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Figure 1: GroundLink is a dataset unifying standard kinematic motion capture with real-world physics information including
ground reaction force (GRF) and center of pressure (CoP). (Left) The data is captured and synchronized at high temporal
resolution in a biomechanics laboratory with mechanical force plates embedded in the ground andmultiple high-speed cameras
for uncompromising measurement accuracy. Our benchmark model GroundLinkNet trained with this data demonstrates its
generalization capability by predicting GRFs and CoPs on unseen motions accurately and plausibly. (Right) Ground truth
reaction forces (blue) compared to forces predicted by GroundLinkNet (orange) for a sample tennis motion.

ABSTRACT
The physical plausibility of human motions is vital to various ap-
plications in fields including but not limited to graphics, animation,
robotics, vision, biomechanics, and sports science. While fully sim-
ulating human motions with physics is an extreme challenge, we
hypothesize that we can treat this complexity as a black box in a
data-driven manner if we focus on the ground contact, and have
sufficient observations of physics and human activities in the real
world. To prove our hypothesis, we present GroundLink, a unified
dataset comprised of captured ground reaction force (GRF) and cen-
ter of pressure (CoP) synchronized to standard kinematic motion
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captures. GRF and CoP of GroundLink are not simulated but cap-
tured at high temporal resolution using force platforms embedded
in the ground for uncompromising measurement accuracy. This
dataset contains 368 processed motion trials (∼ 1.59𝑀 recorded
frames) with 19 different movements including locomotion and
weight-shifting actions such as tennis swings to signify the impor-
tance of capturing physics paired with kinematics. GroundLinkNet,
our benchmark neural network model trained with GroundLink,
supports our hypothesis by predicting GRFs and CoPs accurately
and plausibly on unseen motions from various sources. The dataset,
code, and benchmark models are made public for further research
on various downstream tasks leveraging the rich physics informa-
tion at https://csr.bu.edu/groundlink/.
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1 INTRODUCTION
Accurate and realistic representations of the human body and dy-
namics are important for graphics applications such as animation
production and biomedical applications such as clinical movement
analysis or medical device design. Understanding the underlying
physics quantities and kinematics parameters, such as ground reac-
tion force and moment, center of pressure, joint torque, and body
trajectories, is critical for analyzing human movement dynamics.

In contrast to the growing demand for convincing human mo-
tions, most existing motion capture datasets focus on kinematics
(e.g., [ACCAD 2001; CMU Graphics Lab 2000; Scott et al. 2020])
without physics quantities associated with them.

To address the need, we introduce GroundLink, a public dataset
that consists of motion capture data and synchronized ground re-
action forces (GRF) and center of pressure (CoP) captured from
laboratory force plates. To fill the gap in the current demand for
physically-plausible human movement the dataset includes sub-
tle and slow movements such as yoga, physical therapy exercises,
tennis swing motions, and walking. For example, Fig. 1 shows a
noticeable weight transfer, indicating an intentional adjustment to
maintain balance. This is the first public motion dataset in the graph-
ics community that consists of laboratory-based ground reaction
force measurements for various human motions.

To demonstrate the effectiveness of the kinematics data paired
with physics quantities, we conduct various experiments with our
benchmark deep neural networkmodelGroundLinkNet trainedwith
GroundLink. While its architecture is straightforward, we show that
the model generalizes well in predicting GRFs and CoPs given the
unseen kinematic motion sequences and body shapes. We believe
this is a promising sign that a reasonable amount of kinematics data
coupled with real-world physics quantities enable us to build gen-
eralizable human motion models with the understanding of physics
for numerous applications in graphics, vision, and biomechanics in
need of realistic digital human representation.

2 RELATEDWORK
2.1 Motion Capture with Contact Dynamics
2.1.1 MoCap Dataset with Contact. Several publicly-available hu-
man motion datasets are used in the graphics community (e.g. [AC-
CAD 2001; CMU Graphics Lab 2000; Mahmood et al. 2019; Trumble
et al. 2017b; Yin and Ying 2021]). However, motion capture datasets
that contain ground truth contact information are scarce, especially
datasets with continuous foot contact. Mourot et al. [2022a] and
Scott et al. [2020] released valuable datasets of motion capture with
synchronized pressure data that is recorded via pressure insoles and
include deep neural networks to estimate pressure distributions
from 3D joint positions. Yin and Pai [2003] also designed an intu-
itive interface for digital avatar animation with their collected foot

pressure sensor data. The datasets and tools serve specifically for
animation usage and human stability analysis that contains locomo-
tion, 24-form simplified Taichi movements and weight transfering
tasks. Further, the dataset released from Luo et al. [2021] enables
pose estimation from tactile signals given by pressure maps. How-
ever, pressure values captured with insoles or other types of pres-
sure pads only contain contact information in magnitude (vertical
GRF). Additionally, the computer vision community has invested
effort in gathering video-based datasets focused on various body
parts (e.g. hand pressure estimation from sensor data from Grady
et al. [2022] ) and scene interactions to address contact issues.

On the other hand, GRF and CoP are commonly understood
concepts in biomechanics studies. Many motion datasets and exper-
imental data that include kinematics, either full-body or focused
on lower-extremity, along with the paired GRFs that are captured
from ground force platforms or instrumented treadmill are avail-
able in the biomechanics community, which were released for gait
analysis (e.g. [Fukuchi et al. 2018; Ionescu et al. 2019; Kulbacki et al.
2014; Moore et al. 2015; Shahabpoor and Pavic 2017]), balance (e.g.
[dos Santos and Duarte 2016; dos Santos et al. 2017; Wang and
van den Bogert 2020; Wang and van den Bogert 2020]), or running
(e.g. [Fukuchi et al. 2017; Hamner and Delp 2013; Matijevich et al.
2019]). These datasets often focus on a single specific motion type
for patients’ recovery and healthcare purposes. Further, there are
existing datasets and efforts in incorporating contact labeling tasks
such as Shimada et al. [2022], where it provides scene geometry
aware motion with estimated contacts guidance. We believe that
including such contact labeling information in the current setup
will eliminate potential grounding error introduced in the present
method. Our collected dataset is unique in a way that it not only
incorporates high-accuracy force data for GRF and CoP, but it also
covers a variety of motion types, including subtle and balancing
movements.

2.1.2 Contact Dynamics Applications. Themeasured data has proven
to be highly valuable for foot-ground contact detection, such as the
human foot keypoint dataset from Cao et al. [2018] for discrete con-
tact labeling. Such foot contacts and contact detection have been
extensively considered in character motion (e.g. [Bindiganavale and
Badler 1998; Lee et al. 2002] ) in order to avoid and eliminate foot
artifacts to produce contact-rich character control for more realistic
virtual human motion and interactions ([Holden et al. 2017, 2016;
Starke et al. 2019; Zhang et al. 2018]). More than that, physics-based
simulation also often incorporates contact information with contact
forces modeled in the physics engines ([Adbolhosseini et al. 2019;
Kwon et al. 2020; Won and Lee 2019]). Therefore, by providing more
data grounded in real-world physics, such as ground reaction force,
we aim to advance the realism of physical interactions of human
movements with the environment.

2.2 Ground Reaction Force and Center of
Pressure Estimation

Measurement of ground reaction forces and moments (GRF&M)
and Center of Pressure (CoP) is common in clinical biomechanics
applications. Typically, these quantities are measured using force
platforms that have a high spatial and temporal resolution. In sports
science, the magnitude and rates of GRFs have been used to examine
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Figure 2: GroundLink pipeline. The Data Acquisition phase uses mechanical force platforms with high sampling frequency
and an infrared motion capture system (Qualisys). Center of pressure (CoP) is obtained from the ground reaction force and
moments (GRF&M). In the Post Processing phase, we annotate the MoCap raw marker data and optimize the joint angles and
shape to obtain the input motion sequence parameters. Together, the resulting dataset consists of force data (GRF and CoP)
synchronized with the corresponding MoCap sequences.

Table 1: Comparison of GroundLink with public MoCap and human pose estimation datasets.

Dataset # participants # motions # frames # markers Human body Force type

CMU Graphics Lab [2000] 144 2435∗ 3.9M+∗ 41 Mesh† N/A
ACCAD [2001] 20∗ 555∗ 192.6K+∗ 82 Mesh† N/A
SFU [Yin and Ying 2021] 8∗ 55∗ 109.7K+∗ 53 Mesh† N/A
TotalCapture [Trumble et al. 2017a] 5 60 1.89M 53 Mesh† N/A
Transitions [Mahmood et al. 2019] 1 110 108.7K 53 Mesh N/A
Taiji Stability (PSU-TMM100) [Scott et al. 2020] 10∗∗ 100∗∗ 1.36M N/A Skeleton Pressure (vGRF)
UnderPressure [Mourot et al. 2022a] 10 218‡ 2.02M‡ 17§ Skeleton Pressure (vGRF)
GroundLink (ours) 7 368 1.59M 96 Mesh GRF, CoP

∗ Online resource (accessed: May 2023).
† Body surface mesh provided via processing by AMASS [Mahmood et al. 2019].
∗∗ Number of participants and motion sequence obtained from Scott et al. [2020] and Collins [2023].
‡ Number of motions given by dataset downloaded from public resource. Number of frames calculated based on 5.6 hours of data at 100 fps provided in Mourot et al. [2022a].
§ Motions tracked via 17 inertial measurement units (IMU).

the risk of injuries in runners and other athletes ([De Bleecker et al.
2020; Van der Worp et al. 2016]). In physical rehabilitation, GRFs
often provide important information about disease mechanisms
and can serve as therapeutic targets ([Awad et al. 2020; Costello
et al. 2021]). It is important to note that the horizontal components
of GRF (i.e., anterior-posterior or medial-lateral) were found to be
more important than the vertical component (vGRF) in these prior
studies in people with stroke or those with knee pain. In older
adults, features of CoP displacement can predict the risk of falls
and are used as outcomes in fall prevention research ([Quijoux et al.
2020]).

Measurement of GRFs and CoP with high accuracy requires
laboratory-based methods with 3D motion and force capture sys-
tems. This can be expensive and restrictive [Konrath et al. 2019].
Therefore, estimation of these quantities from other data (e.g., kine-
matics, inertial data) has been of interest in the biomechanics com-
munity with both machine learning ([Johnson et al. 2018; Mundt
et al. 2023, 2020; Schwameder et al. 2019; Sharma et al. 2021; Wouda
et al. 2018]) and physics-based approaches ( [Bobbert et al. 1991;
Jeong and Park 2020; Nedergaard et al. 2018; Skals et al. 2017; Ver-
heul et al. 2019]) used in the past. Also, portable solutions (e.g.

wearable sensors [Pogson et al. 2020]) using pressure insoles, typi-
cally restricted to vertical GRF, (e.g. [Mourot et al. 2022a; Scott et al.
2020]) or inertial sensors (e.g. [Johnson et al. 2021; Karatsidis et al.
2017; Wouda et al. 2018]) for estimating GRFs outside the lab in
people’s natural environments have been attempted.

In the field of computer vision, researchers approach this prob-
lem to estimate the contact from monocular images and videos.
With video-based motion and pose estimation, physics including
contact is solved via optimization to create physics-aware motion
(e.g. [Li et al. 2019; Shimada et al. 2021, 2020; Zell et al. 2017]). Li
et al. [2019] proposed 3D motion and force estimation from videos
through optimizing discrepancy between the observed and repro-
jected 2D joint and object endpoint positions. Brubaker et al. [2009]
and Shimada et al. [2020] proposed video-based tracking for solving
contact and performing physics-based contact labeling to prevent
floor penetration for dynamic motions. GRFNet proposed by Shi-
mada et al. [2021] estimates the GRF and compared it with the
measured force provided by Shahabpoor and Pavic [2017] for gait
movements. For broader body contact beyond foot-ground, Clever
et al. [2021] inferred full-body structure and contact pressure using
depth images related to body-mattress contact and Huang et al.
[2022] utilized RICH which includes vertex-level contact labels on
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the body to reconstruct 3D contact-aware human body from 2D
human scene interaction.

So far, 3D GRF and CoP measurements are primarily available
within the biomechanics community. The closest related datasets,
Mourot et al. [2022a] and Scott et al. [2020], contain contact mea-
surements, specifically pressure data which only denotes the verti-
cal component of the ground reaction force. Relatedly, prediction
models such as GRFNet from Shimada et al. [2021] provide evalua-
tions with ground truth measurement for gait motion. Our dataset,
GroundLink contains full-body kinematics with 3D GRF and 2D CoP
measurements for a variety of human movements with a particular
emphasis on subtle motions.

3 DATA ACQUISITION
3.1 Overview
GroundLink is a MoCap dataset where each motion trial has full-
body kinematics with paired GRF and CoP with annotation to
distinguish between left and right feet. The force data were cap-
tured at high temporal resolution using force platforms that are
embedded in the floor and have high measurement accuracy. We
aim to use these data in computer graphics applications to create
highly accurate animation and depict the movement and interaction
of humans with the environment.

We provide two different representations for human motion in
our dataset as described in Sec. 3.3. The motion data is accompanied
by the measured force data for the GRF and the CoP. The full
pipeline of data acquisition and post-processing is illustrated in
Fig. 2. Compared to other available datasets for MoCap and contact
(Table. 1), such additional annotation for forces provides more
comprehensive contact information for the human body, specifically
for the foot segments.

3.2 Data Capture
This section describes the acquisition protocol for motion capture,
GRF, and CoP data in a biomechanics lab as shown in Figs. 1, 2.

3.2.1 Participants and Motions. We invited 7 participants (4 fe-
male and 3 male, age range 18–32) and their body dimensions are
shown in Table 2. Participants performed 19 movements shown in
Table 3 with a focus on subtle motions. All stationary poses were
held for approximately 20 𝑠𝑒𝑐 , and most of the motions were per-
formed with the participant making contact with the force plates.
For the locomotion activities (e.g. walking), it was ensured that
the acceleration and deceleration when starting and ending the
movement occurred outside of the force plates. Data from the three
steps that included contact with the force plates were retained for
these motions. To ensure accurate measurement of GRF and CoP
for both feet, each foot needs to make contact with a separate force
plate during capture. Across all trials, data where only one body
segment was in contact with the force plate at any instance were
retained for further analyses. Annotation for left and right foot was
performed during post processing given the correspondence of the
force plate ID and grounded foot. Participants performed four trials
of each motion and data from three trials with highest quality were
processed and included in the dataset.

Figure 3: Marker and skeleton setup. (Left) We use a custom
placement with 96 markers in total. Our setup focuses on
foot measurements with 10 markers on each foot. Markers
used to solve pose and shape components in MoSh++ are col-
ored orange (26 total). (Right) Kinematics tree extracted from
MoSh++ in the order of input pose parameters [Pavlakos et al.
2019] used in GroundLinkNet.

3.2.2 Motion Capture. Tomeasure both the kinematics of the joints
and the shape of the human body, 96 retroreflective markers (14 mm
diameter) were placed on each participant. The full list of markers is
illustrated in Fig. 3 and we have provided detailed marker locations
in the supplement. Marker data were captured with an infrared
optical motion capture system (Qualisys, Goteberg, Sweden) [Qual-
isys 2021] with 20 cameras at a sampling frequency of 250 𝐻𝑧, A
single RGB camera was used for video reference.

3.2.3 Ground Reaction Force and Moments. Force plates, as shown
in Fig. 4, are specialized instruments embedded in the floor to
measure the ground reaction force and center of pressure during
movements. We used a total of five force plates with a sampling
frequency of 2000 𝐻𝑧. The GRF data were low-pass filtered at 20
Hz during post-processing. The GRF denoted as F refers to the reac-
tion to the force that the body exerts on the ground upon contact,
which has three orthogonal components that are typically denoted
as 𝐹𝑥 , 𝐹𝑦 and 𝐹𝑧 along the axes of the global coordinate system.
The correspondence of these components with the anteroposterior
(AP), mediolateral (ML), and vertical axes of the body can vary by
convention used in the lab and orientation of the body relative
to the global coordinate system. The sum of the measured forces
is equivalent to the GRF, F =

∑4
𝑖=1 F𝑖 . Further, ground reaction

moments or torques, denoted as M, which represent the torques
exerted by the GRF about the anterior-posterior, medial-lateral, and
vertical axes, are also captured with the force plates.

3.2.4 Center of Pressure. The center of pressure is the mathemati-
cal representation of the point of application of the ground reaction
force, acting on the force plate. CoPs are calculated with the ground
reaction forces and moments (GRF & M) obtained from the force
plates. By the definition, let CoP = (CoP𝑥 ,CoP𝑦, 0), which is a
point always on the ground plane. Recall F andM are the ground
reaction force and moment, respectively. The CoP coordinates can
be calculated as:
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Table 2: Description of participants. We introduce diverse
body shapes and sizes in GroundLink.

Participant ID s001 s002 s003 s004 s005 s006 s007

Gender† F M F M M F F
Height (m) 1.68 1.70 1.59 1.82 1.95 1.53 1.75
Mass (kg) 69.86 66.68 53.07 71.67 90.7 48.99 63.96

† F: Female; M: Male.

CoP𝑥 = −
𝑀𝑦

𝐹𝑧
CoP𝑦 =

𝑀𝑥

𝐹𝑧
(1)

3.3 Data Post Processing
We reconstruct the human body through different methods and
representations. First, we label the raw data for all 96 markers,
then we use both inverse kinematic solver embedded in Qualisys
Track Manager (QTM) [Qualisys 2021] and optimization proposed
from Mosh++ [Mahmood et al. 2019] to solve kinematics and ad-
ditional shape representations for surface reconstruction. During
the process, different subsets of the markers are used, and both
representations of the data will be released.

3.3.1 Labeling and Skeleton Construction. We annotated the raw
MoCap data in QTM to estimate the marker trajectories. Fully
labeled data in c3d format with all 96 markers will be provided
in the dataset. We also reconstruct the skeleton from 41 markers
at joint positions for all the participants, with joint positions p ∈
R23×3 for all 23 joints in the Euclidean space. This skeleton tracking
step is processed with QTM with a skeleton solver and skeleton
template generated from the markers mapping. This hierarchical
structure can be easily compatible and supported by a variety of
3D applications. Note that this representation was only used for
comparative analysis with previous work [Mourot et al. 2022a] after
skeleton retargeting, it will be released but was not included in the
training and evaluation for GRF and CoP prediction because of the
reasons listed in Sec 4.1.

3.3.2 Joint and Surface Construction. From the labeled MoCap
data, we adopted MoSh++ [Mahmood et al. 2019] to fit SMPL-X
model [Pavlakos et al. 2019] and estimate both pose parameters, 𝜃
and shape parameters 𝛽 to reconstruct the human body. From the 96
markers, a subset of 26 markers is selected and used to reconstruct
the human body surface shape and estimate the joint parameters,
which are carefully selected given by the optimized markers intro-
duced in [Mahmood et al. 2019] for the best reconstruction results.
An initial guess is given for the markers and vertices’ distances
to the body surface, and we use MoSh++ [Mahmood et al. 2019]
to refine the correspondence. Then, we optimize the parameters
with a template from SMPL-X [Pavlakos et al. 2019] to minimize
the distance between the markers and the corresponding vertices
on the human body mesh. Details of the subset of the markers are
shown in Fig. 3.

Figure 4: Force plate illustration. Each force plate has four
tri-axial force sensors (red circled) embedded in the plate
that measures the force between the foot and the ground in
the 3 axes: x (anteroposterior, AP), y (mediolateral, ML), and
z (vertical) given the illustrated body position. The vectors F𝑖
show the reaction forces measured by the force sensors. The
sum of the measured forces is equivalent to GRF, F. CoP is
the point of application of F.

Table 3: Description of motions. We focus on subtle move-
ments and weight-shifting effects of motions. During the
capture, each stationary pose is maintained for at least 20
sec to capture the balancing of the participant.

Motion Type Duration† (sec)

Tree (arms down) yoga 24.70
Tree (arms up) yoga 24.40
Chair yoga 23.98
Warrior I yoga 24.34
Warrior II yoga 25.03
Dog yoga 19.85
Side Stretch yoga 25.17
Lambada dance dynamic: dancing 21.48
High leg dynamic: ballet 13.87
Small jump dynamic: ballet 13.43
Squat dynamic: exercise 12.46
Jumping Jack dynamic: exercise 13.95
Stationary hopping dynamic: exercise 12.14
Taichi dynamic: exercise 14.81
Swing sports: tennis 6.68
Serving sports: tennis 7.66
Kicking sports: soccer 4.81
Walking locomotion 4.18
Casual stand idling 16.77
† Avg across all participants

4 EXPERIMENTS
4.1 Benchmark Neural Network Model
We prepared GroundLinkNet (Fig. 5), a deep neural network with a
straightforward architecture trained with GroundLink, to validate
the effectiveness of having a dataset with kinematics paired by
physics quantities.

Data representation. GroundLinkNet primarily takes relative
joint angles 𝜃 ∈ R𝑘×3 for 𝑘 joints and pelvis trajectories xcharacter ∈



SA Conference Papers ’23, December 12–15, 2023, Sydney, NSW, Australia Xingjian Han, Benjamin Senderling, Stanley To, Deepak Kumar, Emily Whiting, and Jun Saito

Figure 5: Overview ofGroundLinkNet, our benchmark neural
network model trained with GroundLink to predict the GRFs
and CoPs given the SMPL [Pavlakos et al. 2019] pose and
shape parameters.

R3 as inputs, with optional body shape components 𝛽 = [𝛽1, ..., 𝛽16],
and will output the predicted GRF F ∈ R3 and CoPcharacter ∈ R3.

Using global coordinates as described in [Mourot et al. 2022b] is
not ideal due to its lack of invariance of translation and rotation
with respect to the ground plane. Stochastic data augmentation as
proposed in [Mourot et al. 2022b] cannot generalize to the arbitrary
placement of characters in the scene while increasing the training
time. Hence, we represent the data with relative positions and joint
orientation to avoid confusion caused by using global represen-
tation in the coordinate system. Further, due to the double-cover
of raw quaternions [Pavllo et al. 2020], we follow a similar setup
as [Fussell et al. 2021] to introduce our data representation.

First, we adjust the joint rotation representation. Instead of using
global position, x𝑘𝑖 , the position for 𝑘th joint at frame 𝑖 , we use
the local rotation represented by rotation vectors of each joint
with respect to the parent joint in the kinematics tree, as shown
in Fig. 3, 𝜃 ∈ R𝑘×3. Then, we apply transformations to both the
center of pressure and the pelvis position to avoid using any global
representation in the network and transform to the character space.
Given the definition of the center of pressure, since it is always
located on the ground surface with CoPglobal = (CoP𝑥 ,CoP𝑦, 0) for
both left and right foot, we use the projected pelvis as the origin for
the character space. Let𝑇 be the transformation matrix of the pelvis
projected on the ground plane, which is 𝑥𝑦−plane with z-positive
system, and consists of the rotation and translation of the pelvis.
Then, the relative positions of the pelvis and the center of pressure
are given as:

xcharacter = 𝑇 −1 · xpelvis = (0, 0, x𝑧) (2)

CoPcharacter = 𝑇 −1 · CoPglobal (3)
Lastly, shape parameterswith 16 components solved byMoSh++ [Mah-
mood et al. 2019] denoted as 𝛽 = [𝛽1, ..., 𝛽16] defined by PCA coef-
ficients in shape space are additional input features. In the end, the
input features are the concatenation of the pose 𝜃 , xcharacter, and
the optional shape 𝛽 . The output features are the concatenation of
the GRF F and CoPcharacter.

Network Architecture. Mourot et al. [2022b] proposed and struc-
tured a nerual network to accommodate motion sequences with
variable lengths. The architecture of the network comprises four

(a) (b)

Figure 6: Shape-aware force prediction. Given the same pose
from (a) and various body shapes in (b), our GroundLinkNet
can predict plausible GRFs respecting different body sizes.

1D temporal convolutional layers, each layer with kernels spanning
7 frames. These are followed by three fully connected layers, each
independently applied to every frame to maintain adaptability with
variable-length sequences. After each convolutional or fully con-
nected layer, exponential linear units (ELU) serve as the activation
function, with the exception of the final layer where a softplus
activation function is deployed to ensure that the relative pressure
values of the sensors from different regions, namely the vertical
ground reaction force components, are outputted nonnegative. In
our experiments, on the other hand, it is important to note that the
components that are predicted - namely the ground reaction force
(excluding the vertical GRF) and the center of pressure — need not
be restricted to positive values. Both the center of pressure and
ground reaction force can possess negative values, reflecting the
directional attributes of these vectors.

Training. Since both direction and magnitude are significant to
reconstruct GRF and CoP, we use mean squared error (MSE) to
measure the difference between the predicted and target values.
The loss function is then defined as:

L =
1
𝑁

𝑁∑︁
𝑖=1

∥F𝑖 − F̂𝑖 ∥2 (4)

where F̂ is the predicted GRF by the neural network.
For evaluation, we use s007’s data as a testing set. When per-

forming cross-validation, a different participant serves as a testing
subject. With the remaining served as training data, we split it with
a ratio of 7 : 3 for the training and validation set.

4.2 Evaluations
Testing with GroundLink. At the stage of inference, ourmodel pre-

dicts the GRF andCoP components 𝐹𝑥 , 𝐹𝑦, 𝐹𝑧 andCoP𝑥 ,CoP𝑦,CoP𝑧 ,
respectively, from the inputs of pelvis position, joint rotations, and
shape components. To evaluate the robustness of the models, we
perform cross-validation for all the participants (error report in Ta-
ble 5) and provide a report in Fig. 9, which contains a comparison of
ground truth and predicted GRF and CoP for three example motions:
taichi, side stretching, and hoppingmovements. These examples not
only demonstrate weight shifting between feet but also shows our
model’s performance on more dynamic movement such as jumping
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(a)

(b)

(c)

Figure 7: Comparison against UnderPressure [Mourot et al.
2022a] for motions: (a) jumping jacks (b) squatting (c) chair.
Horizontal axis: frame # (downsampled by 1/10); vertical axis:
force normalized by weight (test subject weighs 90.7kg). Our
model yields improved predictions for the vertical compo-
nent (vGRF), even though our model handles a more chal-
lenging task of predicting the full 3D GRF and CoP.

and stationary hopping. Further, we perform a comparative analy-
sis with vGRF prediction provided by UnderPressue [Mourot et al.
2022a] and present the results in Fig. 7 and Table 4.

Testing with kinematics-only data. Many existing datasets have
optimized pose and shape components through [Mahmood et al.
2019], such as OSU ACCAD [ACCAD 2001]. While they do not
contain any force data associated, we can still evaluate the perfor-
mance of the model visually. Among all the testing data that are
available, it shows that our model predicts convincing GRFs for
stationary poses such as martial arts punching and casual standing.
We note that while our CoP predictions generally follow the foot
positions, they can incorrectly offset from the feet, as observed by
the arrows coming off from the feet in visualizations as shown in
Fig. 8(b). We believe this is due to the CoP representation relative
to the pelvis. We show more results from different datasets in our
supplementary video.

Testing with various body shapes. Body shape and body weight
are factors that can affect the ground reaction force. Among all
the components, vertical ground reaction force (vGRF) is the most
sensitive to the body shape. With the shape parameters incorpo-
rated into the training setup, we evaluate the correspondence of the

Table 4: vGRF Prediction error comparison between
GroundLinkNet and UnderPressure. Values are mean square
error (MSE) with the target measured values normalized by
weight (test subject weighs 90.7𝑘𝑔).

Motion UnderPressure† Ours†

Chair 0.94/0.19 0.08/0.02
Tree (arm up) 0.54/0.11 0.49/0.03
Tree (arm down) 0.78/0.10 0.14/0.03
Warrior I 0.15/0.16 0.02/0.06
Warrior II 0.09/0.09 0.02/0.04
Dog 0.69/0.13 0.04/0.07
Side Stretch 0.31/0.46 0.06/0.04
Lambada dance 0.27/0.40 0.06/0.13
Squat 0.16/0.14 0.06/0.04
Jumping Jack 0.60/0.50 0.08/0.08
Stationary Hopping 0.80/0.27 0.23/0.03
Taichi 0.19/0.18 0.06/0.09
Soccerkick 0.49/0.41 0.45/0.18
Total 0.44/0.23 0.18/0.07

† The error values are calculated errors for the left and right foot, normalized by body
weight.

Table 5:Mean square error (MSE)with targetmeasured values

Motion 𝐹𝑥
† 𝐹𝑦

† 𝐹𝑧
† CoP𝑥 ‡ CoP𝑦 ‡

Chair 0.12/0.13 1.85/1.59 25.62/20.54 1.46/6.56 2.61/3.54
Tree (arm up) 0.05/0.03 1.34/0.45 149.8/14.55 2.09/8.72 1.56/2.37
Tree (arm down) 0.05/0.02 1.30/0.41 130.8/17.08 3.88/14.68 0.70/3.28
Warrior I 0.13/0.14 1.96/1.78 22.80/66.49 1.19/31.90 4.63/14.83
Warrior II 0.19/0.24 0.96/1.37 15.25/48.12 1.23/20.46 1.98/9.07
Dog 0.65/0.76 1.80/2.54 55.34/86.38 12.1/10.82 13.46/48.52
Side Stretch 0.22/0.26 3.22/4.09 43.36/51.04 9.26/49.63 4.26/20.39
Lambada Dance 0.50/0.59 3.30/4.08 70.37/93.94 6.79/11.90 3.52/7.47
Squat 0.14/0.15 1.27/1.30 24.36/28.07 1.71/4.27 1.71/2.49
Jumping Jack 2.82/3.20 5.89/4.98 61.68/74.59 3.21/3.54 2.45/3.79
Hopping∗ 2.36/0.09 1.85/0.49 221.5/29.34 5.0/14.74 2.56/11.88
Taichi 0.12/0.15 1.98/2.06 41.41/54.54 7.95/9.00 5.70/7.89
Tennis: Swing 0.28/0.22 0.88/1.83 19.24/30.28 4.20/2.58 6.32/7.26
Tennis: Serve 0.23/0.29 1.64/1.17 42.10/42.17 2.27/5.76 2.72/24.09
Soccerkick 5.05/3.79 2.88/2.02 178.9/118.5 14.02/25.56 11.21/39.41
Casual Stand 0.07/0.07 0.55/0.92 46.69/52.71 3.36/11.19 2.03/8.37

∗ refers to Stationary Hopping.
† The calculated error for left/right foot across all test subjects (×10−3), given by
force normalized by weight.
‡ Error for left/right foot across all test subject (×10−3) in𝑚

human body shape with both the ground reaction force and the cen-
ter of pressure. The analysis of our predicted GRF for people with
varying body shapes, as shown in Fig. 6, reveals that individuals
with larger physiques tend to exhibit higher vGRF (𝐹𝑧 ) as expected.

5 CONCLUSION
In this paper, we introduce GroundLink, a new motion capture
data with corresponding GRFs and CoPs, which are difficult to
obtain due to the restricted resources of the lab and spaces. From
the motion and contact force data, we present GroundLinkNet, a
benchmark model trained from GroundLink to predict GRFs and
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CoPs from the kinematics and shapes of the human body. With the
possibility of estimating the contact force from pure kinematics of
human characters, we hope our data and model can serve numerous
downstream applications of digital humans with physical realism.

Discussion and Future Work. As a benchmark model, we noticed
some prediction inconsistencies delivered by GroundLinkNet. First,
the model is currently set to use the projected pelvis as the character
space origin, which results in a noticeable offset in predicting CoP,
as illustrated in Fig. 8(b). To remedy this, a more appropriate frame-
of-reference, such as projected feet for referring left and right GRF
and CoP, can enhance prediction accuracy. Second, GroundLink
only contains walking trials with a maximum of three-step strides
to keep the participants on the limited region of the force plates.
Because of this, we observe that our benchmark model struggles
to predict GRFs for different types of locomotions. Third, we also
noticed the model being too sensitive to small changes in the pose
for upper body, e.g. hand rotations, affecting the output. These are
signs that there is not enough data (such as isolated upper body
movements) to deal with such out-of-distribution test scenarios.
While we showed that GroundLinkNet can generalize to unseen
scenarios to some extent, it is also clear that the data scarcity issue
must be addressed.We believe there are open research opportunities
in (a) deriving a better machine learning scheme, including data
representation, to understand physics from a limited amount of
data, and (b) simulating physics to obtain more data, while also
leveraging the captured physics quantities simultaneously.
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(a) (b)

Figure 8: Testing result for OSU ACCAD: (a) push kicking motion and (b) Victory martial arts. Preprocessed MoCap data is
obtained from AMASS to retrieve the pose components for input parameters for the model. Even in the absence of ground
truth contact forces data for external datasets, we employ our trained model from GroundLink to predict GRF and CoP based
solely on the available kinematics.

.

(a)

(b)

(c)

Figure 9: GroundLinkNet results for participant s004. The model is trained with the data from the other 6 participants. The
plots show a comparison of the predicted value (orange) and the ground truth values (blue) for GRF (normalized by subject
weight) and CoP (𝑚). Horizontal axis: video frame #; vertical axis (middle): force normalized by weight (subject weighs 71.67kg);
vertical axis (right): relative position with projected pelvis (𝑚).Example motions: (a) taichi, (b) side stretching, and (c) stationary
hopping. Overall, the models generate reasonable prediction patterns for GRF for various motions. For CoP prediction, it
performs better with smooth motions such as side stretching with consistent weight shifting patterns but is relatively less
convincing for motions when a single foot is lifted and shifts dramatically in the air such as taichi movement.
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