployed on the same cluster concurrently.

Our results demonstrate that queries deployed with CAP-

Sys consistently achieve the highest throughput and low-

est backpressure, while also delivering stable performance

across multiple runs. In § 6.3, we compare CAPSys with the

state-of-art ODRP algorithm and report orders of magnitude

improvement in computing the task placement and up to

6× higher throughput. In § 6.4, we evaluate CAPSys under

variable workloads and show it enhances the accuracy and

convergence of the DS2 auto-scaling controller. Finally, in

§ 6.5, we show CAPS is practical for online settings and can

identify satisfactory placement plans within seconds, even

for deployments with thousands of tasks.

6.1 Workload and experimental setting

Queries.We use six queries with diverse characteristics and

complexity. Q1-sliding, Q2-join, and Q3-inf are from the

motivation study in Section 3.1. Q4-join contains a stateful

incremental join operator, Q5-aggregate includes a state-

ful join operator and a process function operator, and Q6-

session has a session window operator that can potentially

accumulate large state. Among the six queries, Q1-sliding,

Q2-join,Q4-join,Q5-aggregate, andQ6-session are repre-

sentative queries selected from the Nexmark benchmarking

suite of Apache Beam [10, 45], corresponding to Nexmark

queries Q5, Q8, Q3, Q6, and Q11, respectively. The remaining

queries from the Nexmark benchmark are excluded in our

evaluation since they either consist of a single stateless op-

erator whose placement is trivial, or have equivalent logical

graphs compared to the selected queries. Both CAPSys and

baseline strategies use Flink 1.16.2.

Operator chaining and slot sharing. In the following

experiments, we disable Flink’s operator chaining [6], ac-

cording to DS2’s default con�guration [31]. Speci�cally, we

only allow chaining between the source and timestamp oper-

ators, but we separate them from the rest of the query, as the

source is responsible for generating events and has di�erent

resource requirements than downstream operators. Another

reason for this setting is to stress the system, as Flink’s de-

fault chaining would collapse most of the Nexmark queries

to trivial data�ow graphs with a single operator. Neverthe-

less, CAPS works as-is with chaining enabled. It considers

any chain as a single operator during pro�ling and when

exploring the search space.

Slot sharing allows multiple tasks to be deployed in a

single compute slot [5]. To keep the formulation clean and

intuitive, the CAPS model in Section 4 does not consider

slot sharing and we disable slot sharing in our experiments.

We emphasize that the placement problem with slot sharing

enabled is equivalent to one with more slots per worker but

slot sharing disabled. This is because slots do not enforce

resource isolation. Colocating two tasks in the same slot is

equivalent to separating them into two slots on the same

worker from a resource contention perspective, as each task

is allocated a dedicated thread regardless of slot sharing.

6.2 Comparison with Flink strategies

We compare the performance that queries can achieve when

executed on CAPSys in contrast to Flink’s default and

evenly policies (c.f. § 2.2). For all queries, we deploy a Flink

cluster on AWS ec2 m5d.2xlarge instances. Each worker

has 4 cores, 8vCPUs, 32GB memory, and a 300GB SSD disk.

The default network bandwidth within the cluster is 10 Gbps.

662

EuroSys ’25, March 30–April 3, 2025, Ro�erdam, Netherlands Wang and Huang, et al.

CAPS Evenly (Even) Default (Dft)

Q1-sliding Q2-join Q3-inf Q4-join Q5-aggregate Q6-session

(c
)
A
v
er
ag
e
L
at
en
cy

(b
)
B
ac
k
p
re
ss
u
re

(a
)
T
h
ro
u
g
h
p
u
t

(l
o
w
er

is
b
et
te
r)

(l
o
w
er

is
b
et
te
r)

(h
ig
h
er

is
b
et
te
r)

CAPS Even Dft

26k

28k

re
c/
s

CAPS Even Dft
0

50

100

%

CAPS Even Dft
0.0

0.5

1.0

1.5

se
co
nd

s

CAPS Even Dft

200k

250k

300k

re
c/
s

CAPS Even Dft
0

50

100

%

CAPS Even Dft

2

4

se
co
nd

s
CAPS Even Dft

3200

3400

re
c/
s

CAPS Even Dft
0

50

100

%

CAPS Even Dft

0.5

1.0

1.5

2.0
se
co
nd

s

CAPS Even Dft
460k

480k

500k

520k

540k

560k

re
c/
s

CAPS Even Dft
0

50

100

%
CAPS Even Dft

0.0

0.2

0.4

se
co
nd

s

CAPS Even Dft

100k

200k

re
c/
s

CAPS Even Dft
0

50

100

%

CAPS Even Dft
0.0

0.5

1.0

1.5

se
co
nd

s

CAPS Even Dft

350k

360k

370k

re
c/
s

CAPS Even Dft
0

50

100

%

CAPS Even Dft
0.0

0.2

0.4

se
co
nd

s

Figure 7. Individual query performance with di�erent placement strategies when each query is deployed in isolation. Queries

on CAPSys consistently achieve higher throughput and lower backpressure than queries deployed with Flink’s strategies.

Further, CAPSys provides stable performance, while Flink’s randomized strategies exhibit signi�cant variance across runs.

We use 4 8-slot workers for single-query experiments (§ 6.2.1)

and 18 workers in the multi-tenant setting (§ 6.2.2). CAPSys

cost thresholds are set with auto-tuning (c.f. § 5.2). To ensure

realistic experimental conditions and allow stateful opera-

tors to accumulate state, we set the pro�ling duration to

20<8=. We collect metrics for 10<8= after a warm-up period

of 6<8=. We repeat each experiment 10 times and summa-

rize the results in a box plot. We report average throughput,

backpressure at the source operator, and average latency.

6.2.1 Impact on individual query performance. In this

experiment, we evaluate the e�ect of task placement on

query performance when each query is deployed in isolation.

Figure 7 shows box plot results of 10 runs for each placement

strategy. The green dashed lines indicate the target input rate.

The results show that CAPS outperforms resource-unaware

strategies, achieving higher throughput, lower backpressure,

and lower latency for all queries. Further, we observe that

CAPS provides more stable performance, as opposed to the

baselines whose random placement decisions result in high

variance across runs. For the simplest query, Q1-sliding,

CAPSys provides 1.18× higher throughput and 11.8× lower

backpressure, on average, compared to the default strat-

egy. The improvements are more signi�cant for the com-

plex Q5-aggregate query, which consists of two sources,

a join, and an aggregation operator. In this case, CAPSys

achieves up to 6× and 5.5× higher throughput compared to

the default and evenly strategies, respectively. CAPSys

reduces backpressure by 84% and latency by 48%, on average,

across queries.

6.2.2 Multi-tenant experiment. In this experiment, we

evaluate CAPSys’ scalability to deployments with hundreds

of tasks and its ability to perform placement on a multi-

query workload. To this end, we deploy all six queries on

the same 18-worker cluster concurrently. CAPSys views the

entire query workload as a single data�ow graph and opti-

mizes task placement globally, taking resource contention

across queries into account. On the other hand, default

and evenly can only deploy a single query at a time, hence,

they are sensitive to the query submission order. To account

for this behavior, we repeat the experiment 10 times and ran-

domize the query submission order for every run. Figure 8

shows the results. CAPSys is the only policy that achieves

the target throughput across all six queries, while maintain-

ing low backpressure and end-to-end latency. On the other

hand, evenly reaches the target throughput only for Q2-

join and exhibits high backpressure for all other queries.

The default strategy performs slightly better, reaching the

target for three out of six queries.

6.3 Comparison with ODRP

Here, we compare CAPSys with the state-of-the-art ODRP al-

gorithm proposed by Cardellini et al. [14], which can jointly

decide the task parallelism and placement of a query. As

ODRP can only handle queries with a single source, we use

663

CAPSys: Contention-aware task placement for data stream processing EuroSys ’25, March 30–April 3, 2025, Ro�erdam, Netherlands

CAPS Evenly (Even) Default (Dft)

Q1-sliding Q2-join Q3-inf Q4-join Q5-aggregate Q6-session

(c
)
A
v
er
ag
e
L
at
en
cy

(b
)
B
ac
k
p
re
ss
u
re

(a
)
T
h
ro
u
g
h
p
u
t

(l
o
w
er

is
b
et
te
r)

(l
o
w
er

is
b
et
te
r)

(h
ig
h
er

is
b
et
te
r)

CAPS Even Dft

15k

16k

17k

18k

re
c/
s

CAPS Even Dft
0

50

100

%

CAPS Even Dft
0.00

0.25

0.50

0.75

se
co
nd

s

CAPS Even Dft

150k

200k

re
c/
s

CAPS Even Dft
0

50

100

%

CAPS Even Dft
0

5

10

se
co
nd

s
CAPS Even Dft

2200

2400

2600

2800

re
c/
s

CAPS Even Dft
0

50

100

%

CAPS Even Dft
0.00

0.25

0.50

0.75

se
co
nd

s

CAPS Even Dft

275k

300k

325k

350k

re
c/
s

CAPS Even Dft
0

50

100

%
CAPS Even Dft

0.00

0.25

0.50

0.75

se
co
nd

s

CAPS Even Dft

80k

90k

100k

re
c/
s

CAPS Even Dft
0

50

100

%

CAPS Even Dft
0.00

0.25

0.50

0.75

se
co
nd

s

CAPS Even Dft

180k

200k

220k

240k

re
c/
s

CAPS Even Dft
0

50

100

%

CAPS Even Dft
0.00

0.25

0.50

0.75

se
co
nd

s

Figure 8. Experimental results for the multi-tenant setting, where all queries are deployed on the same 144-slot cluster

concurrently.

Q3-inf in this experiment. We deploy a Flink cluster on

four AWS ec2 c5d.4xlarge instances and con�gure each

worker with 8 slots. To compare with the ODRP model, we

followed the instructions in the corresponding paper and

open source repository [7]. To apply ODRP to Flink, we com-

pute an operator’s execution time as the inverse of its true

processing rate. We set the lambda value (data transfer rate)

according to the target input rate and operator selectivity.

We use the same speed-up rate for all nodes in the resource

graph, and the same latency and bandwidth values for all

links. We set the number of available resources per node to

the number of slots and the required resources per operator

to one slot per task. Finally, we assume perfect availability

and no failure for all nodes and links.

We report results with three alternative con�gurations:

• Default: This con�guration assigns equal weight to

all model objectives and includes the improvements

described above.

• Weighted: This is a hand-tuned con�guration that em-

phasizes throughput and resource e�ciency.

• Latency: This con�guration considers only the latency

objective and disables the others.

Table 3 shows results for backpressure, throughput, and la-

tency, using the three ODRP con�gurations and CAPSys. The

plans generated with the ODRP-Default and ODRP-Weighted

policies cannot reach the target throughput and exhibit high

backpressure. This is because these con�gurations aim to

reduce the resource usage and result in under-provisioned

queries. For example, theWeighted policy co-locatedmultiple

inference tasks on the same worker, causing high contention.

On the contrary, the Latency policy achieves low latency and

throughput close to the target, however, this comes at the

cost of high resource demand and backpressure at the source.

Finally, we observe that ODRP takes a very long time to gen-

erate the physical plans, in the worst case taking 67<8= to

converge. Such high decision times make ODRP impractical

for online scenarios. Instead, CAPSys runs in 0.2B , including

the threshold auto-tuning phase.

6.4 CAPSys under variable workloads

We now evaluate CAPSys under variable workloads and

demonstrate it can improve the accuracy and convergence

of the DS2 auto-scaling controller. We use the Q3-inf query

and compare the performance of CAPSys with that of DS2

when coupled with Flink’s default and evenly policies.

Workers are deployed on r5d.xlarge AWS instances and

are con�gured with 8 slots. The DS2 activation time is set to

90B and the policy interval to 5B . We run two experiments to

evaluate accuracy and convergence, respectively.

6.4.1 E�ect on auto-scaling accuracy. To evaluate the

e�ects of task placement on auto-scaling accuracy, we run a

controlled experiment where we vary the input rate every

10<8= and trigger four scaling decisions. To ensure DS2

initially receives good-quality metrics, we manually tune

the starting con�guration with the optimal task placement

and parallelism, so that the query can meet the target rate

without being over-provisioned. We set the initial target

rate to 720 rec/s and subsequently increase it by 2× in the

664

EuroSys ’25, March 30–April 3, 2025, Ro�erdam, Netherlands Wang and Huang, et al.

Backpressure Throughput (rec/s) Average Latency (s) Resources (#slots) Decision Time (s)

CAPSys 0.5% 4236 0.292 27 0.2

ODRP-Default 90% 680 0.255 14 1636

ODRP-Weighted 48% 3396 0.268 26 4037

ODRP-Latency 15% 4043 0.157 32 1607

Table 3. Comparison with ODRP policies using Q3-inf. CAPSys is the only placement controller that can achieve the target

throughput. The ODRP con�gurations either over-provision the query or exhibit poor performance.

Step #1 Step #2 Step #3 Step #4

Throughput Resources Throughput Resources Throughput Resources Throughput Resources

CAPSys ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Default ✗ ✓ ✗ ✗ ✗ ✗ ✓ ✓

Evenly ✓ ✓ ✓ ✗ ✗ ✗ ✗ ✗

Table 4. E�ect of task placement on auto-scaling accuracy. A ✗ in the column Throughput indicates the strategy could not

reach the target rate, while a ✗ in the Resources column indicates the strategy over-provisioned the query.

�rst two steps and then decrease it by 2× in the next two.

We trigger a DS2 scaling action after each rate change and

record the average throughput and the number of resources

provisioned by DS2. Table 4 shows the results. We put a

✓ in the Throughput column if the policy met the target

rate and in the Resources column if the policy accurately

calculated the required resources. Correspondingly, a ✗ in

the Throughput column indicates throughput below target,

and one in the Resources column indicates over-provisioning,

where the auto-scaler indicated operator parallelism higher

than the minimum required to sustain the target rate.

We observe that CAPSys can always reach the target throu-

ghput and avoids over-shooting in all cases. On the contrary,

when task placement is performed by Flink’s default and

evenly policies, the behavior of DS2 degrades. Starting from

a good initial placement gives both strategies an advantage

in the �rst step, as the elasticity model is informed by accu-

rate metrics. However, subsequent sub-optimal placements

impact the controller’s accuracy and cause both strategies to

over-provision. We further see that the inherent randomness

in these strategies causes DS2 to become unstable.

6.4.2 E�ect on auto-scaling convergence. To evaluate

the e�ects of task placement on auto-scaling convergence,

we run an experiment under variable workload and let DS2

decide when a scaling decision is necessary. We initially set

the parallelism of all operators to 1 and let each placement

strategy select its own initial plan. We periodically vary the

input rate between a high and a low value every 20<8= and

record the number of scaling decisions and the amount of

resources that DS2 predicts.

Figure 9 shows the results over the experiment timeline.

We plot the observed throughput and the number of re-

sources (tasks) that the query occupies over time. The auto-

scaling decisions are marked with gray vertical dashed lines

and are annotated with numbers, while the target input rate

is shown with a green solid line.

Overall, we see that CAPSys improves DS2’s convergence

behavior and e�ectively avoids oscillations during both scale-

up and scale-down actions. Most of the time, CAPSys con-

verges to a stable con�guration within a single step after a

rate change and is always successful in achieving the target

throughput without over-provisioning. In contrast, when

DS2 is coupled with the default and evenly policies, it

takes longer to converge, incurring up to eight additional

scaling decisions in this experiment. Speci�cally, the �rst

time the rate increases, the default policy makes two scal-

ing decisions before reaching the target rate, while evenly

causes DS2 to oscillate. It triggers three scaling decisions

and fails to meet the target rate in the next 20<8=. When

the rate drops, we notice oscillation caused by the inherent

randomness in the default policy. The poor task placement

informs DS2 with inaccurate metrics and prevents it from

reaching the target throughput. This unstable behavior con-

tinues for default and evenly throughout the duration of

the experiment. Finally, we note that even when default

and evenly manage to meet the target rate, they often in-

duce over-provisioning, occupying up to four underutilized

additional slots.

6.5 CAPS performance and scalability

We now investigate how various parameters a�ect the per-

formance and scalability of the CAPSys. We demonstrate that

CAPSys can quickly �nd good placement plans for queries

with over a thousand tasks and is suitable for dynamic set-

tings where frequent recon�gurations may occur. We run

experiments with Q2-join, a workload with both compute-

intensive and state-intensive tasks. We use a Cloudlab [17]

c220g2 instance, with 20 cores and 160GB of memory. CAP-

Sys uses 20 threads for parallel execution.

6.5.1 Scalability of placement search. In the �rst exper-

iment, we evaluate how the CAPSys performance scales with

the problem size for various manually-con�gured thresh-

old values. We increase the number of tasks (slots) from

665

CAPSys: Contention-aware task placement for data stream processing EuroSys ’25, March 30–April 3, 2025, Ro�erdam, Netherlands

0

2000

Ra
te

 (r
ec

/s
)

1 2 3 4 5 6 7 8 9 10

CAPSys
throughput target input rate # tasks

0

2000

Ra
te

 (r
ec

/s
)

1 2 3 4 5 6 7 8 9 10 11 12 13

Evenly

0 1000 2000 3000 4000 5000 6000
Elapsed Time(sec)

0

2000

Ra
te

 (r
ec

/s
)

1 2 3 4 5 6 7 8 9 1011 12 13 14 15 161718

Default

0
8
16
24
32
40

Ta

sk
s

0
8
16
24
32
40

Ta

sk
s

0
8
16
24
32
40

Ta

sk
s

Figure 9. E�ect of task placement strategies on auto-scaling

convergence.

16 to 256 and measure the time CAPSys requires to search

the space of placement plans, until it identi�es the �rst one

that satis�es the threshold constraints. We repeat the exper-

iment for the following three threshold con�gurations: ®U1
(U2?D : 0.08, U8> : 0.15, U=4C : 0.6), ®U2 (U2?D : 0.15, U8> : 0.25, U=4C :

0.8), and ®U3 (U2?D : 0.25, U8> : 0.3, U=4C : 0.9). ®U1, ®U2, and ®U3 are

empirically-obtained thresholds that prune the search space

with di�erent granularity.

The results in Figure 10-a show that CAPSys can e�ciently

�nd satisfactory placement plans within tens of milliseconds,

even for queries with hundreds of parallel tasks. For very

tight threshold values, the runtime increases slightly as the

number of tasks grows. This is expected, as discovering a

placement plan that satis�es the constraint gets harder. In

all cases, CAPSys returns a task assignment in up to 100<B .

6.5.2 Performance of threshold auto-tuning. We also

evaluate the performance of the threshold auto-tuning com-

ponent (c.f.§ 5.2). We vary the number of workers from 8 to

16 and the number of slots per worker from 4 to 64. The time-

out period is set to 5B . We execute the threshold auto-tuning

algorithm for all combinations of the above values, where

the total number of tasks grows from 32 to 1024. Figure 10-b

shows the total execution time for each con�guration.

We observe that auto-tuning is very e�cient for small and

medium-size deployments. For example, �nding threshold

bounds for 64 tasks with a con�guration of 4 workers and

16 slots per worker takes only 1.16B . As the number of tasks

grows, the runtime increases. For 1024 tasks deployed on 16

workers with 64 slots each, the process takes 125.08B . We

believe this is acceptable, as threshold auto-tuning can be per-

formed o�ine, as we describe in Section 5.2. This result could

be further improved by exploiting the accuracy-performance

tradeo� or by running auto-tuning on a machine with higher

16 32 64 128 192 256
Number of tasks

0

25

50

75

Ru
nt

im
e

(m
s)

(a) CAPSys runtime
α(0.08, 0.15, 0.6)
α(0.15, 0.25, 0.8)
α(0.25, 0.3, 0.9)

102 103

Number of tasks

0

50

100

150

Ru
nt

im
e

(s
)

(b) Auto-tuning runtime

Figure 10. Scalability results for the CAPSys placement

search and threshold auto-tuning.

parallelism. Another approach would be to �rst partition the

data�ow graph and apply CAPS per partition. We plan to

explore this direction as future work.

7 Related Work

We have already discussed the closely related work in Sec-

tion 2.2. Here, we highlight important works that consider

task scheduling in slightly di�erent settings than ours.

Stream processing in WAN and edge environments.

Task placement has been an important issue in the design

of wide-area analytics systems and edge stream processing

frameworks. In such environments, schedulers need to ad-

dress various challenges, such as heterogeneous and dynamic

network conditions, transmission delays, and congestion. Ex-

amples includeWASP [29], which uses an ILP-based solution

to minimize network delays between computation stages,

DROPLET [18], which follows a dynamic programming ap-

proach coupled with heuristics to minimize job completion

time, and SWAN [44], which proposes a heuristic model

to balance the number of tasks across nodes, while also

considering each node’s available bandwidth. SBON [41]

and DART [35] are other noteworthy systems that organize

workers into overlay networks and propose decentralized

solutions to the placement problem. Though in this paper

we focus on datacenter environments, where propagation

delays are negligible, extending the CAPS cost model with

additional objectives is an exciting direction for future work.

Scheduling long-running workloads. Cluster scheduling

of machine learning (ML) workloads and other long-running

jobs [11, 23, 48, 52] also bears similarity with task placement

in SPSs. In contrast to ML training and batch processing

jobs, which consume �nite data and whose execution can

be optimized o�ine, streaming workloads are dynamic and

often unpredictable. As a result, streaming task schedulers

need to be capable of operating online with low latency.

In the future, we plan to investigate integrating CAPSys

with cluster schedulers like Medea [23], Cilantro [11], and

control planes for SPSs, like Chi [37], as their approaches

are complementary to ours.

8 Conclusion

We presented CAPSys, an adaptive resource controller for

stream processing systems that considers auto-scaling and

666

EuroSys ’25, March 30–April 3, 2025, Ro�erdam, Netherlands Wang and Huang, et al.

task placement in concert. The core of CAPSys is the content-

ion-aware placement search strategy that leverages empiric-

ally-veri�ed heuristics and applies various optimizations to

prune the vast search space of alternative task assignments.

Our results show that CAPSys computes task placement in

orders of magnitude lower time compared to the ODRP al-

gorithm [14] and achieves up to 6× higher throughput com-

pared to Flink task placement strategies, while it also en-

hances the e�ectiveness of the DS2 auto-scaling controller.

9 Acknowledgements

We thank the anonymous EuroSys reviewers for their in-

sightful comments and our shepherd, Etienne Riviere, for his

guidance in improving the paper. This work was partially

supported by a Google DAPA award and a Red Hat Col-

laboratory Research Incubation Award (ID:2024-01-RH10).

This work has been partly supported by National Science

Foundation Award CNS-1908677.

References
[1] Apache Flink. https://flink.apache.org/. Last access: January 2024.

[2] Apache Flink con�guration: Evenly spread out slots.

https://nightlies.apache.org/flink/flink-docs-release-1.16/docs

/deployment/config/#cluster-evenly-spread-out-slots. Last access:

January 2024.

[3] Apache Storm. https://storm.apache.org/. Last access: January 2024.

[4] Fine-Grained Resource Management in Apache Flink.

https://nightlies.apache.org/flink/flink-docs-stable/docs/depl

oyment/finegrained_resource/. Last access: January 2024.

[5] Flink Architecture: Task Slots and Resources. https://nightlie

s.apache.org/flink/flink-docs-release-1.16/docs/concepts/flink-

architecture/#task-slots-and-resources. Last access: September 2024.

[6] Flink Architecture: Tasks and Operator Chains. https:

//nightlies.apache.org/flink/flink-docs-master/docs/concepts/flink-

architecture/#tasks-and-operator-chains. Last access: September

2024.

[7] Optimal dsp placement and replication, 2023. Last access: Oct 2023.

[8] Tyler Akidau, Robert Bradshaw, Craig Chambers, Slava Chernyak,

Rafael J. Fernández-Moctezuma, Reuven Lax, Sam McVeety, Daniel

Mills, Frances Perry, Eric Schmidt, and Sam Whittle. The data�ow

model: A practical approach to balancing correctness, latency, and cost

in massive-scale, unbounded, out-of-order data processing. Proceedings

of the VLDB Endowment, 2015.

[9] Esmail Asyabi, Yuanli Wang, John Liagouris, Vasiliki Kalavri, and

Azer Bestavros. A new benchmark harness for systematic and robust

evaluation of streaming state stores. In Proceedings of the Seventeenth

European Conference on Computer Systems, EuroSys ’22, page 559–574,

New York, NY, USA, 2022. Association for Computing Machinery.

[10] Apache Beam. Nexmark Benchmark Suite, 2022. Last access: March

2022.

[11] Romil Bhardwaj, Kirthevasan Kandasamy, Asim Biswal, Wenshuo Guo,

Benjamin Hindman, Joseph Gonzalez, Michael Jordan, and Ion Stoica.

Cilantro: Performance-Aware resource allocation for general objectives

via online feedback. In 17th USENIX Symposium on Operating Systems

Design and Implementation (OSDI 23), pages 623–643, Boston, MA, July

2023. USENIX Association.

[12] Muhammad Bilal and Marco Canini. Towards automatic parameter

tuning of stream processing systems. In Proceedings of the 2017 Sympo-

sium on Cloud Computing, SoCC 2017, Santa Clara, CA, USA, September

24 - 27, 2017, pages 189–200, 2017.

[13] Valeria Cardellini, Vincenzo Grassi, Francesco Lo Presti, and Matteo

Nardelli. Optimal operator placement for distributed stream processing

applications. In Proceedings of the 10th ACM International Conference

on Distributed and Event-Based Systems, DEBS ’16, page 69–80, New

York, NY, USA, 2016. Association for Computing Machinery.

[14] Valeria Cardellini, Vincenzo Grassi, Francesco Lo Presti, and Mat-

teo Nardelli. Optimal operator replication and placement for dis-

tributed stream processing systems. SIGMETRICS Perform. Eval. Rev.,

44(4):11–22, may 2017.

[15] Xenofon Chatziliadis, Eleni Tzirita Zacharatou, Alphan Eracar, Ste�en

Zeuch, and Volker Markl. E�cient placement of decomposable ag-

gregation functions for stream processing over large geo-distributed

topologies. Proc. VLDB Endow., 17(6):1501–1514, may 2024.

[16] Tathagata Das, Yuan Zhong, Ion Stoica, and Scott Shenker. Adaptive

stream processing using dynamic batch sizing. In Proceedings of the

ACM Symposium on Cloud Computing, SOCC ’14, pages 16:1–16:13,

New York, NY, USA, 2014. ACM.

[17] Dmitry Duplyakin, Robert Ricci, Aleksander Maricq, Gary Wong,

Jonathon Duerig, Eric Eide, Leigh Stoller, Mike Hibler, David John-

son, Kirk Webb, Aditya Akella, Kuangching Wang, Glenn Ricart,

Larry Landweber, Chip Elliott, Michael Zink, Emmanuel Cecchet,

Snigdhaswin Kar, and Prabodh Mishra. The design and operation

of CloudLab. In Proceedings of the USENIX Annual Technical Confer-

ence (ATC), pages 1–14, July 2019.

[18] Tarek Elgamal, Atul Sandur, Phuong Nguyen, Klara Nahrstedt, and

Gul Agha. Droplet: Distributed operator placement for iot applications

spanning edge and cloud resources. In 2018 IEEE 11th International

Conference on Cloud Computing (CLOUD), pages 1–8, 2018.

[19] Apache Flink. Network memory tuning guide. https:

//nightlies.apache.org/flink/flink-docs-release-1.16/docs/deplo

yment/memory/network_mem_tuning/, 2023.

[20] Avrilia Floratou, Ashvin Agrawal, Bill Graham, Sriram Rao, and

Karthik Ramasamy. Dhalion: Self-regulating stream processing in

heron. PVLDB, 10(12):1825–1836, August 2017.

[21] Marios Fragkoulis, Paris Carbone, Vasiliki Kalavri, and Asterios Kat-

sifodimos. A survey on the evolution of stream processing systems.

The VLDB Journal, pages 1–35, 2023.

[22] Tom Z. J. Fu, Jianbing Ding, Richard T. B. Ma, Marianne Winslett,

Yin Yang, and Zhenjie Zhang. DRS: auto-scaling for real-time stream

analytics. IEEE/ACM Trans. Netw., 25(6):3338–3352, 2017.

[23] Panagiotis Garefalakis, Konstantinos Karanasos, Peter Pietzuch, Arun

Suresh, and Sriram Rao. Medea: Scheduling of long running applica-

tions in shared production clusters. In Proceedings of the Thirteenth

EuroSys Conference, EuroSys ’18, New York, NY, USA, 2018. Association

for Computing Machinery.

[24] Bugra Gedik. Partitioning functions for stateful data parallelism in

stream processing. VLDB J., 23(4):517–539, 2014.

[25] Herodotos Herodotou, Lambros Odysseos, Yuxing Chen, and Jiaheng

Lu. Automatic performance tuning for distributed data stream pro-

cessing systems. In 2022 IEEE 38th International Conference on Data

Engineering (ICDE), pages 3194–3197. IEEE, 2022.

[26] Benjamin Hindman, Andy Konwinski, Matei Zaharia, Ali Ghodsi, An-

thony D Joseph, Randy Katz, Scott Shenker, and Ion Stoica. Mesos: A

platform for {Fine-Grained} resource sharing in the data center. In 8th

USENIX Symposium on Networked Systems Design and Implementation

(NSDI 11), 2011.

[27] Sonia Horchidan, Po Hao Chen, Emmanouil Kritharakis, Paris Carbone,

and Vasiliki Kalavri. Cray�sh: Navigating the labyrinth of machine

learning inference in stream processing systems. In 27th International

Conference on Extending Database Technology, EDBT 2024, Paestum,

Italy, Mar 25 2024-Mar 28 2024, pages 676–689, 2024.

[28] Michael Isard, Mihai Budiu, Yuan Yu, Andrew Birrell, and Dennis

Fetterly. Dryad: distributed data-parallel programs from sequential

667

https://flink.apache.org/
https://nightlies.apache.org/flink/flink-docs-release-1.16/docs/deployment/config/#cluster-evenly-spread-out-slots
https://nightlies.apache.org/flink/flink-docs-release-1.16/docs/deployment/config/#cluster-evenly-spread-out-slots
https://nightlies.apache.org/flink/flink-docs-release-1.16/docs/deployment/config/#cluster-evenly-spread-out-slots
https://storm.apache.org/
https://nightlies.apache.org/flink/flink-docs-stable/docs/deployment/finegrained_resource/
https://nightlies.apache.org/flink/flink-docs-stable/docs/deployment/finegrained_resource/
https://nightlies.apache.org/flink/flink-docs-stable/docs/deployment/finegrained_resource/
https://nightlies.apache.org/flink/flink-docs-release-1.16/docs/concepts/flink-architecture/#task-slots-and-resources
https://nightlies.apache.org/flink/flink-docs-release-1.16/docs/concepts/flink-architecture/#task-slots-and-resources
https://nightlies.apache.org/flink/flink-docs-release-1.16/docs/concepts/flink-architecture/#task-slots-and-resources
https://nightlies.apache.org/flink/flink-docs-master/docs/concepts/flink-architecture/#tasks-and-operator-chains
https://nightlies.apache.org/flink/flink-docs-master/docs/concepts/flink-architecture/#tasks-and-operator-chains
https://nightlies.apache.org/flink/flink-docs-master/docs/concepts/flink-architecture/#tasks-and-operator-chains
https://nightlies.apache.org/flink/flink-docs-release-1.16/docs/deployment/memory/network_mem_tuning/
https://nightlies.apache.org/flink/flink-docs-release-1.16/docs/deployment/memory/network_mem_tuning/
https://nightlies.apache.org/flink/flink-docs-release-1.16/docs/deployment/memory/network_mem_tuning/

CAPSys: Contention-aware task placement for data stream processing EuroSys ’25, March 30–April 3, 2025, Ro�erdam, Netherlands

building blocks. In Proceedings of the 2nd ACM SIGOPS/EuroSys Euro-

pean Conference on Computer Systems 2007, pages 59–72, 2007.

[29] Albert Jonathan, Abhishek Chandra, and Jon Weissman. Wasp: Wide-

area adaptive stream processing. In Proceedings of the 21st International

Middleware Conference, Middleware ’20, page 221–235, New York, NY,

USA, 2020. Association for Computing Machinery.

[30] Vasiliki Kalavri, John Liagouris, Moritz Ho�mann, Desislava Dim-

itrova, Matthew Forshaw, and Timothy Roscoe. Three steps is all

you need: Fast, accurate, automatic scaling decisions for distributed

streaming data�ows. In Proceedings of the 13th USENIX Conference on

Operating Systems Design and Implementation, 2018.

[31] Vasiliki Kalavri, John Liagouris, Moritz Ho�mann, Desislava

Dimitrova, Matthew Forshaw, and Timothy Roscoe. Three steps

is all you need: fast, accurate, automatic scaling decisions for

distributed streaming data�ows. https://github.com/strymon-

system/ds2/blob/master/flink-examples/src/main/java/ch/ethz/sys

tems/strymon/ds2/flink/nexmark/queries/�ery1.java#L49, October

2018. Last access: May 2024.

[32] Faria Kalim, Le Xu, Sharanya Bathey, Richa Meherwal, and Indranil

Gupta. Henge: Intent-driven multi-tenant stream processing. In

Proceedings of the ACM Symposium on Cloud Computing, SoCC ’18,

page 249–262, New York, NY, USA, 2018. Association for Computing

Machinery.

[33] Jeyhun Karimov, Tilmann Rabl, Asterios Katsifodimos, Roman

Samarev, Henri Heiskanen, and Volker Markl. Benchmarking dis-

tributed stream data processing systems. In 2018 IEEE 34th interna-

tional conference on data engineering (ICDE), pages 1507–1518. IEEE,

2018.

[34] Nikos R. Katsipoulakis, Alexandros Labrinidis, and Panos K. Chrysan-

this. A holistic view of stream partitioning costs. Proc. VLDB Endow.,

10(11):1286–1297, August 2017.

[35] Pinchao Liu, Dilma Da Silva, and Liting Hu. Dart: A scalable and

adaptive edge stream processing engine. In USENIX Annual Technical

Conference, 2021.

[36] Yuan Liu, Xuanhua Shi, and Hai Jin. Runtime-aware adaptive schedul-

ing in stream processing. Concurrency Computat.: Pract. Exper, 28:3830–

3843, 2016.

[37] Luo Mai, Kai Zeng, Rahul Potharaju, Le Xu, Steve Suh, Shivaram

Venkataraman, Paolo Costa, Terry Kim, Saravanan Muthukrishnan,

Vamsi Kuppa, Sudheer Dhulipalla, and Sriram Rao. Chi: a scalable

and programmable control plane for distributed stream processing

systems. Proc. VLDB Endow., 11(10):1303–1316, jun 2018.

[38] Muhammad Anis Uddin Nasir, Gianmarco De Francisci Morales, Nico-

las Kourtellis, and Marco Sera�ni. When two choices are not enough:

Balancing at scale in distributed stream processing. 2016 IEEE 32nd

International Conference on Data Engineering (ICDE), pages 589–600,

2015.

[39] Kay Ousterhout, Patrick Wendell, Matei Zaharia, and Ion Stoica. Spar-

row: distributed, low latency scheduling. In Proceedings of the Twenty-

Fourth ACM Symposium on Operating Systems Principles, SOSP ’13,

page 69–84, New York, NY, USA, 2013. Association for Computing

Machinery.

[40] Boyang Peng, Mohammad Hosseini, Zhihao Hong, Reza Farivar, and

Roy Campbell. R-storm: Resource-aware scheduling in storm. In

Proceedings of the 16th Annual Middleware Conference, Middleware ’15,

page 149–161, New York, NY, USA, 2015. Association for Computing

Machinery.

[41] P. Pietzuch, J. Ledlie, J. Shneidman, M. Roussopoulos, M. Welsh,

and M. Seltzer. Network-aware operator placement for stream-

processing systems. In 22nd International Conference on Data En-

gineering (ICDE’06), pages 49–49, 2006.

[42] Nicoló Rivetti, Leonardo Querzoni, Emmanuelle Anceaume, Yann Bus-

nel, and Bruno Sericola. E�cient key grouping for near-optimal load

balancing in stream processing systems. In Proceedings of the 9th ACM

International Conference on Distributed Event-Based Systems, pages

80–91, 2015.

[43] Guillaume Rosinosky, Donatien Schmitz, and Etienne Rivière.

Streambed: capacity planning for stream processing. arXiv preprint

arXiv:2309.03377, 2023.

[44] Won Wook Song, Myeongjae Jeon, and Byung-Gon Chun. Swan: Wan-

aware stream processing on geographically-distributed clusters. In

Proceedings of the 13th ACM SIGOPS Asia-Paci�c Workshop on Systems,

APSys ’22, page 78–84, New York, NY, USA, 2022. Association for

Computing Machinery.

[45] Pete Tucker, Kristin Tufte, Vassilis Papadimos, and David Maier.

Nexmark—a benchmark for queries over data streams. Technical

report, OGI School of Science & Engineering at OHSU, 2002.

[46] Vinod Kumar Vavilapalli, Arun C Murthy, Chris Douglas, Sharad

Agarwal, Mahadev Konar, Robert Evans, Thomas Graves, Jason Lowe,

Hitesh Shah, Siddharth Seth, et al. Apache hadoop yarn: Yet another

resource negotiator. In Proceedings of the 4th annual Symposium on

Cloud Computing, pages 1–16, 2013.

[47] Yuanli Wang, Lei Huang, Zikun Wang, Vasiliki Kalavri, and Ibrahim

Matta. Capsys: Contention-aware task placement for data stream

processing. Technical report, BUCS-2024-001, Computer Science De-

partment, Boston University, https://hdl.handle.net/2144/49285, 2024.

[48] Wencong Xiao, Romil Bhardwaj, Ramachandran Ramjee, Muthian Si-

vathanu, Nipun Kwatra, Zhenhua Han, Pratyush Patel, Xuan Peng,

Hanyu Zhao, Quanlu Zhang, Fan Yang, and Lidong Zhou. Gandiva:

Introspective cluster scheduling for deep learning. In Proceedings of

the 13th USENIX Conference on Operating Systems Design and Imple-

mentation, OSDI’18, page 595–610, USA, 2018. USENIX Association.

[49] Le Xu, Boyang Peng, and Indranil Gupta. Stela: Enabling stream

processing systems to scale-in and scale-out on-demand. In 2016

IEEE International Conference on Cloud Engineering, IC2E 2016, Berlin,

Germany, April 4-8, 2016, pages 22–31, 2016.

[50] Le Xu, Shivaram Venkataraman, Indranil Gupta, Luo Mai, and Rahul

Potharaju. Move fast and meet deadlines: Fine-grained real-time

stream processing with cameo. In 18th USENIX Symposium on Net-

worked Systems Design and Implementation (NSDI 21), pages 389–405,

2021.

[51] Ben Zhang, Xin Jin, Sylvia Ratnasamy, John Wawrzynek, and Ed-

ward A. Lee. Awstream: Adaptive wide-area streaming analytics. In

Proceedings of the 2018 Conference of the ACM Special Interest Group

on Data Communication, SIGCOMM ’18, page 236–252, New York, NY,

USA, 2018. Association for Computing Machinery.

[52] Lianmin Zheng, Zhuohan Li, Hao Zhang, Yonghao Zhuang, Zhifeng

Chen, Yanping Huang, Yida Wang, Yuanzhong Xu, Danyang Zhuo,

Eric P Xing, et al. Alpa: Automating inter-and {Intra-Operator} par-

allelism for distributed deep learning. In 16th USENIX Symposium

on Operating Systems Design and Implementation (OSDI 22), pages

559–578, 2022.

668

https://github.com/strymon-system/ds2/blob/master/flink-examples/src/main/java/ch/ethz/systems/strymon/ds2/flink/nexmark/queries/Query1.java#L49
https://github.com/strymon-system/ds2/blob/master/flink-examples/src/main/java/ch/ethz/systems/strymon/ds2/flink/nexmark/queries/Query1.java#L49
https://github.com/strymon-system/ds2/blob/master/flink-examples/src/main/java/ch/ethz/systems/strymon/ds2/flink/nexmark/queries/Query1.java#L49
https://hdl.handle.net/2144/49285

EuroSys ’25, March 30–April 3, 2025, Ro�erdam, Netherlands Wang and Huang, et al.

A Artifact Appendix

A.1 Abstract

CAPSys is an adaptive resource controller for data�ow stream

processors, that considers auto-scaling and task placement in

concert. CAPSys relies on Contention-Aware Placement Search

(CAPS), a new placement strategy that ensures compute-

intensive, I/O-intensive, and network-intensive tasks are bal-

anced across available resources. We integrate CAPSys with

Apache Flink and show that it consistently achieves higher

throughput and lower backpressure than Flink’s strategies,

while it also improves the convergence of the DS2 auto-

scaling controller under variable workloads.When compared

with the state-of-the-art ODRP placement strategy, CAPSys

computes the task placement in orders of magnitude lower

time and achieves up to 6× higher throughput. The experi-

ments require both AWS and Cloudlab resources to support

the above claims.

A.2 Description & Requirements

A.2.1 How to access. CAPSys is accessible at the follow-

ing GitHub link:

https://github.com/CASP-Systems-BU/CAPSys

or using the following DOI: 10.5281/zenodo.13717642

(https://zenodo.org/doi/10.5281/zenodo.13717642)

A.2.2 Hardware dependencies. We run experimentswith

Flink deployments on three types of AWS EC2 instances:

m5d.2xlarge (8 vCPUs, 32 GB memory, 300GB SSD disk),

c5d.4xlarge (16 vCPUs, 32 GB memory, 400GB SSD disk),

and r5d.xlarge (4 vCPUs, 32 GBmemory, 150GB SSD disk).

We run CAPSys performance and scalability experiments on

the Cloudlab [17] c220g2 instance (20 cores, 160GB mem-

ory).

A.2.3 Software dependencies. We run the experiments

on Ubuntu 22.04 and Apache Flink 1.16.2. We provide

scripts for installing Flink and all dependency libraries.

A.2.4 Benchmarks. We use six queries with diverse char-

acteristics and complexity:Q1-sliding,Q2-join, andQ3-inf

from the motivation study in Section 3.1, and queries Q3, Q6,

Q11 from the Nexmark benchmark [45], referred to in the

following as Q4-join, Q5-aggregate, and Q6-session.

All queries are de�ned in https://github.com/CASP-Syst

ems-BU/CAPSys/tree/main/queries.

A.3 Set-up

We provide instructions for setting up the evaluation envi-

ronment on AWS under https://github.com/CASP-Systems-

BU/CAPSys/tree/main/scripts/aws/README.md. We also

provide SSH access to our pre-con�gured AWS clusters for

simplicity.

For Cloudlab experiments, we provide instructions and the

con�guration pro�le under https://github.com/CASP-Syst

ems-BU/CAPSys/blob/main/scripts/README.md#preparat

ion-3.

A.4 Evaluation work�ow

A.4.1 Major Claims.

• (C1):CAPSys outperforms Flink’s default and evenly

strategies. This is proven by the experiments (E1) de-

scribed in Section 6.2 where we compare CAPSys with

Flink’s default and evenly policies on all six queries

described in Section A.2.4. We provide instructions on

how to reproduce Figure 7, as described in Section

6.2.1, which is su�cient to support the claim. Figure 8,

described in Section 6.2.2, evaluates the sameworkload

on a larger problem size.

• (C2): We compare CAPSys with the state-of-the-art

ODRP algorithm proposed by Cardellini et al. [14],

which can jointly decide the task parallelism and place-

ment of a query. Comparing with CAPSys, the plans

generated with di�erent ODRP policies either cannot

reach the target throughput and exhibit high backpres-

sure, or show higher resource demand. This is proven

by the experiment (E2), described in Section 6.3, whose

results are reported in Table 3.

• (C3): Under variable workloads, CAPSys can improve

the accuracy and convergence of the DS2 auto-scaling

controller. This is proven by the experiment (E3) de-

scribed in Section 6.4. Reproducing results in Table 4

is su�cient to support the claim.

• (C4): CAPS and auto-tuning can quickly and e�ectively

�nd satisfying placement plans to support dynamic

settings where frequent recon�gurations may occur.

This is proven by the experiments (E4), described in

Section 6.5, where we measure the runtime of CAPS

and auto-tuning on varying problem sizes. For this

part, we reproduce results reported in Figure 10.

A.4.2 Experiments.

Experiment (E1): [Comparison with Flink strategies]

[30 human-minutes + 1 compute-hour]: For all queries

described in A.2.4, we compare the CAPSys performance

with Flink’s default and evenly policies. Each experi-

ment is repeated 10 times for each policy to capture the

randomness inherent in the baseline approaches. Please see

https://github.com/CASP-Systems-BU/CAPSys/blob/main/

scripts/README.md#experiment-e1 for a detailed descrip-

tion of performing experiment E1.

Experiment (E2): [ComparisonwithODRP] [30 human-

minutes + 1 compute-hour]:We use queryQ3-inf to com-

pare CAPSys with the state-of-the-art ODRP algorithm pro-

posed by Cardellini et al. [14]. Please see https://github.com

/CASP-Systems-BU/CAPSys/blob/main/scripts/README.m

669

https://github.com/CASP-Systems-BU/CAPSys
https://zenodo.org/doi/10.5281/zenodo.13717642
https://github.com/CASP-Systems-BU/CAPSys/tree/main/queries
https://github.com/CASP-Systems-BU/CAPSys/tree/main/queries
https://github.com/CASP-Systems-BU/CAPSys/tree/main/scripts/aws/README.md
https://github.com/CASP-Systems-BU/CAPSys/tree/main/scripts/aws/README.md
https://github.com/CASP-Systems-BU/CAPSys/blob/main/scripts/README.md##preparation-3
https://github.com/CASP-Systems-BU/CAPSys/blob/main/scripts/README.md##preparation-3
https://github.com/CASP-Systems-BU/CAPSys/blob/main/scripts/README.md##preparation-3
https://github.com/CASP-Systems-BU/CAPSys/blob/main/scripts/README.md##experiment-e1
https://github.com/CASP-Systems-BU/CAPSys/blob/main/scripts/README.md##experiment-e1
https://github.com/CASP-Systems-BU/CAPSys/blob/main/scripts/README.md##experiment-e2
https://github.com/CASP-Systems-BU/CAPSys/blob/main/scripts/README.md##experiment-e2
https://github.com/CASP-Systems-BU/CAPSys/blob/main/scripts/README.md##experiment-e2
https://github.com/CASP-Systems-BU/CAPSys/blob/main/scripts/README.md##experiment-e2

CAPSys: Contention-aware task placement for data stream processing EuroSys ’25, March 30–April 3, 2025, Ro�erdam, Netherlands

d#experiment-e2 for a detailed description of performing

experiment E2.

Experiment (E3): [CAPSys under variable workloads]

[30 human-minutes + 1 compute-hour]: We evaluate

CAPSys under variable workloads and demonstrate it can im-

prove the accuracy and convergence of the DS2 auto-scaling

controller. We use query Q3-inf to compare the perfor-

mance of CAPSyswith that of DS2 when coupled with Flink’s

default and evenly policies. Please see https://github.c

om/CASP-Systems-BU/CAPSys/blob/main/scripts/README

.md#experiment-e3 for a detailed description of performing

experiment E3.

Experiment (E4): [CAPSys performance and scalabil-

ity] [30 human-minutes + 10 compute-minutes]: We

explore the runtime of CAPS and auto-tuning on varying

problem sizes. We run experiments with Q2-join, a work-

load with both compute-intensive and state-intensive tasks.

Please see https://github.com/CASP-Systems-BU/CAPSy

s/blob/main/scripts/README.md#experiment-e4 for a de-

tailed description of performing experiment E4.

670

https://github.com/CASP-Systems-BU/CAPSys/blob/main/scripts/README.md##experiment-e2
https://github.com/CASP-Systems-BU/CAPSys/blob/main/scripts/README.md##experiment-e3
https://github.com/CASP-Systems-BU/CAPSys/blob/main/scripts/README.md##experiment-e3
https://github.com/CASP-Systems-BU/CAPSys/blob/main/scripts/README.md##experiment-e3
https://github.com/CASP-Systems-BU/CAPSys/blob/main/scripts/README.md##experiment-e4
https://github.com/CASP-Systems-BU/CAPSys/blob/main/scripts/README.md##experiment-e4

	Abstract
	1 Introduction
	2 Preliminaries and motivation
	2.1 Streaming dataflow concepts
	2.2 Limitations of existing task placement strategies

	3 Task placement matters
	3.1 Experimental methodology
	3.2 Exhaustive placement plan search
	3.3 Co-locating resource-intensive tasks

	4 Contention-Aware Placement Search
	4.1 Problem definition
	4.2 Cost model
	4.3 Exploring the placement plan space
	4.4 Search space pruning

	5 Implementation and deployment
	5.1 CAPSys overview
	5.2 Practical considerations

	6 Experimental evaluation
	6.1 Workload and experimental setting
	6.2 Comparison with Flink strategies
	6.3 Comparison with ODRP
	6.4 CAPSys under variable workloads
	6.5 CAPS performance and scalability

	7 Related Work
	8 Conclusion
	9 Acknowledgements
	References
	A Artifact Appendix
	A.1 Abstract
	A.2 Description & Requirements
	A.3 Set-up
	A.4 Evaluation workflow

