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Abstract

In the context of streaming dataflow queries, the task place-
ment problem aims to identify a mapping of operator tasks to
physical resources in a distributed cluster. We show that task
placement not only significantly affects query performance
but also the convergence and accuracy of auto-scaling con-
trollers. We propose CAPSys, an adaptive resource controller
for dataflow stream processors, that considers auto-scaling
and task placement in concert. CAPSys relies on Contention-
Aware Placement Search (CAPS), a new placement strategy
that ensures compute-intensive, I/O-intensive, and network-
intensive tasks are balanced across available resources.

We integrate CAPSys with Apache Flink and show that
it consistently achieves higher throughput and lower back-
pressure than Flink’s strategies, while it also improves the
convergence of the DS2 auto-scaling controller under vari-
able workloads. When compared with the state-of-the-art
ODRP placement strategy, CAPSys computes the task place-
ment in orders of magnitude lower time and achieves up to

6x higher throughput.
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agement.
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1 Introduction

Stream processing systems (SPSs) are complex distributed
frameworks that require careful expert configuration and
oversight to achieve good performance [12, 21, 25, 37]. The
problem of automatically tuning the configuration of SPSs
has received wide attention, with recent works focusing on
resource allocation [20, 22, 30, 32, 43, 49], batch size tun-
ing [16], task scheduling [36, 50], and dynamic partition-
ing [24, 34, 38]. In this work, we turn our attention to auto-
matic task placement: deciding how to assign streaming tasks
to available workers in a distributed cluster of resources.

Stateful SPSs, like Apache Flink and Storm [1, 3], adopt
the slot-oriented resource allocation model established by
Hadoop, Dryad, Yarn, and Mesos [26, 28, 46]. Unlike sys-
tems that perform real-time fine-grained scheduling [39, 50],
slot-based systems compute a static task assignment at job
deployment time or upon reconfiguration. However, the de-
fault task assignment strategies in modern SPSs are random,
under the assumption of homogeneity [2, 40]. This simplistic
approach is problematic, as streaming tasks can have diverse
resource requirements. A typical streaming query can in-
clude simple stateless tasks, such as lightweight filters and
transformations, as well as stateful windows, joins, and ma-
chine learning inference [8, 9, 27]. As a result, the mapping
of tasks to available slots is critical for query performance
and resource efficiency.

Moreover, we find that task placement has major implica-
tions for streaming auto-scaling and significantly impacts
the convergence and accuracy of elasticity controllers [30].
Ignoring task placement has two major implications for re-
source auto-scaling. First, if the original task placement is
poor, the elasticity model is informed by inaccurate met-
rics and may underestimate the processing capacity of task
slots, leading to overshooting. Second, if a sub-optimal task
placement is chosen when effecting the scaling decision, the
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controller eventually triggers additional scaling steps, taking
longer to converge.

We believe the reason behind the prevalence of random
and rule-based strategies in systems like Apache Flink and
Storm [1, 3] is that the optimal task placement problem is NP-
hard. While sophisticated approaches have been proposed for
wide-area streaming analytics [15, 29, 51], relevant research
targeting data center environments is scarce. The few non-
trivial task placement solutions that have been proposed in
the literature are either prohibitively expensive for online
settings [13, 14] or require expert user input [40].

To address these challenges, in this paper we propose
Contention-Aware Placement Search (CAPS), a new placement
strategy that considers the effect of co-locating resource-
intensive tasks on the same worker. We introduce an analyt-
ical cost model that captures compute, storage, and network
usage of distributed workers and aims to minimize resource
imbalance in the cluster. We further propose various opti-
mizations and empirically-verified heuristics to prune the
vast search space of alternative task assignments.

To demonstrate the practical value of CAPS, we implement
CAPSys, an adaptive resource controller for Apache Flink.
CAPSys augments Flink’s auto-scaling controller with an
online placement optimizer that ensures compute-intensive,
I/O-intensive, and network-intensive tasks are balanced acro-
ss available resources. CAPSys can quickly identify a set of
good plans to consider on reconfiguration and it is very
efficient even for large deployments and variable workloads.

Our evaluation results show that CAPSys reduces back-
pressure and increases throughput without additional re-
sources, when compared to the default and state-of-the-art
placement policies in modern SPSs. When used jointly with
DS2, CAPSys alleviates oscillations and requires up to 8 fewer
reconfiguration steps compared to the baseline. Further, we
evaluate CAPSys in a large-scale, multi-tenant setting with
144 task slots and show it is the only placement strategy that
can achieve the target performance for all queries.

Our contributions. We review existing task placement
strategies and analyze their limitations (§ 2.2). We then per-
form a comprehensive empirical study of task placement in
SPSs and we experimentally validate the implications of task
placement on query performance (§ 3). Based on the results
of our study, we formulate a cost model that captures the
co-location degree of resource-intensive tasks in alternative
placement plans (§ 4.2). We formalize the task placement
problem and propose a new strategy for identifying good
placement plans, called CAPS (§ 4.3-4.4). CAPS automatically
eliminates plausibly low-performing plans and applies var-
ious optimizations to prune the search space further and
return a placement plan with minimal cost. Finally, we de-
sign and implement CAPSys, an adaptive resource controller
for streaming dataflows powered by auto-scaling and task
placement co-design (§ 5). We integrate CAPSys with the
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Figure 1. Streaming dataflow deployment steps

Apache Flink SPS and evaluate it across diverse queries and
variable workload scenarios (§ 6).

2 Preliminaries and motivation

We revisit fundamentals of dataflow stream processing, intro-
duce necessary terminology, and describe the task placement
problem. Then, we discuss existing task placement strategies
and analyze their limitations.

2.1 Streaming dataflow concepts

In the streaming dataflow model [8, 21], a query is repre-
sented as a logical directed acyclic graph, where vertices
denote logical operators and edges describe data streams.
Upon deployment, the logical graph is translated to a phys-
ical execution graph (D) in Figure 1), where each logical
operator is replicated to multiple tasks and each data stream
is instantiated to multiple physical data channels that con-
nect tasks of the upstream and downstream operators. All
tasks of a logical operator execute an identical processing
logic on disjoint data partitions, and the number of tasks, or
the parallelism of a logical operator, can be set manually
by the user or automatically by an auto-scaling policy, such
as DS2 [30]. Streaming tasks are scheduled on workers ac-
cording to a task placement strategy and are long-running.
Once deployed, tasks remain on their assigned worker until
an explicit reconfiguration action is triggered.

Resource model. Figure 1 shows a general resource model
that is adopted by popular stream processing systems (SPS),
such as Apache Flink [1] and Apache Storm [3]. In this
model, resources are exposed to the SPS scheduler as a set
of homogeneous workers (e.g., virtual machines, contain-
ers, bare-metal nodes) connected by the datacenter network.
Each worker contains a fixed number of compute slots, such
that one slot can accommodate at most one task. A slot cor-
responds to one processing thread in the implementation,
however, tasks assigned to the same worker share other re-
sources, such as memory, network, and I/O bandwidth. A
slot is the smallest unit of compute that can be performed
on a worker. The number of slots that are assigned to each
logical operator is equal to its parallelism.
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Task placement is the process of assigning each task in the
physical execution graph to a compute slot in the worker clus-
ter. An example is shown in Figure 1 2). The task placement
plan is a mapping from each worker to a subset of physical
tasks. Given a physical execution graph and a worker cluster,
there exists a large space of possible placement plans. In this
work, our goal is to quickly and effectively select one plan
that delivers good performance.

2.2 Limitations of existing task placement strategies

The placement plan is crucial to query performance, as co-
located tasks share underlying resources. We find that place-
ment strategies employed by industry-level and academic
SPSs suffer from at least one of the following limitations:

Task homogeneity assumption. The default task place-
ment strategies in systems like Apache Flink and Storm as-
sume that tasks of different operators are homogeneous with
respect to resource requirements. Specifically, Flink’s default
policy iterates over workers, filling up all of a worker’s avail-
able slots before moving on to the next. However, the tasks to
be scheduled are selected at random and placement plans, as
well as their performance, can vary significantly across differ-
ent runs of the same query on the same worker cluster. Flink
and Storm also provide resource-aware strategies [2, 40],
though, under the assumption of homogeneity, they evenly
distribute the number of tasks to available workers rather
than balance the actual load.

Necessity for manual tuning. A better approach has been
recently proposed as an extension to the Storm scheduler [40],
where users can specify the resource requirements of opera-
tors and the resource capacity of worker nodes. Flink’s fine-
grained resource management module [4] is a similar feature
that allows users to match tasks to slots of configurable size.
Though these efforts are a step in the right direction, they
place the burden of resource profiling and task placement
on the user. This is both error-prone, as users may not be
experts in resource profiling, as well as time-consuming.

Long decision time and poor scalability. ODRP [13, 14] is
a notable work that proposed solving parallelism assignment
and task placement jointly, as an integer linear program-
ming (ILP) problem. ODRP’s objective function considers
response time, network traffic usage, monetary cost, and
availability of resources. Though this approach is able to
find the optimal placement under the user-specified con-
straints, the ILP-based solver needs to exhaustively explore
the search space. Furthermore, as the formulation does not
specify an objective to sustain the input rate, it might return
trivial under-provisioned plans that place all tasks in a single
worker. We also found the model cumbersome to tune, as
users are expected to set the weights of the multi-objective
function. In Section 6.3, we experimentally show that ODRP
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is only practical for simple queries and does not scale well
with the number of tasks.

3 Task placement matters

To address the aforementioned limitations and enable auto-
matic, efficient, and resource-aware task placement, we per-
form an empirical evaluation study with two principal goals:
(i) to quantify the effects of task placement on query per-
formance and (ii) to understand resource contention caused
by co-locating different types of tasks. The results of our
study motivate the design of our proposed contention-aware
placement search strategy at the core of CAPSys.

3.1 Experimental methodology

We use three queries with diverse characteristics and com-
plexity. Q1-sliding is a simple stateful query that consists
of a map operator followed by a sliding window. Q2-join is
a more complex query with two sources, two map operators,
and a tumbling window join that can accumulate large state.
Q3-inf is a network-intensive query that performs image
processing and model inference [27].

We deploy a Flink cluster on 5 AWS EC2 r5d. xlarge in-
stances. Each worker has 2 cores, 4 vCPUs, 32GB of memory,
and 150GB of SSD storage. The default network bandwidth
within the cluster is 10Gbps. We use 1 worker to deploy the
Flink Job Manager (JM) and 4 workers to deploy 4 Flink Task
Managers (TM) with 4 slots per TM. We use RocksDB as the
state backend and enable buffer debloating [19].

For each query, we configure the target input rate to match
the capacity of the resource cluster by gradually increasing
the input rate until it saturates all workers, and use DS2 [30]
to assign parallelism to operators and generate the physical
execution graph. We run each experiment for 15 minutes and
start collecting metrics after a warm-up period of 10 minutes.
We record metrics every 5s and plot the average values,
unless otherwise specified. We report backpressure at the
source instead of latency, as Flink’s latency measurements
do not reflect the queuing delay at the source [33].

3.2 Exhaustive placement plan search

We first perform an exhaustive evaluation using Q1-sliding,.
Deploying this query on our 4-worker cluster with 16 slots
results in 80 possible placement plans. We execute the query
using every plan and collect performance metrics. In Fig-
ure 2, we plot throughput and backpressure for the 3 best-
performing plans, P1 - P3, and the 3 worst-performing plans,
P4 - P6 (The performance of all possible plans can be found
in the full technical report [47]). The results reveal a vast per-
formance gap between the best and worst placement plans.
With P1, the query achieves 14k records/s throughput and
6.8% backpressure, while with P6, the throughput drops to
9k records/s and backpressure climbs to 86.4%.



EuroSys ’25, March 30-April 3, 2025, Rotterdam, Netherlands

[ The best 3 plans EEE The worst 3 plans

100 A

15.0k

X

rec/s

10.0k

Pl P2 P3 P4 P5 P6 0 P1 P2 P3 P4 P5 P6

Throughput Backpressure
worker 1 ®O@® SO@® OEOD® HODOO® OEDOD® ©EOO®
Worker2 DWW O®WHO® DOG®® OOO® OOOE® 0]0)
worker3s ODO@®® OO®D® OOO® OO®O® ®OO® OOO®®
Worker 4 D@W® DOO®® DOBDE POO® VOO ®OO®

Placement1 Placement2 Placement3 Placement4 Placement5 Placement6

w
window (8)

& T
source (2) transform (5)

K
sink (1)

Figure 2. 6 out of 80 alternative placement plans that achieve
the best and worst performance for Q1-sliding on a 4-
worker cluster with 16 slots.

By analyzing the results for all 80 plans, we found that a
random placement strategy leads to sub-optimal throughput
and high backpressure with high probability. In fact, only 3
out of 80 plans meet the target performance. We compared
the characteristics of plans that deliver high throughput and
those that do not and we observed that they differ in the
way they group sliding window tasks. Specifically, when
window tasks are co-located on a few nodes, like in P4 -
P6, performance suffers. On the contrary, when window
tasks are balanced across multiple workers, as in P1 - P3,
the query achieves high throughput and low backpressure.
Our hypothesis is that the performance penalty is caused
by resource contention, as co-located window tasks compete
for shared compute and I/O. We investigate the effect of
co-locating resource-intensive tasks in more detail next.

3.3 Co-locating resource-intensive tasks

To verify our hypothesis, we examine the contention caused
by three resource types: compute, disk I/O, and network. We
use Q2-join and Q3-inf to explore each resource type indi-
vidually. An exhaustive evaluation is impractical for these
complex queries, as the number of possible plans is 665 and
950, respectively, for our experimental setup. Therefore, for
the experiments in this section, we manually select place-
ment plans with varying degrees of resource contention.

Co-locating compute-intensive tasks. We use Q3-inf,
a stateless workload, to explore the effect of co-locating
compute-intensive tasks. In particular, we focus on the infer-
ence operator that performs model inference on images and
has high compute requirements. This operator also triggers
garbage collection that introduces periodic CPU utilization
spikes. We select plans with low contention, P1 - P3, that
balance inference tasks across all workers, plans with high
contention, P7-P9, that co-locate all inference tasks on the
same worker, and plans with medium contention, P4-P6.
We deploy the query with all 9 plans and plot throughput
and backpressure metrics in Figure 3a. The results verify
our hypothesis that the co-location degree of inference tasks
determines the performance of the query. Low-contention
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Figure 3. Effect of co-locating resource-intensive tasks of
different types on query performance.

plans consistently achieve higer throughput and lowe back-
pressure than high-contention plans.

Co-locating I/O-intensive tasks. We now explore the ef-
fect of co-locating stateful tasks using Q2-join. The most
I/O-intensive operator in this query is the tumbling window
join. This operator frequently accesses the local state back-
end to buffer incoming events and retrieve join results when
the window triggers. We run this query using 9 placement
plans with varying degrees of contention indicated by the
number of tumbling window join tasks that are co-located
on a single worker. Figure 3b shows the performance re-
sults for the selected placement plans. Co-locating many
stateful tasks causes high disk I/O utilization and contention
in the RocksDB state backend. Specifically, P1-P3 achieve
high throughput of 110k rec/s and low backpressure of up
to 4%, while throughput for P7-P9 drops to 91k rec/s and
backpressure increases to 32%.

Co-locating network-intensive tasks. In this experiment,
we use Q3-inf and we limit the outbound bandwidth of each
worker to 1 Gbps to study the impact of network contention.
Q3-inf presents an interesting case, as it contains multiple
operators that consume and produce large records (images)
and can potentially compete for network bandwidth. We con-
sider these traffic-intensive tasks from multiple operators
when selecting representative placement plans. The results
in Figure 3c verify our hypothesis. The average throughput
of low-contention plans is 1555 rec/s and it drops to 1185
rec/s when contention is high. Correspondingly, backpres-
sure increases from 12% on average to 37%.

4 Contention-Aware Placement Search

Motivated by the results of our empirical study, in this section
we propose the Contention-Aware Placement Search (CAPS)
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Notation  Description

Gp Physical execution graph

Np Number of logical operators in G,

Vo Set of streaming tasks in G,

Ep Set of physical data links in G,

G Worker cluster

Vi Set of workers in G,,

E,, Set of network links between workers in G,

s Number of compute slots per worker

e A task placement plan that maps each task in V,
to a worker in V,,

F The set of all possible placement plans

Ucpu(t) CPU utilization of task t € V},

Uio () State access rate of task t € V,

Upet (1) Output data rate of task t € V,

Set of tasks with highest Ucpy/io/ner among all
tasks in Vp, where |Tpes| =s

Tcpu/io/net

D(t) Set of physical downstream data links that origi-
nate from task ¢ (-1 for sink tasks)
Dy(f,t) Set of cross-worker physical data links originat-

ing from task t under placement f

Table 1. Notation used in this paper

strategy. As shown before [13], computing an optimal task
placement is NP-hard. Therefore, finding an exact solution
is prohibitive for streaming deployments where dynamic
workloads require frequent reconfiguration. To address this
challenge, CAPS captures the cost of a placement plan by
considering the co-location degree of resource-intensive tasks.
After defining the task placement problem (§ 4.1), we intro-
duce the CAPS cost model (§ 4.2) and describe a set of opti-
mizations that we employ to aggressively prune the search
space of valid placement plans (§ 4.4). We provide a summary
of the notation used throughout this section in Table 1.

4.1 Problem definition

Given the physical execution graph G, of a streaming datafl-
ow, where operator parallelism is determined by the auto-
scaling controller (e.g. DS2 [30]), and a fixed worker cluster
denoted by G,,, our objective is to find a task placement plan
that minimizes resource contention in G,,. Specifically,

e G, = (V},, E,) defines the physical execution graph of
the streaming job. V,, describes the task vertices, where
each t € V, belongs to a logical operator. E,, is the set
of all edges, where | € E, denotes a physical data link
between two tasks.

e G,, = (V,,, E,) describes the cluster resources. V,, in-
cludes all workers, where each w € V,, is annotated
with a fixed number of slots, compute resources, disk,
and network bandwidth. E,, is the set of end-to-end
network edges between workers, annotated with prop-
agation delay and bandwidth.

We define a task placement plan as a task-to-worker map-
ping f : V,, — V,, such that each task is assigned to exactly
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one worker (cf. Eq. 1) and the number of assigned tasks per
worker does not exceed its available slots s (c.f. Eq. 2):

vVt € V,, 3w € V,, such that f(t) =w (1)

YweV,, {tlt eV, Af(t) =w} <s (2)

Given a pair of G, and G,,, we denote the set of all plans
that respect constraints (1) and (2) as F. We also define a
cost function ¢ : f — X that assigns a cost vector to a
placement plan. Our objective is to identify the plan f; with
the minimum cost, so that:

c(fi) <e(fj).Vfi e FA{fi}

We describe the cost model in detail in Section 4.2.

®)

Model assumptions. To keep our formulation concise, we
consider the resource model described in Section 2, where
the resources per worker and the number of slots are fixed.
We also assume the total number of compute slots in G,, is
sufficient to deploy all tasks in G,. As a result, tasks of the
same logical operator are considered identical and any effects
of data skew must be addressed by a separate mechanism,
such as custom partitioning [38, 42], before task placement.
We discuss integration with skew mitigation techniques and
other practical considerations in Section 5.2.

4.2 Cost model

The intuition of our cost model is to capture the resource
imbalance in the worker cluster, as the difference of the bot-
tleneck worker’s load from the ideal load, wherein all workers
are assigned an equally resource-intensive workload. We
express this imbalance across three dimensions: (i) compute
cost, (ii) state access cost, and (iii) network cost. We describe
each of these cost functions next.

Compute cost. Let Ly, (f) (Equation 5) denote the highest
CPU load among all workers under placement plan f and
Lg’;,’;f (Equation 6) be the per-worker CPU load of a perfectly-
balanced compute allocation, where the total CPU load is
equally distributed to all workers. Let also L7;", given in
Equation 7, denote the worst-case CPU load when the most
compute-intensive tasks, Ty, are co-located on the same
worker. Equation 4 gives the compute cost of a placement
plan f, as the difference of L, (f) from L;;‘,Z’, normalized by
the worst possible difference of CPUload. The case of L.
Lg{‘,’; corresponds to the case when all possible placement
plans are equivalent. This can happen either when G,, has a
single worker or when the number of tasks is equal to the
number of slots and all tasks are identical.

Cepu(f) expresses the amount of additional compute re-
quirements imposed on the bottleneck worker in the cluster,
compared to the ideal allocation. The value of Ccp,(f) is
between 0 and 1, with 0 indicating a perfectly balanced as-

signment and 1 indicating the worst-case.
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. pu cpu
Cepu(f) =3 Lepu(H)-LEpin _ ()
L max_[rin otherwise.
cpu cpu
chu (f) = ;Iéa‘l/x Z Ucpu(t) (5)
Y {teVplf (t)=w}
Lmin _ ZIEVP Ucpu(t) (6)
P Vil
Lmex = Z Uepu (1) )
t€Tepu

State access cost. We define the state access cost Cj, (f) anal-
ogously, by replacing the corresponding loads, Lio (f), L7,
and L]**, in Equations 4-7. L;,(f) represents the highest
state access load among all workers. L™ and L' denote
the perfectly-balanced and the most imbalanced allocation
for disk I/O resources. The state access load of a task U, (t)

is defined as the sum of read and write disk I/O rate.

Network cost. Defining the network cost, C,;(f), is not
straightforward because a task’s outbound network traffic is
affected by its placement. As a result, calculating L™" and
the L'9* requires computing the placement plan itself. To
address this challenge, we approximate L™/ and L% as
follows. We set L™ = 0 to indicate the case when all tasks
are placed on the same worker without incurring any net-
work traffic. We further assume that L}4* corresponds to the
case of co-locating tasks with the highest output data rate,
denoted by T,,¢;, on the same worker. Given these approxi-

mations, we define the network load of plan f in Equation 8:

D,(f,t
L) = max 3 o
Y {teVplf(t)=w}

(Unet (t) : ) (8)

We calculate the network load of a worker as the sum of
outbound network traffic of all tasks placed on that worker.
We assume that the output data rate of a task t, Uy, (1), is
equally distributed to its downstream data links D(t). We
note that only cross-worker downstream data links D, (f,¢) €
D(t) contribute to the outbound network traffic of the worker.

Objective functions. The cost values for compute, state
access, and network resources form the three dimensions in
the cost vector C = [Cepu> Cios Cret] of a placement plan. We
employ three independent objective functions in our formula-
tion: (i) min s Cepy, (f), (i) ming Cio (f), and (iii) min g Cpe, (f).
We define the pareto-optimal solution with respect to Casa
placement plan whose cost is not dominated by any other
feasible plan across all dimensions. Our goal is to find such
a pareto-optimal solution and discard plans that are strictly
more costly than others.
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4.3 Exploring the placement plan space

We represent the search space of feasible plans as a tree
which we navigate in depth-first-search (DFS) order. We
employ a 2-step process: (i) the outer search explores one
computation stage (operator) as a layer of the DFS tree, and
(ii) the inner search expands each node by considering all
workers of the cluster. We illustrate the process with the
example of Figure 4.

Outer search. The problem of Figure 4-a consists of a query
with 4 operators and a cluster of 3 workers. The outer search,
shown in Figure 4-b, explores operators in topological order S
— T — 1 — K. To create a node, we place tasks of the current
operator to the worker cluster. Non-leaf nodes correspond to
a partial placement plan, while leaf nodes identify a complete
task assignment. Each layer includes all feasible placement
plans for the current operator as separate branches. Since
slots, workers, and tasks of the same operator are homoge-
neous, there are two options in Layer 1: (i) to separate the
source tasks on any 2 workers (node 1), or (ii) to co-locate
the source tasks on any single worker (node 2).

Inner search. Each node created in the outer search step in-
vokes an inner search process to consider alternative workers.
In Figure 4-c, node 3 is expanded to discover task placements
for the inference tasks, exploring one worker per layer. In
this example, the inner search produces the children nodes
4 and 5, which are added to the tree.

Duplicate elimination. The inner search may produce leaf
nodes that correspond to equivalent placement plans. We
eagerly eliminate these duplicates, as shown in Figure 4-c:
nodes 6 and 7 are identified as leading to duplicate branches
and one of them is terminated. Two workers of the same
node are handled as possible duplicates if they have been
assigned the same set of tasks (e.g., workers 2 and 3 of node
3). In this case, the number of tasks allowed to be placed
on a possible duplicate worker is restricted by the number
of tasks placed on its parent in the tree. In Figure 4-c, the
rightmost branch is terminated as Worker 2 has already been
assigned two instances of task L.

4.4 Search space pruning

The cost of searching all feasible plans can become untenable,
even for small deployments. As an example, we calculated
3.25 million alternative placement plans and 31 million nodes
in the search tree for query Q3-inf (§ 3.1), given a cluster
with 8 workers and 4 slots each. In this section, we propose
two pruning techniques that can effectively reduce the search
space and make CAPSys practical for the online setting.

4.4.1 Threshold-based pruning. The first pruning tech-
nique relies on the critical observation that the load L; (i €
[cpu, io, net]) of a worker increases monotonically at each
layer of the search tree. As more tasks are placed on a worker,
its resource consumption grows, allowing us to safely prune
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Figure 5. Compute, state access, and network cost of the
sample placement plans for Q1-sliding

branches once the load of a partial placement plan exceeds
some value. Specifically, we define a configurable threshold
vector @ = [@cpus o, Aner], such that the cost C;(f) (i €
[epu, io, net]) of resulting placement plans must satisfy the
following inequality:

Ci(f) < ai, [0,1] )

Given Equation 4, we can derive the following inequality
that the cost L;(f) (i € [cpu, io, net]) must satisfy:

s.t.i € [cpu,io, net], a; €

Li(f) < L™ 4 g (L™ — L™™) (10)
A partial placement plan can be eliminated if its accumulated
load on any worker violates Equation 10 during the search.
Figure 5 visualizes the relationship between plan costs
and their respective throughput for query Q1-sliding of
Section 3.2. We see that high-performing plans can be ef-
fectively separated by setting cost threshold values (dashed
lines) across the resource dimensions. We note that cy; is
not a dominant performance factor, since Q1-sliding is not
network-intensive. Although a query’s sensitivity to each
dimension varies, threshold-based pruning is applicable as
long as performance is sensitive to at least one dimension.
We further consider task placement of Q3-inf on a cluster
with 8 4-slot workers and we report the search space size
for various compute thresholds acp, in Table 2. The lower
the threshold value &, the more aggressively branches are
pruned during the search. We describe how to automatically
configure the pruning factor & in Section 5.2.
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Aepua © 05 02 01 005 003 001
plans 325m 245m 796k 10k 4465 24 0
#nodes 3lm 3Im 1lm 1.I1m 1m 1m 798k
#

nodes 3im  30m 1lm 535k 519k 294k 28k

w/ reordering

Table 2. Number of discovered plans and search tree size
under various compute threshold factor acp,

4.4.2 Search tree exploration reordering. Placement
plans exceeding the threshold are pruned at different layers
of the search tree. When an unsatisfactory plan reaches the
threshold at a low-level layer rather than near the root, nodes
are expanded unnecessarily. To avoid this overhead, we pro-
pose reordering the operator exploration sequence in the
outer search procedure to achieve early pruning as follows.
We prioritize operators with higher resource consumption
and explore them at top layers of the tree. Our intuition is
that tasks of resource-intensive operators tend to accumulate
cost faster and approach the threshold earlier than others.
To compute the exploration order, we rank operators based
on their cost values (Ccpy, Cio, and Cye;) before initiating
the search. Reordering can be very effective in reducing the
search space, as shown by the results in Table 2. We prove
the correctness of the search tree exploration reordering in
the full technical report [47].

5 Implementation and deployment

In this section, we describe the implementation of CAPSys
on Apache Flink and discuss practical deployment issues.

5.1 CAPSys overview

Figure 6 shows the system architecture and workflow of
query deployment. (D) The user submits a query graph and
the desired target throughput to the Job Manager. (2) Then,
CAPSys deploys a profiling job to estimate the resource costs
for each operator. 3 The scaling controller, which is DS2 [30]
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in our implementation, decides the parallelism per operator
and generates the physical execution graph. (9 The place-
ment controller computes the task placement and () sends
the scheduling information to the Job Manager. (6) Finally,
the Job Manager deploys the query on the worker cluster.

CAPSys scheduler. We have implemented a custom Flink
scheduler that ensures tasks are assigned to workers accord-
ing to a placement plan. The plan is encoded as a mapping
of each task to a location, specified by a Task Manager IP ad-
dress. We extended Flink’s ResourceProfile class with a
new attribute that specifies the scheduling location for each
task, and implemented a custom SlotMatchingStrategy
to enforce matching tasks to their specified Task Manager.

Metrics collector. The metrics collector component is re-
sponsible for recording Flink and system metrics required
by the profiling phase and DS2. Metrics are either reported
periodically from the Task Managers during runtime or are
derived. Specifically, we collect useful time per task, observed
and true input and output rates [30], selectivity statistics,
and CPU utilization of each worker. The scaling and place-
ment controllers pull their corresponding metrics on demand
when they need to make a decision.

Cost profiling. To profile the resource requirements of a
query, we deploy tasks of each operator on a separate Task
Manager and monitor its behavior for a configurable profil-
ing duration. For each operator, we record (i) the compute
cost, as the CPU utilization of the Task Manager where it
is deployed, (ii) the state access cost, as the sum of uncom-
pressed bytes read from and written to the RocksDB state
backend, and (iii) the network cost, as the number of bytes
the operator emits per second. During the profiling phase,
we calculate each operator’s cost value per record for each
dimension, by dividing its respective metric by its observed
output rate. At the end of the profiling phase, we store these
metrics on disk. As a result, profiling is only run once and
does not need to be repeated on reconfiguration. On recon-
figuration, we calculate the cost Cepy (1), Cio(), Crer(£) of
each task ¢ € Vy5, by multiplying its target rate and its cor-
responding unit cost and provide these values to CAPS. If
workload characteristics change over time, we could use our
current infrastructure to have the Metrics Collector peri-
odically feed metrics to DS2 and CAPS, to support online
profiling. We leave this to future work.

Placement controller. The placement controller receives
the physical graph from DS2 and uses the profiling metrics to
calculate the compute, state, and network costs per operator
(c.£.§ 4.2). It then invokes the CAPS algorithm to calculate a
placement plan that satisfies pruning thresholds. Threshold
values can either be provided by the user or automatically set
by the auto-tuning process we describe in Section 5.2. CAPS
parallelizes the search by leveraging a configurable thread
pool. Each thread is initially assigned to a random partition of
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the search space and can subsequently dynamically offload
work to other threads, if they become available. Threads
cache any satisfactory plan they identify locally. When the
search space has been fully explored, threads merge their
results and return the pareto-optimal solution.

5.2 Practical considerations

Threshold auto-tuning. Threshold-based pruning (§ 4.4.1)
requires users to set the factor @. However, identifying a good
@ value can be challenging. Ideally, we desire the minimum
feasible threshold that effectively reduces the search space
and returns the most resource-balanced placement plan. To
this end, we introduce an auto-tuning procedure that can
automatically identify this threshold factor.

The auto-tuning process takes as input the set of available
resources and the physical query graph and consists of two
phases. In the first phase, we identify the minimum feasible
threshold for each dimension (i.e., compute, state, network)
when the other dimensions are disabled. For each dimension,
we start from the tightest possible bound (corresponding to a
perfectly-balanced placement) and gradually relax it until we
find a valid plan for our deployment. However, the existence
of feasible plans is not guaranteed when all lower bounds
are jointly applied. In the second phase of auto-tuning, we
find the minimum feasible threshold vector by collectively
relaxing all threshold values. For both phases, we define
configurable factors that decide the threshold relaxation step
at each iteration. The higher the relaxation factor, the more
aggressively thresholds are increased towards a valid plan.
In our experiments, we set the relaxation factors for both
phases to 1.1. Finally, users can set a timeout value that
allows exiting the search early, to avoid long execution times
for infeasible configurations.

Since the auto-tuning results depend only on the query
graph and the available resources, we can pre-compute thresh-
olds for various possible scaling scenarios (combinations of
operator parallelism settings) offline and in parallel. The re-
sults can be used to select the pre-calculated thresholds when
scaling is triggered at runtime.

Addressing data skew. CAPS considers all tasks of the
same operator identical with regards to resource consump-
tion. However, in the presence of data skew, one or more
tasks of an operator may experience higher input rate than
others, and hence, have higher resource demands. While
skew mitigation is out of the scope of this paper, the CAPSys
design is compatible with and could be easily integrated with
existing solutions, such as custom partitioning [24, 38]. Such
partitioning techniques could be used to organize tasks of
an operator into placement groups with equal resource de-
mand. Then, each task group can be explored as an individual
outer layer in the CAPS algorithm. Interestingly, during our
evaluation, we found that CAPSys already improves query
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Figure 6. CAPSys system overview and workflow of query deployment.

performance in the presence of skew, compared to the base-
line strategies. We report these results in the full technical
report [47], but we leave a deeper investigation as future
work.

6 Experimental evaluation

Our experimental evaluation is structured in four parts. In
§ 6.2, we compare CAPSys with the two baseline placement
strategies of Apache Flink. We show results for two settings:
(i) an experiment where each query is deployed in isola-
tion and (ii) a large-scale multi-tenant experiment where
all queries are deployed on the same cluster concurrently.
Our results demonstrate that queries deployed with CAP-
Sys consistently achieve the highest throughput and low-
est backpressure, while also delivering stable performance
across multiple runs. In § 6.3, we compare CAPSys with the
state-of-art ODRP algorithm and report orders of magnitude
improvement in computing the task placement and up to
6x higher throughput. In § 6.4, we evaluate CAPSys under
variable workloads and show it enhances the accuracy and
convergence of the DS2 auto-scaling controller. Finally, in
§ 6.5, we show CAPS is practical for online settings and can
identify satisfactory placement plans within seconds, even
for deployments with thousands of tasks.

6.1 Workload and experimental setting

Queries. We use six queries with diverse characteristics and
complexity. Q1-sliding, Q2-join, and Q3-inf are from the
motivation study in Section 3.1. Q4-join contains a stateful
incremental join operator, Q5-aggregate includes a state-
ful join operator and a process function operator, and Q6-
session has a session window operator that can potentially
accumulate large state. Among the six queries, Q1-sliding,
Q2-join, Q4-join, Q5-aggregate, and Q6-session are repre-
sentative queries selected from the Nexmark benchmarking
suite of Apache Beam [10, 45], corresponding to Nexmark
queries Q5, Q8, Q3, Q6, and Q11, respectively. The remaining
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queries from the Nexmark benchmark are excluded in our
evaluation since they either consist of a single stateless op-
erator whose placement is trivial, or have equivalent logical
graphs compared to the selected queries. Both CAPSys and
baseline strategies use Flink 1.16.2.

Operator chaining and slot sharing. In the following
experiments, we disable Flink’s operator chaining [6], ac-
cording to DS2’s default configuration [31]. Specifically, we
only allow chaining between the source and timestamp oper-
ators, but we separate them from the rest of the query, as the
source is responsible for generating events and has different
resource requirements than downstream operators. Another
reason for this setting is to stress the system, as Flink’s de-
fault chaining would collapse most of the Nexmark queries
to trivial dataflow graphs with a single operator. Neverthe-
less, CAPS works as-is with chaining enabled. It considers
any chain as a single operator during profiling and when
exploring the search space.

Slot sharing allows multiple tasks to be deployed in a
single compute slot [5]. To keep the formulation clean and
intuitive, the CAPS model in Section 4 does not consider
slot sharing and we disable slot sharing in our experiments.
We emphasize that the placement problem with slot sharing
enabled is equivalent to one with more slots per worker but
slot sharing disabled. This is because slots do not enforce
resource isolation. Colocating two tasks in the same slot is
equivalent to separating them into two slots on the same
worker from a resource contention perspective, as each task
is allocated a dedicated thread regardless of slot sharing.

6.2 Comparison with Flink strategies

We compare the performance that queries can achieve when
executed on CAPSys in contrast to Flink’s default and
evenly policies (c.f. § 2.2). For all queries, we deploy a Flink
cluster on AWS ec2 m5d.2x1large instances. Each worker
has 4 cores, 8vCPUs, 32GB memory, and a 300GB SSD disk.
The default network bandwidth within the cluster is 10 Gbps.
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Figure 7. Individual query performance with different placement strategies when each query is deployed in isolation. Queries
on CAPSys consistently achieve higher throughput and lower backpressure than queries deployed with Flink’s strategies.
Further, CAPSys provides stable performance, while Flink’s randomized strategies exhibit significant variance across runs.

We use 4 8-slot workers for single-query experiments (§ 6.2.1)
and 18 workers in the multi-tenant setting (§ 6.2.2). CAPSys
cost thresholds are set with auto-tuning (c.f. § 5.2). To ensure
realistic experimental conditions and allow stateful opera-
tors to accumulate state, we set the profiling duration to
20min. We collect metrics for 10min after a warm-up period
of 6min. We repeat each experiment 10 times and summa-
rize the results in a box plot. We report average throughput,
backpressure at the source operator, and average latency.

6.2.1 Impact onindividual query performance. In this
experiment, we evaluate the effect of task placement on
query performance when each query is deployed in isolation.
Figure 7 shows box plot results of 10 runs for each placement
strategy. The green dashed lines indicate the target input rate.
The results show that CAPS outperforms resource-unaware
strategies, achieving higher throughput, lower backpressure,
and lower latency for all queries. Further, we observe that
CAPS provides more stable performance, as opposed to the
baselines whose random placement decisions result in high
variance across runs. For the simplest query, Q1-sliding,
CAPSys provides 1.18x higher throughput and 11.8%x lower
backpressure, on average, compared to the default strat-
egy. The improvements are more significant for the com-
plex Q5-aggregate query, which consists of two sources,
a join, and an aggregation operator. In this case, CAPSys
achieves up to 6x and 5.5x higher throughput compared to
the default and evenly strategies, respectively. CAPSys
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reduces backpressure by 84% and latency by 48%, on average,
across queries.

6.2.2 Multi-tenant experiment. In this experiment, we
evaluate CAPSys’ scalability to deployments with hundreds
of tasks and its ability to perform placement on a multi-
query workload. To this end, we deploy all six queries on
the same 18-worker cluster concurrently. CAPSys views the
entire query workload as a single dataflow graph and opti-
mizes task placement globally, taking resource contention
across queries into account. On the other hand, default
and evenly can only deploy a single query at a time, hence,
they are sensitive to the query submission order. To account
for this behavior, we repeat the experiment 10 times and ran-
domize the query submission order for every run. Figure 8
shows the results. CAPSys is the only policy that achieves
the target throughput across all six queries, while maintain-
ing low backpressure and end-to-end latency. On the other
hand, evenly reaches the target throughput only for Q2-
join and exhibits high backpressure for all other queries.
The default strategy performs slightly better, reaching the
target for three out of six queries.

6.3 Comparison with ODRP

Here, we compare CAPSys with the state-of-the-art ODRP al-
gorithm proposed by Cardellini et al. [14], which can jointly
decide the task parallelism and placement of a query. As
ODRP can only handle queries with a single source, we use



CAPSys: Contention-aware task placement for data stream processing

EuroSys ’25, March 30-April 3, 2025, Rotterdam, Netherlands

[ CAPS [ Evenly (Even) [EEH Default (Dft)
Q1-sliding Q2-join Q3-inf Q4-join Q5-aggregate Q6-session
=
=I5
q —r— ———— EF====—=== 350k F=—==—=== —_—— 4 ——=
E % 18k +—=— 200k =] 2800 A @ - > 100k o= ——— 240k =~ T’
an & ° 4 _
2w VKT » ° w 2600 w 32K » o | o 220K °
g 3T o 3 3 G 90k 1 = o
ﬁ T 9 16k ® 150k 2 5400 4 @ 300k 1 e @ 200k 1
< °
) ] | ]
S5 15k 2200 275k . 80k ) 180k
N—" T T T T T T T T T T T T T T T T T T
CAPS Even Dft CAPS Even Dft CAPS Even Dft CAPS Even Dft CAPS Even Dft CAPS Even Dft
[
5% 1004 100 A 100 A 100 A 100 100 A =
[
28
o O
a0 R
S 2 2 s0- * 50 A o * £ 50 A .| = 501 £ 50 A % . R 50 A o
Qe
2 : =
2 ¢ b
o ° o
=2 R R 0'% — 0= T — R e == oA=t= B
CAPS Even Dft CAPS Even Dft CAPS Even Dft CAPS Even Dft CAPS Even Dft CAPS Even Dft
>
Q
S = 075 4 0.75 ° 0.75 - 0.75 A 0.75
o 9 10 4
- g i g ES = | g E El E
a2 5 0.50 5 5 0.50 | = T |5 0.50 § 0.50 - . 5 0.50
UV on 0 @ 51 @ Q 7} % ° o} °
Qb .~ » 0.25 « 0 0.25 A v 0.25 1 0 0.25 A v 0.25 1 =
e _ - - = = = =
[ § 0.00 0'% T 0.00 0.00 0.00 0.00
. T T T T T T . T T T . T T T . T T T . T T T
< = CAPS Even Dft CAPS Even Dft CAPS Even Dft CAPS Even Dft CAPS Even Dft CAPS Even Dft
—
Q
O

Figure 8. Experimental results for the multi-tenant setting, where all queries are deployed on the same 144-slot cluster

concurrently.

Q3-inf in this experiment. We deploy a Flink cluster on
four AWS ec2 ¢5d.4xlarge instances and configure each
worker with 8 slots. To compare with the ODRP model, we
followed the instructions in the corresponding paper and
open source repository [7]. To apply ODRP to Flink, we com-
pute an operator’s execution time as the inverse of its true
processing rate. We set the lambda value (data transfer rate)
according to the target input rate and operator selectivity.
We use the same speed-up rate for all nodes in the resource
graph, and the same latency and bandwidth values for all
links. We set the number of available resources per node to
the number of slots and the required resources per operator
to one slot per task. Finally, we assume perfect availability
and no failure for all nodes and links.

We report results with three alternative configurations:

o Default: This configuration assigns equal weight to
all model objectives and includes the improvements
described above.

e Weighted: This is a hand-tuned configuration that em-
phasizes throughput and resource efficiency.

e Latency: This configuration considers only the latency
objective and disables the others.

Table 3 shows results for backpressure, throughput, and la-
tency, using the three ODRP configurations and CAPSys. The
plans generated with the ODRP-Default and ODRP- Weighted
policies cannot reach the target throughput and exhibit high
backpressure. This is because these configurations aim to
reduce the resource usage and result in under-provisioned
queries. For example, the Weighted policy co-located multiple
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inference tasks on the same worker, causing high contention.
On the contrary, the Latency policy achieves low latency and
throughput close to the target, however, this comes at the
cost of high resource demand and backpressure at the source.
Finally, we observe that ODRP takes a very long time to gen-
erate the physical plans, in the worst case taking 67min to
converge. Such high decision times make ODRP impractical
for online scenarios. Instead, CAPSys runs in 0.2s, including
the threshold auto-tuning phase.

6.4 CAPSys under variable workloads

We now evaluate CAPSys under variable workloads and
demonstrate it can improve the accuracy and convergence
of the DS2 auto-scaling controller. We use the Q3-inf query
and compare the performance of CAPSys with that of DS2
when coupled with Flink’s default and evenly policies.
Workers are deployed on r5d.xlarge AWS instances and
are configured with 8 slots. The DS2 activation time is set to
90s and the policy interval to 5s. We run two experiments to
evaluate accuracy and convergence, respectively.

6.4.1 Effect on auto-scaling accuracy. To evaluate the
effects of task placement on auto-scaling accuracy, we run a
controlled experiment where we vary the input rate every
10min and trigger four scaling decisions. To ensure DS2
initially receives good-quality metrics, we manually tune
the starting configuration with the optimal task placement
and parallelism, so that the query can meet the target rate
without being over-provisioned. We set the initial target
rate to 720 rec/s and subsequently increase it by 2X in the
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Backpressure ‘ Throughput (rec/s) ‘ Average Latency (s) ‘ Resources (#slots) ‘ Decision Time (s)

CAPSys 0.5% 4236 0.292 27 0.2

ODRP-Default 90% 680 0.255 14 1636
ODRP-Weighted 48% 3396 0.268 26 4037
ODRP-Latency 15% 4043 0.157 32 1607

Table 3. Comparison with ODRP policies using Q3-inf. CAPSys is the only placement controller that can achieve the target
throughput. The ODRP configurations either over-provision the query or exhibit poor performance.

Step #1 Step #2 Step #3 Step #4
Throughput Resources Throughput Resources Throughput Resources Throughput Resources
CAPSys 4 v 4 v v v v v
Default X v X X X X v v
Evenly v v 4 X X X X X

Table 4. Effect of task placement on auto-scaling accuracy. A X in the column Throughput indicates the strategy could not
reach the target rate, while a X in the Resources column indicates the strategy over-provisioned the query.

first two steps and then decrease it by 2X in the next two.
We trigger a DS2 scaling action after each rate change and
record the average throughput and the number of resources
provisioned by DS2. Table 4 shows the results. We put a
v in the Throughput column if the policy met the target
rate and in the Resources column if the policy accurately
calculated the required resources. Correspondingly, a X in
the Throughput column indicates throughput below target,
and one in the Resources column indicates over-provisioning,
where the auto-scaler indicated operator parallelism higher
than the minimum required to sustain the target rate.

We observe that CAPSys can always reach the target throu-
ghput and avoids over-shooting in all cases. On the contrary,
when task placement is performed by Flink’s default and
evenly policies, the behavior of DS2 degrades. Starting from
a good initial placement gives both strategies an advantage
in the first step, as the elasticity model is informed by accu-
rate metrics. However, subsequent sub-optimal placements
impact the controller’s accuracy and cause both strategies to
over-provision. We further see that the inherent randomness
in these strategies causes DS2 to become unstable.

6.4.2 Effect on auto-scaling convergence. To evaluate
the effects of task placement on auto-scaling convergence,
we run an experiment under variable workload and let DS2
decide when a scaling decision is necessary. We initially set
the parallelism of all operators to 1 and let each placement
strategy select its own initial plan. We periodically vary the
input rate between a high and a low value every 20min and
record the number of scaling decisions and the amount of
resources that DS2 predicts.

Figure 9 shows the results over the experiment timeline.
We plot the observed throughput and the number of re-
sources (tasks) that the query occupies over time. The auto-
scaling decisions are marked with gray vertical dashed lines
and are annotated with numbers, while the target input rate
is shown with a green solid line.
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Overall, we see that CAPSys improves DS2’s convergence
behavior and effectively avoids oscillations during both scale-
up and scale-down actions. Most of the time, CAPSys con-
verges to a stable configuration within a single step after a
rate change and is always successful in achieving the target
throughput without over-provisioning. In contrast, when
DS2 is coupled with the default and evenly policies, it
takes longer to converge, incurring up to eight additional
scaling decisions in this experiment. Specifically, the first
time the rate increases, the default policy makes two scal-
ing decisions before reaching the target rate, while evenly
causes DS2 to oscillate. It triggers three scaling decisions
and fails to meet the target rate in the next 20min. When
the rate drops, we notice oscillation caused by the inherent
randomness in the default policy. The poor task placement
informs DS2 with inaccurate metrics and prevents it from
reaching the target throughput. This unstable behavior con-
tinues for default and evenly throughout the duration of
the experiment. Finally, we note that even when default
and evenly manage to meet the target rate, they often in-
duce over-provisioning, occupying up to four underutilized
additional slots.

6.5 CAPS performance and scalability

We now investigate how various parameters affect the per-
formance and scalability of the CAPSys. We demonstrate that
CAPSys can quickly find good placement plans for queries
with over a thousand tasks and is suitable for dynamic set-
tings where frequent reconfigurations may occur. We run
experiments with Q2-join, a workload with both compute-
intensive and state-intensive tasks. We use a Cloudlab [17]
€220g2 instance, with 20 cores and 160GB of memory. CAP-
Sys uses 20 threads for parallel execution.

6.5.1 Scalability of placement search. In the first exper-
iment, we evaluate how the CAPSys performance scales with
the problem size for various manually-configured thresh-
old values. We increase the number of tasks (slots) from
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Figure 9. Effect of task placement strategies on auto-scaling
convergence.

16 to 256 and measure the time CAPSys requires to search
the space of placement plans, until it identifies the first one
that satisfies the threshold constraints. We repeat the exper-
iment for the following three threshold configurations: a;
(Acpu: 0.08, atio: 0.15, dtnes: 0.6), Az (Acpu: 0.15, Aio: 0.25, pes:
0.8), and a3 (cpu: 0.25, tio: 0.3, Apes: 0.9). dy, &z, and ds are
empirically-obtained thresholds that prune the search space
with different granularity.

The results in Figure 10-a show that CAPSys can efficiently
find satisfactory placement plans within tens of milliseconds,
even for queries with hundreds of parallel tasks. For very
tight threshold values, the runtime increases slightly as the
number of tasks grows. This is expected, as discovering a
placement plan that satisfies the constraint gets harder. In
all cases, CAPSys returns a task assignment in up to 100ms.

6.5.2 Performance of threshold auto-tuning. We also
evaluate the performance of the threshold auto-tuning com-
ponent (c.f.§ 5.2). We vary the number of workers from 8 to
16 and the number of slots per worker from 4 to 64. The time-
out period is set to 5s. We execute the threshold auto-tuning
algorithm for all combinations of the above values, where
the total number of tasks grows from 32 to 1024. Figure 10-b
shows the total execution time for each configuration.

We observe that auto-tuning is very efficient for small and
medium-size deployments. For example, finding threshold
bounds for 64 tasks with a configuration of 4 workers and
16 slots per worker takes only 1.16s. As the number of tasks
grows, the runtime increases. For 1024 tasks deployed on 16
workers with 64 slots each, the process takes 125.08s. We
believe this is acceptable, as threshold auto-tuning can be per-
formed offline, as we describe in Section 5.2. This result could
be further improved by exploiting the accuracy-performance
tradeoff or by running auto-tuning on a machine with higher
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Figure 10. Scalability results for the CAPSys placement
search and threshold auto-tuning.

parallelism. Another approach would be to first partition the
dataflow graph and apply CAPS per partition. We plan to
explore this direction as future work.

7 Related Work

We have already discussed the closely related work in Sec-
tion 2.2. Here, we highlight important works that consider
task scheduling in slightly different settings than ours.

Stream processing in WAN and edge environments.
Task placement has been an important issue in the design
of wide-area analytics systems and edge stream processing
frameworks. In such environments, schedulers need to ad-
dress various challenges, such as heterogeneous and dynamic
network conditions, transmission delays, and congestion. Ex-
amples include WASP [29], which uses an ILP-based solution
to minimize network delays between computation stages,
DROPLET [18], which follows a dynamic programming ap-
proach coupled with heuristics to minimize job completion
time, and SWAN [44], which proposes a heuristic model
to balance the number of tasks across nodes, while also
considering each node’s available bandwidth. SBON [41]
and DART [35] are other noteworthy systems that organize
workers into overlay networks and propose decentralized
solutions to the placement problem. Though in this paper
we focus on datacenter environments, where propagation
delays are negligible, extending the CAPS cost model with
additional objectives is an exciting direction for future work.

Scheduling long-running workloads. Cluster scheduling
of machine learning (ML) workloads and other long-running
jobs [11, 23, 48, 52] also bears similarity with task placement
in SPSs. In contrast to ML training and batch processing
jobs, which consume finite data and whose execution can
be optimized offline, streaming workloads are dynamic and
often unpredictable. As a result, streaming task schedulers
need to be capable of operating online with low latency.
In the future, we plan to investigate integrating CAPSys
with cluster schedulers like Medea [23], Cilantro [11], and
control planes for SPSs, like Chi [37], as their approaches
are complementary to ours.

8 Conclusion

We presented CAPSys, an adaptive resource controller for
stream processing systems that considers auto-scaling and
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task placement in concert. The core of CAPSys is the content-
ion-aware placement search strategy that leverages empiric-
ally-verified heuristics and applies various optimizations to
prune the vast search space of alternative task assignments.
Our results show that CAPSys computes task placement in
orders of magnitude lower time compared to the ODRP al-
gorithm [14] and achieves up to 6X higher throughput com-
pared to Flink task placement strategies, while it also en-
hances the effectiveness of the DS2 auto-scaling controller.
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A Artifact Appendix
A.1 Abstract

CAPSysis an adaptive resource controller for dataflow stream
processors, that considers auto-scaling and task placement in
concert. CAPSys relies on Contention-Aware Placement Search
(CAPS), a new placement strategy that ensures compute-
intensive, I/O-intensive, and network-intensive tasks are bal-
anced across available resources. We integrate CAPSys with
Apache Flink and show that it consistently achieves higher
throughput and lower backpressure than Flink’s strategies,
while it also improves the convergence of the DS2 auto-
scaling controller under variable workloads. When compared
with the state-of-the-art ODRP placement strategy, CAPSys
computes the task placement in orders of magnitude lower
time and achieves up to 6x higher throughput. The experi-
ments require both AWS and Cloudlab resources to support
the above claims.

A.2 Description & Requirements

A.2.1 How to access. CAPSys is accessible at the follow-
ing GitHub link:
https://github.com/CASP-Systems-BU/CAPSys

or using the following DOI: 10.5281/zenodo. 13717642
( https://zenodo.org/doi/10.5281/zenodo.13717642)

A.2.2 Hardware dependencies. We run experiments with
Flink deployments on three types of AWS EC2 instances:
m5d.2xlarge (8 vCPUs, 32 GB memory, 300GB SSD disk),
c5d.4xlarge (16 vCPUs, 32 GB memory, 400GB SSD disk),
and r5d.xlarge (4 vCPUs, 32 GB memory, 150GB SSD disk).
We run CAPSys performance and scalability experiments on
the Cloudlab [17] c22092 instance (20 cores, 160GB mem-

ory).

A.2.3 Software dependencies. We run the experiments
on Ubuntu 22.04 and Apache Flink 1.16.2. We provide
scripts for installing Flink and all dependency libraries.

A.2.4 Benchmarks. We use six queries with diverse char-
acteristics and complexity: Q1-sliding, Q2-join, and Q3-inf
from the motivation study in Section 3.1, and queries Q3, Q6,
Q11 from the Nexmark benchmark [45], referred to in the
following as Q4-join, Q5-aggregate, and Q6-session.

All queries are defined in https://github.com/CASP-Syst
ems-BU/CAPSys/tree/main/queries.

A.3 Set-up

We provide instructions for setting up the evaluation envi-
ronment on AWS under https://github.com/CASP-Systems-
BU/CAPSys/tree/main/scripts/aws/README.md. We also
provide SSH access to our pre-configured AWS clusters for
simplicity.

For Cloudlab experiments, we provide instructions and the
configuration profile under https://github.com/CASP-Syst
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ems-BU/CAPSys/blob/main/scripts/README.md#preparat
ion-3.

A.4 Evaluation workflow

A.4.1 Major Claims.

e (C1): CAPSysoutperforms Flink’s default and evenly
strategies. This is proven by the experiments (E1) de-
scribed in Section 6.2 where we compare CAPSys with
Flink’s default and evenly policies on all six queries
described in Section A.2.4. We provide instructions on
how to reproduce Figure 7, as described in Section
6.2.1, which is sufficient to support the claim. Figure 8,
described in Section 6.2.2, evaluates the same workload
on a larger problem size.

e (C2): We compare CAPSys with the state-of-the-art
ODRP algorithm proposed by Cardellini et al. [14],
which can jointly decide the task parallelism and place-
ment of a query. Comparing with CAPSys, the plans
generated with different ODRP policies either cannot
reach the target throughput and exhibit high backpres-
sure, or show higher resource demand. This is proven
by the experiment (E2), described in Section 6.3, whose
results are reported in Table 3.

¢ (C3): Under variable workloads, CAPSys can improve
the accuracy and convergence of the DS2 auto-scaling
controller. This is proven by the experiment (E3) de-
scribed in Section 6.4. Reproducing results in Table 4
is sufficient to support the claim.

e (C4): CAPS and auto-tuning can quickly and effectively
find satisfying placement plans to support dynamic
settings where frequent reconfigurations may occur.
This is proven by the experiments (E4), described in
Section 6.5, where we measure the runtime of CAPS
and auto-tuning on varying problem sizes. For this
part, we reproduce results reported in Figure 10.

A.4.2 Experiments.

Experiment (E1): [Comparison with Flink strategies]
[30 human-minutes + 1 compute-hour]: For all queries
described in A.2.4, we compare the CAPSys performance
with Flink’s default and evenly policies. Each experi-
ment is repeated 10 times for each policy to capture the
randomness inherent in the baseline approaches. Please see
https://github.com/CASP-Systems-BU/CAPSys/blob/main/
scripts/README.md#experiment-e1 for a detailed descrip-
tion of performing experiment E1.

Experiment (E2): [Comparison with ODRP] [30 human-
minutes + 1 compute-hour]: We use query Q3-inf to com-
pare CAPSys with the state-of-the-art ODRP algorithm pro-
posed by Cardellini et al. [14]. Please see https://github.com
/CASP-Systems-BU/CAPSys/blob/main/scripts/README.m
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d#experiment-e2 for a detailed description of performing
experiment E2.

Experiment (E3): [CAPSys under variable workloads]
[30 human-minutes + 1 compute-hour]: We evaluate
CAPSys under variable workloads and demonstrate it can im-
prove the accuracy and convergence of the DS2 auto-scaling
controller. We use query Q3-inf to compare the perfor-
mance of CAPSys with that of DS2 when coupled with Flink’s
default and evenly policies. Please see https://github.c
om/CASP-Systems-BU/CAPSys/blob/main/scripts/README
.md#experiment-e3 for a detailed description of performing
experiment E3.

Experiment (E4): [ CAPSys performance and scalabil-
ity] [30 human-minutes + 10 compute-minutes]: We
explore the runtime of CAPS and auto-tuning on varying
problem sizes. We run experiments with Q2-join, a work-
load with both compute-intensive and state-intensive tasks.
Please see https://github.com/CASP-Systems-BU/CAPSy
s/blob/main/scripts/README.md#experiment-e4 for a de-
tailed description of performing experiment E4.
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