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Abstract
3D printing in principle enables Blind and Low-Vision users to
create tactile reference materials and objects, but inaccessible soft-
ware creates a major barrier for these users. Many graphical user
interface (GUI) elements in desktop 3D printing software are un-
detectable by standard accessibility APIs, such as UI Automation,
used by screen readers to expose interfaces. We compare the hi-
erarchies of API-detected elements with those obtained from the
software source code, emphasizing detectability as a key metric in
desktop accessibility. We assess the screen reader-based operability
of core tasks in the 3D printing workflow, such as model posi-
tioning and slicing, and identify interface design and framework
implementation patterns linked to accessibility failures. This eval-
uation is conducted on three open-source 3D printing software —
Ultimaker Cura, PrusaSlicer, and Bambu Studio — using the NVDA
screen reader. These findings provide framework-specific insights
to inform retrofit and redesign decisions, contributing to accessible
interaction paradigms in fabrication.

CCS Concepts
• Human-centered computing → Accessibility design and
evaluation methods; Empirical studies in accessibility.
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1 Introduction
3D printing has emerged as a powerful resource for accessibility,
enabling Blind and Low Vision (BLV) users to create personalized
libraries of tactile materials for practical use [6, 14, 16, 17]. How-
ever, BLV users often encounter significant accessibility barriers
when using the slicing software required for preparing 3D prints
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due to their lack of keyboard navigability and compatibility with
screen readers. These barriers often stem from the custom graphical
user interface (GUI) frameworks on which these software are built,
which limit interoperability with standard accessibility APIs.

The Guidelines for Producing Accessible 3D Prints [13] published
by the Round Table on Information Access for People with Print Dis-
abilities and Monash University outline best practices for accessible
3D modeling and printing, including independent workflows for
BLV users. These guidelines highlight the scarcity of accessible slic-
ing software, recommending paid software Simplify3D as the most
accessible option, followed by Slic3r and OctoPrint, which provide
partial support. Many users rely on educational institutions and
makerspaces with preset machines and software [2]. Additionally,
some 3D printers require specific slicing software due to firmware
compatibility constraints (e.g., Cura for Ultimaker printers), un-
derscoring the need to improve accessibility across all mainstream
applications.

A key aspect of this study is the role of accessibility APIs and
their interaction with software GUI frameworks. Screen readers
rely on APIs such as Microsoft Active Accessibility (MSAA) and
UI Automation (UIA) to interpret and convey GUI elements to
users. While web accessibility standards such as the Web Content
Accessibility Guidelines (WCAG) [21] and Accessible Rich Internet
Applications (ARIA) roles have led to significant advancements in
web-based software, desktop applications lack equivalent industry-
wide accessibility guidelines. Furthermore, automated accessibility
evaluation tools often fail in desktop applications as they cannot
reliably detect or interpret custom GUI frameworks, obscuring both
the causes and extent of accessibility problems.

This study examines the accessibility of three widely used open-
source 3D printing software — Ultimaker Cura [3], PrusaSlicer
[18], and Bambu Studio [8]. Cura is built on Uranium, a custom
Qt-based framework that primarily utilizes custom-built QML com-
ponents over standard Qt elements with native accessibility roles.
PrusaSlicer, built on the open-source Slic3r project, uses wxWid-
gets, a C++ framework that incorporates standard Win32 elements
detected by MSAA and UIA but also allows extensive GUI cus-
tomization, which can impact accessibility. Bambu Studio is a fork
of PrusaSlicer with additional wxWidgets-based GUI modifications.

This study investigates how GUI framework implementations
and broader design choices cause user-side accessibility barriers,
with a focus on (1) the detectability of GUI elements by accessibility
APIs, (2) the operability of key 3D printing workflow tasks using a
screen reader, and (3) the potential for accessibility retrofits within

https://doi.org/10.1145/3715668.3736342
https://doi.org/10.1145/3715668.3736342


DIS ’25 Companion, July 5–9, 2025, Funchal, Portugal Ballarin et al.

these frameworks. Our study contributes to the broader effort to
improve both 3D printing software and desktop applications at
large for BLV users.

2 Related Work
While much of previous work in 3D printing for BLV users focuses
on the accessibility of fabricated outputs [4–6, 14, 17], less research
has been done on making the fabrication workflows themselves
independently accessible to BLV users. Studies have investigated
alternative 3D modeling interfaces, such as shape-based modeling
and tangible CAD tools [9, 19], and explored making 3D printers
accessible using a camera-based prototype that reads firmware
menus from the printers’ otherwise inaccessible LCD screens [20].
However, the accessibility of the slicing software required for 3D
printing has not yet been examined. Beyond fabrication, prior work
in desktop software accessibility has assessed UI/UX prototyping
tools [10] and programming environments [15], and developed
probabilistic models for desktop software evaluation [7]. However,
this work has not extensively analyzed how highly customized soft-
ware frameworks, GUI elements, and interaction structures affect
accessibility. This study addresses this gap with the broader goal of
making complex desktop software workflows more accessible.

3 Methodology
This evaluation is conducted on three slicing software: Ultimaker
Cura 5.6.0, PrusaSlicer 2.8.1, and Bambu Studio 1.10.1.50. Testing
is performed on a Windows system using NVDA 4.4.2, a widely
adopted open-source screen reader. The NVDA-detected GUI ele-
ments are cross-referenced withWindows Inspect, a UI inspection
tool for analyzing element hierarchies and metadata detected by
the UIAutomation and MSAA APIs.

3.1 Definitions of 3D Printing Workflow Tasks
We define five core tasks in 3D printing software workflows:
1) File Import and Management; 2) Model Positioning and
Transformation; 3) Printer, Material, and Extruder Selection;
4) Print Parameter Setting; 5) Slicing and Print Job Execution.
The Round Table guidelines [13] emphasize that 3D printing work-
flows for BLV users include steps for adjusting the camera view
angle to take screenshots of the 3D model to obtain AI-generated
feedback describing the images, remote printing to bypass inacces-
sible firmware in the 3D printer itself, and generating supports on
all 3D prints in case of unknown overhangs; these are included as
subtasks in the evaluation.

3.2 Navigation Methods: System Focus versus
NVDA Object Navigation

We distinguish between two main methods of keyboard-based nav-
igation. System focus navigation (also called tab-cycling, tab
navigation, or tabbing) uses Tab, Shift+Tab, and arrow keys to
move between interactive controls, such as buttons and edit fields,
as defined by the software’s tab order. This is the intended means
of accessible keyboard navigation but is often very limited. NVDA
object navigation refers to the use of the NVDA+Shift+Arrow key-
board commands implemented by NVDA to move through all de-
tected GUI elements, including non-interactive elements such as

text, in a hierarchical structure. Primarily designed for interface
exploration, it is significantly slower than system focus and should
not be the primary means for performing essential functions. How-
ever, it can become necessary when system focus navigation fails
to reach key controls.

3.3 Testing Procedure
Our evaluation began with an initial exploration of the main in-
terface of each slicing software using tab-cycling to determine the
extent of the built-in keyboard accessibility for high-level elements.
Given that tab-navigable elements were highly limited, we relied
heavily on keyboard shortcuts for high-level functions and NVDA
object navigation to access nested elements. For each 3D printing
workflow task, we performed the following:

(1) TabNavigation: Wefirst attempted standard tab navigation
to identify which interactive controls were reachable and
tested whether the Esc key could close menus.

(2) NVDA Navigation: We then re-attempted the task using
any applicable keyboard shortcuts and used NVDA object
navigation for the remaining unreachable elements.

(3) Manual GUI Analysis: For elements that were undetected,
behaved unexpectedly, or were otherwise inaccessible per
WCAG 2.2 guidelines [21] we conducted the GUI analysis:
We searched the UIA hierarchy through Inspect to determine
whether and how elements were exposed to the API. We
then inspected the software source code to analyze relevant
classes, objects, and interactions modes, including custom
GUI elements (e.g., wxWindowNR panes), missing labels or
accessibility roles, parent-child relationships, and custom
interaction modes based on mouse input or non-default key
behaviors.

Our findings categorize GUI development patterns responsible for
accessibility barriers across the evaluated software and highlight
critical obstacles preventing completion of each 3D printing task.
Since this evaluation was conducted by a sighted user, our find-
ings focus on basic operability — whether a screen reader user
can independently navigate to and complete these tasks — while
recognizing that a more granular assessment of efficiency and
usability will require further evaluation by BLV expert users.

4 Findings
4.1 3D Printing Task Evaluations
This subsection summarizes key accessibility findings across five
core tasks in the 3D printing workflow. Bolded terms refer to spe-
cific GUI development patterns identified as causes of accessibility
barriers throughout the software, as categorized in Table 2. The
heatmap in Table 1 depicts the severity of accessibility barriers
across the tasks and evaluated software. Model transformation and
print parameter setting are the least accessible tasks overall due to
their reliance on inoperable custom menus and mouse-based inter-
actions on the build plate without accessible alternatives through
standard controls. Cura is most affected by undetected custom
menus, while PrusaSlicer and Bambu Studio are most affected by
overridden navigation keys and undetected text labels on custom
panels.
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Table 1: Heatmap of Accessibility Barrier Severity Across 3D
Printing Tasks and Software (1 = lower severity, 4 = higher
severity)

Task Cura PrusaSlicer Bambu

File Import &
Management
↓

1 1 2

Model Positioning &
Transformation
↓

4 3 4

Printer, Material, &
Extruder Selection
↓

2 3 3

Print Parameter
Setting
↓

4 3 3

Slicing & Print Job
Execution

2 2 2

Legend of Severity Levels:

Level Description

1 Low barrier; all functions are
keyboard-operable without NVDA object
navigation.

2 Critical functions are keyboard-operable
without NVDA object navigation; some
information or secondary functions are not
accessible.

3 One or more critical functions inoperable;
caused primarily by modifiable implementation
choices (e.g., remapping a keyboard shortcut).

4 One or more critical functions inoperable;
caused by framework incompatibility or
low-level design decisions (requiring deeper
restructuring).

File Import and Management: All three slicers support short-
cuts for opening, importing, and saving files. Recent files are avail-
able from the File menu bar, which is accessible with standard
keyboard shortcuts in Cura and PrusaSlicer, but not in Bambu.

Model Positioning and Transformation: Transform menus
(e.g., Move, Rotate, Scale) are widely inoperable across all three
applications. A major barrier is the tab key override, which blocks
standard keyboard navigation: in Cura, focus becomes trapped
inside input fields; in PrusaSlicer and Bambu, pressing Tab initiates
slicing instead of moving the focus to menu controls.

Mouse-dependent operations are also common – Cura lacks
input fields for rotation and mirror tools, and PrusaSlicer’s Place on

Face function, a semi-automated orientation tool, requires mouse in-
put (Figure 3).While not yet standard across slicers, auto-orientation
features could be particularly valuable for non-visual users if im-
plemented accessibly; Bambu notably offers a keyboard-accessible
auto-orientation shortcut. While PrusaSlicer and Bambu do provide
input fields for rotation, these use relative rather than global values;
the fields automatically reset to zero after each input, preventing
screen reader users from verifying the model’s actual orientation
over time.

Finally, axis, unit, and function context is unannounced across
all applications. This is particularly severe in Cura and Bambu,
where this information is rendered using undetectable custom
panel components. While PrusaSlicer exposes more detectable in-
formation, it remains unreachable due to navigation overrides. All
applications also lack labeling metadata for the input controls
themselves.

Printer, Material, and Extruder Selection: In Cura, the main
printer and material selection menus are fully unreachable due to
being undetected Cura.ExpandableComponent elements (Figure
1). However, the same functions are also made available through
the Settings menu (Figure 2), which is reachable with a standard
keyboard shortcut (Alt+S), making printer, material, and extruder
assignment fully operable. One barrier is that adding a new printer
to the list of presets opens an inaccessible popup dialog. Mean-
while, PrusaSlicer and Bambu Studio both rely largely on a custom
PresetComboBox for printer and material selection, which is un-
detected and unreachable with NVDA navigation. This element
technically supports tabbing, but the tab override causes the Tab
key to trigger slicing, making it essentially inoperable. The only
workaround during testing was to navigate to a detectable element
using NVDA commands and then tab forward to the combo box – a
process unlikely to be discovered non-visually as the combo box’s
presence is not detected or announced to begin with.

Print Parameter Setting: Cura’s print settingsmenu is unreach-
able as its selector is anundetectable Cura.ExpandableComponent
(Figure 1). In PrusaSlicer and Bambu, tab override prevents tab-
bing to the print settings, requiring slower NVDA navigation. The
labels on the custom panels are undetectable, and the input fields
are missing labeling. PrusaSlicer offers a search bar which could,
in principle, facilitate non-visual access, but the text on the cus-
tom dropdown wxDataViewItem list is undetectable, read by the
screen reader as "Row 1", "Row 2", etc.

Slicing and Print Job Execution: All slicers allow slicing and
sending print jobs via shortcuts. However, print time and filament
estimates are unannounced in Cura, and errors are unannounced
across all three software, due to undetectable custom panels.

4.2 Overview of Problematic GUI Development
Patterns Identified In Source Code

Table 2 outlines specific GUI development patterns identified through-
out the source code that are linked to accessibility failures in the
3D printing workflow (4.1). These include undetectable and unla-
beled GUI elements, custom navigation modes that interfere with
standard tab navigation, exclusively mouse-based functions, and
mishandled popup dialogs.
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Figure 1: Screenshot of the Cura build plate interface highlighting GUI elements undetectable by accessibility APIs (red dashed
boxes). These include the selectors for the printer, material, and print parameter menus, and axis and unit labels on the Move
menu.

Figure 2: Accessible printer, extruder, and material selection
in Cura via the standard Settings menu. Unlike the custom
GUI elements shown in Figure 1, this topmenu bar implemen-
tation is keyboard-navigable and screen reader compatible.

5 Discussion
GUI Recommendations for Designing and Engineering 3D

Printing Software. Retrofitting accessibility into 3D printing soft-
ware poses significant challenges due to the widespread use of
custom elements and overlapping barriers. Qt developers might im-
prove accessibility by experimenting with Qt Quick Accessible roles,
while wxWidgets developers would need to derive new versions
of custom elements from the wxAccessible class — both of which
are significant undertakings. However, while some improvements
require deep restructuring, others can be achieved through simpler
retrofits. We recommend the following practices:

• Do not override system focus keyboard commands (i.e., Tab,
Shift+Tab, Space).

• Add sounds for key actions such as selecting objects, opening
menus, and applying transformations.

Figure 3: Screenshot from PrusaSlicer of a 3DBenchy object
on the build plate after the Place on Face function was se-
lected using the F keyboard shortcut. A user must mouse-
click one of the translucent regions to re-orient the object
on the corresponding face.

• Leverage built-in keyboard support by making simpler con-
figuration tasks, such as selecting a material or printer, avail-
able through the application menu bar.

• Keyboard shortcuts should follow predictable one-to-one
mappings rather than state-dependent behaviors.

• Enable keyboard inputs for all transformation operations,
with axis and unit information incorporated in edit field
name and Esc key enabled for closing menus. Add a global
rotation menu where the displayed input value represents
the total rotation angle relative to the original orientation,
so that users can reliably verify the current state without
needing to track incremental changes.
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Table 2: Inaccessible GUI Development Patterns Identified in Software

GUI Development
Pattern

Description Examples

Undetectable Custom
Classes

Custom GUI elements are not
exposed to the API, and therefore
not detected by the screen reader

Cura: Cura.Menu elements.
Bambu: Wx-based ScalableBitmap used for interactive panels.
PrusaSlicer: DynamicConfig tooltip used for slicing error notifications

Tab Key Override
Software assigns custom function
to Tab key, disabling tab-navigation

Bambu & PrusaSlicer: Tab switches between 3D View and Preview
modes, fully overriding standard tab navigation; Preview mode also
automatically triggers slicing, changing the interface functionality en-
tirely without any non-visual alert
Cura: In transform menus, Tab presses are hard coded to specific edit
fields rather than to next interactive control, trapping focus within
menu

Desynchronized Tab
Support

Activating an element using system
focus updates the current element
incorrectly or incompletely

Cura: When transform menus (e.g., Rotate) are selected using system
focus (Tab, Space) instead of Cura shortcuts, active tool fails to update
correctly and previous menu re-opens

One-to-Many Custom
Navigation Shortcuts

Non-standard one-to-many
navigation mechanisms have
unpredictable behavior and lack
feedback for screen reader users

Bambu: Custom Ctrl+Tab shortcuts cycles between interface panels,
but no announcement of active tab means current state is unknown and
unverifiable to user.
PrusaSlicer: Ctrl+1/2/3/4 shortcuts for each panel are also unan-
nounced, but one-to-one mapping makes navigation more predictable

Incomplete Labeling
Interactive controls (e.g., buttons,
edit fields) have missing or
insufficient labels

Cura: Edit fields announced as "Edit value 0.2" without function, axis,
or unit context such as "scale", "X", "mm"

Mouse-Dependent
Interaction Modes

Some functions require precise
mouse interaction, with no
alternative keyboard-based input

Cura: Rotate and Mirror functions rely exclusively on clicking and
dragging axis handles, with no value input option
Bambu: Custom expandable panels for adding printers defined only
with wxMouseEvents

Mishandled Popup
Dialogs

Popups lack proper control type
announcement, focus handling, or
keyboard escapability

PrusaSlicer: Configuration Update popup does not auto-focus; it is
unreachable to screen readers while also disabling main window access

• Consider implementing accessible (automatically focused,
announced, and escapable) popup dialogs as an alternative
to undetectable custom tooltips for reporting build plate and
slicing errors.

Future Work. Future research will pursue a deeper analysis of
accessibility metrics such as complexity and navigation efficiency
through user testing with BLV users. We will also explore practical
and proof-of-concept retrofits, as well as an expansion of this evalu-
ation to a Mac operating system setting with the VoiceOver screen
reader. By combining an interaction study with extensive manual
source code inspection, this work offers deeper insight into specific
interaction functions and implementation details than automation
alone would reveal. An alternative approach initially explored was a
programmatic UI hierarchy comparison, extracting and comparing
UI element trees from the NVDA console and the slicer source code
build to quantify the proportion of detectable elements as a novel
accessibility metric for framework-based desktop software. While
full execution is ongoing, this methodology remains a promising
diagnostic tool for developers to improve accessibility in their soft-
ware frameworks. In contrast, the methodology implemented in

this work serves to derive broader design insights specific to 3D
printing software.

Broader Implications for BLV User Agency and Maker Par-
ticipation. As 3D printing continues to expand in accessibility,
education, and making, addressing barriers in software interac-
tion paradigms is critical to support both skills development and
maker community participation for BLV users. In an educational
context, when access to 3D printing workflows is minimally re-
stricted, makers can iterate over prints more extensively and, as
a result, have more opportunities to develop effective technical
strategies [1]. BLV users often choose software based not only
on accessibility, but also on the availability of local support from
peers with expertise in a specific program [12]. As a result, enforc-
ing operability throughout the mainstream 3D printing software
ecosystem – not just in one application – is essential for BLV users
to be able to fully participate in shared knowledge networks. More
broadly, maker environments are valued for providing greater user
autonomy – especially compared to formal learning environments
– which supports motivation, persistence, and identity formation
[11]. Improving accessibility in 3D printing software is not only a
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matter of usability – it is key to ensuring BLV users have access to
the technical, social, and personal dimensions of fabrication.
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