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Summary
L0&L1&L2

1. Linear Equation: A linear equation in the variables x1,x2, ...,xn is an equiation that can be written in the form:

a1x1 +a2x2 + ...+anxn = b

where b and the coefficients a1, ...an are real or complex numbers.

2. System of linear equations or linear system: is a collection of one or more linear equations involving the same
variables.

3. Solution: A solution of the system is a list of numbers (s1, ...,sn) that makes each equation a true statement
when substituted for x1, ...xn. Note that a system can have multiple solutions.

4. Solution Set: The set of all possible solution is the solution set of the linear system. Note that two linear systems
are called equivalent if they have the same solution set.

5. A system of linear equations may have: no solutions (inconsistent); or exactly one solution (consistent); or
infinitely many solutions (consistent).

6. Vector Space: Rn is a n-dimensional space that collects a set of list of numbers (s1, ...,sn). If we consider linear
equations with n unknowns, the solutions are points in Rn.

7. Elementary Row Operations:
Replacement - replacement one row by the sum of itself and a multiple of another row;

Interchange - interchange two rows;

Scaling - multiply all entries in a row by a non zero constant.

Note that (a) two matrices are called row equivalent if there is a sequence of elementary row operations that
transforms one matrix into the other. (b) If the augmented matrices of two linear systems are row equivalent,
then the two systems have the same solution set.

8. Consistency of a linear system: A linear system is consistent if and only if it has one or infinitely many solutions.

9. Uniqueness of a linear system: A linear system has a unique solution if it has one and only one solution.

L3&L4

1. Non zero row: row with at least one nonzero entry (not including the last row in augmented matrix)

2. Leading entry: the first nonzero element in a row.
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3. Echelon Form (or row echelon form) of a matrix:

a. All non zero rows are above any rows of all zeros.

b. Each leading entry of a row is in a column to the right of the leading entry of the row above it.

c. All entries in a column below a leading entry are zeros.

4. Reduced Echelon Form (or reduced row echelon form) of a matrix:

a. The matrix is in echelon form.

b. The leading entry in each nonzero row is 1.

c. Each leading 1 is the only non zero entry in its column.

5. (Properties) Echelon forms are not unique; the reduced echelon form of a matrix is unique.

6. Theorem: Each matrix is equivalent to one and only one reduced echelon matrix.

7. Pivot position: A pivot position in a matrix A is the position of a leading 1 in the reduced echelon form of A.

8. Gaussian Elimination: Given an augmented matrix A representing a linear system

a. (Elimination stage) Convert A to one of its echelon forms say U .

b. (Backsubstitution stage) Convert U to A’s reduced row echelon form.

Each step iterates over the rows of A, starting with the first row.

9. The number of operations of Gaussian elimination is∼ 2
3 n3 for a linear system with n equations and n unknowns.

i.e, Gaussian elimination has arithmetic complexity of O(n3). More specifically, we have:

a. The elimination stage is O(n3).

b. The backsubstitution stage is O(n2).

10. When a system is consistent, the solution set can be described explicitly by solving the reduced system of
equations for the basic variables in terms of the free variables.

11. Column vector or a vector: a column vector is a matrix with only one column. e.g:

v =

[
v1
v2

]
∈ R2 v =

v1
v2
v3

 ∈ R3 v =


v1
v2
...

vn

 ∈ Rn

Two vectors are equal if and only if their corresponding entries are equal.

12. Let a,b be two vectors in Rn and let c be a scalar. Then the sum and scalar multiplication can be defined as

Sum: a+b =


a1 +b1
a2 +b2

...
an +bn

 Scalar multiplication: ca =


c ·a1
c ·a2

...
c ·an


Note that if the vectors are not in the same size, the sum will be undefined.

13. Properties. Let u,v,w be vectors and let c,d be scalars.

a. u+v = v+u
b. (u+v)+w = u+(v+w)

c. u+0 = 0+u = u
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d. u+(−u) = (−u)+u = 0
e. c(u+v) = cu+ cv
f. (c+d)u = cu+du
g. c(du) = (cd)u
h. 1 ·u = u

14. Linear Combinations: a linear combinations of vectors v1,v2, ...,vp is: y = c1v1 + c2v2 + ...+ cpvp, where
the ci ∈ R are weights, and it can be zero.

15. A vector equation x1a1 + x2a2 + ...+ xnan = b has the same solution set as the linear system whose augmented
matrix is

[
a1 a2 ... an b

]
16. Span: Suppose that b can be expressed as a linear combination of a1 and a2. That is, there are some x1,x2 such

that x1a1 + x2a2 = b. Then b is in the span of the set of vectors {a1,a2}, i.e, b ∈ Span{a1,a2}.
Generally, let v1,v2, ...,vp, for each v ∈∈ Rn be vectors, then the set of all linear combinations of v1,v2, ...,vp
is denoted by Span{v1,v2, ...,vp}, and it is called the subset of Rn spaned by v1,v2, ...,vp.

L5&L6

1. If A is an m×n matrix, with columns a1,a2, ...an, and if x ∈ Rn, then the product of A and x, denoted Ax, is the
linear combination of the columns of A using the corresponding entries in x as weights; that is,

Ax =
[
a1 a2 ... an

]


x1
x2
...

xn

= x1a1 + x2a2 + ...+ xnan

Note that the number of columns of A must match the number of rows of x.

2. If A =
[
a1 a2 ... an

]
and x ∈ Rn, then Ax ∈ Span{a1,a2, ...,an}.

3. Matrix Equation. If A is an m× n matrix, with columns a1,a2, ...an, and if x ∈ Rn, b ∈ Rm, then the matrix
equation Ax = b has the same solution set as the vector equation x1a1+x2a2+ ...+xnan = b, and in turn, has the
same solution set as the system of linear equations whose augmented matrix is

[
a1 a2 ... an b

]
. (L3&L4

Point 14, Page 3)

4. Theorem. Let A be an m× n matrix. Then the following statements are logically equivalent. That is, for a
particular A, either they are all true or they are all false.

i. For each b ∈ Rm, the equation Ax = b has a solution.

ii. Each b ∈ Rm is a linear combination of the columns of A.

iii. The columns of A span Rm.

iv. A has a pivot position in every row.

5. Properties. Let A be an m×n matrix, u,v ∈ Rm are vectors, and c is a scalar. Then

i. A(u+v) = Au+Av
ii. A(cu) = c(Au)

6. Inner Product.
[
x1 x2 ... xn

]


y1
y2
...

yn

= ∑
n
i=1 xiyi

7. Linear dependence. A set of vectors v1,v2, ...vp, all of which are in Rn is said to be linearly dependent if there
exist weights {c1, ...,cp}, not all zero, such that c1v1 + ...cpvp = 0

3



8. Linearly Independent. A set of vectors v1,v2, ...vp, all of which are in Rn is said to be linearly independent if
the vector equation has only the trivial solution c1 = ...= cp = 0

9. Testing if a set of vectors is linearly independent is to determine if there is a nontrivial solution of the vector
equation: x1a1 + x2a2 + ...+ xnan = 0

10. If a set contains more vectors than there are entries in each vector, then the set is linearly dependent.

L7

1. Transformation: A transformation (or function or mapping) T from Rn to Rm is a rule that assigns to each
vector x in Rn a vector T (x) in Rm. The set Rn is called the domain of T and Rm is the codomain of T . Denoted
as: T : Rn→ Rm.

2. x ∈ Rn is called the image of x under T . The set of all images T (x) is called the range of T .

3. (*Important) A transformation T is linear if

i. T (u+v) = T u+T v, ∀u,v ∈ Domain(T )

ii. T (cu) = c(T u) for all scalars c and ∀u ∈ Domain(T )

Facts: T (0) = 0 and T (cu+dv) = cT u+dT v

L8&L9

1. Theorem: Let T : Rn → Rm be a linear transformation, then there is always a unique matrix A such that:
T (x) = Ax ∀x ∈ Rn.

2. Standard matrix. Full table please see textbook Sec 1.9 Table 1-4.

3. A mapping T : Rn→Rm is onto Rm if each b in Rm is the image of at least one x in Rn. Alternatively, T is onto
if there is a solution x of T (x) = b for all possible b ∈ Rm.

4. A mapping T : Rn→ Rm is one-to-one if each b in Rm is the image of at most one x in Rn.

5. If T x = b is consistent for all b, then T is onto but may not be one-to-one. If T x = b is consistent and has a
unique solution for all b, then T is both one-to-one and onto.

6. Matrix Multiplication: If A is an m× n matrix and B is n× p matrix with columns b1,b2, ...,bp, then the
product AB is defined as the m× p matrix whose columns are Ab1,Ab2, ...,Abp. That is, AB =

[
Ab1 ... Abp

]
7. Matrix Algebra. Let A and B be m×n matrices, and let r and s be scalars. Then we have:

i. A+B = B+A

ii. (A+B)+C = A+(B+C)

iii. A+0 = A

iv. r(A+B) = rA+ rB

v. (r+ s)A = rA+ sA

vi. r(sA) = (rs)A

Note that A+B is not defined is A and B are not in the same shape.

8. More properties. Suppose that all sums and products are defined. Then we have:

i. A(BC) = (AB)C

ii. A(B+C) = AB+AC

iii. (B+C)A = BA+CA

iv. r(AB) = (rA)B = A(rB)
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v. IA = A = AI

9. Transpose of a matrix: Given an m× n matrix A, the transpose of A is the matrix we get by interchanging its
rows and columns.

10. Rules for Transposes:

i. (AT )T = A

ii. (A+B)T = AT +BT

iii. (rA)T = r(AT )

iv. (AB)T = BT AT

11. xT y = ∑
n
i=1 xiyi is the inner product of x and y.

L10&L11

1. Inverse of a matrix. A matrix A is called invertible if there exists a matrix C such that AC = I and CA = I. The
inverse of A is denoted as A−1.

2. Singular matrix. a matrix that is not invertible is called a singular matrix.

3. Theorem. If A is an invertible n×n matrix, then for each b ∈ Rn, the equation Ax = b has the unique solution
x = A−1b.

4. Let A =

[
a b
c d

]
. If ad−bc 6= 0, then A is invertible and A−1 = 1

ad−bc

[
d −b
−c a

]
.

5. Determinate. Let A =

[
a b
c d

]
. detA = ad−bc

6. Given a 2×2 matrix A, if the columns of A are linearly dependent, then A is NOT invertible.

7. Compute the inverse of A: solve the linear system Axi = ei to get the ith column of A−1 for all i ∈ [1,n].

8. Properties.

i. If A is an invertible matrix, then A−1 is also invertible, and (A−1)−1 = A.

ii. If A is an invertible matrix, then AT is also invertible, and (AT )−1 = (A−1)T .

iii. If A and B are n×n invertible matrices, then AB is also invertible, and (AB)−1 = B−1A−1.

9. Invertible Matrix Theorem (IMT). Let A be a square n×n matrix. Then the following statements are equiva-
lent; that is, they are either all true or all false.

i. A is an invertible matrix.

iff ii. AT is an invertible matrix.

iff iii. The equation Ax = b has a unique solution for each b ∈ Rn.

iff iv. A is row equivalent to the identity matrix.

iff v. A has n pivot positions.

iff vi. The equation Ax = 0 has only the trivial solution.

iff vii. The columns of A form a linearly independent set.

iff viii. The columns of A span Rn.

iff ix. The linear transformation x 7→ Ax maps Rn onto Rn.

iff x. The linear transformation x 7→ Ax is one-to-one.

10. A linear transformation T : Rn→ Rn is invertible if there exists a function S : Rn→ Rn such that S(T (x)) = x
for all x ∈ R
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11. Theorem. Let T : Rn→Rn be a linear transformation and let A be the standard matrix for T . Then T is invertible
if and only if A is an invertible matrix.

12. The state of the system at time k is a vector xk ∈Rn (state vector), and xk+1 = T (xk) for time k = 0,1,2... where
T : Rn→ Rn.

13. Definitions. Markov Chains.

i. A probability vector is a vector of nonnegative entries that sums to 1.
ii. A stochastic matrix is a square matrix of nonnegative values whose columns each sum to 1.

iii. A Markov chain is a dynamical system whose state is a probability vector and which evolves according to
a stochastic matrix.

That is, it is a probability vector x0 and a stochastic matrix A ∈Rn×n such that xk+1 = Axk for time k = 0,1,2...

14. If P is a stochastic matrix, then a steady-state vector (or equilibrium vector) of P is a probability vector q such
that Pq = q. Note that every stochastic matrix has a steady-state vector.

15. Solve a Markov Chain for its steady state is to find q such that Pq = q:

step 1: Solve the linear system (P− I)q = 0
step 2: Obtain a general solution. (free variable)
step 3: Pick any specific solution and normalize (so that the entries add up to 1).

16. A stochastic matrix is regular if some matrix power Pk contains only strictly positive entries.

17. If P is an n×n regular stochastic matrix, then P has a unique steady-state vector q. Further, if x0 is any initial
state and xk+1 = Pxk for k = 0,1,2..., then the Markov Chain {xk} converges to q as k→∞. Note: Memoryless
property of Markov Chain: it converges to its steady-state vector no matter what state the chain starts in.

L12&L13

1. Factorization. A factorization of a matrix A is an equation that expresses A as a product of two or more matrices
A = BC.

2. Every elementary row operation on A can be performed by multiplying A by a suitable matrix.

3. Elementary matrix is one that is obtained by performing a single elementary row operation on the identity
matrix.

4. LU Factorization. A = LU where L is a lower triangular matrix and U is an upper triangular matrix. i.ea11 a12 a13
a21 a22 a23
a31 a32 a33

=

 1 0 0
l21 1 0
l31 l32 1

u11 u12 u13
0 u22 u23
0 0 u33


5. Solve Ax = b is equivalent to solving L(Ux) = b⇒ Ux = L−1b⇒ x =U−1(L−1b). With LU factorization, it

is easier to solve for x because each matrix is triangular.

6. 3D Scaling:


sx 0 0 0
0 sy 0 0
0 0 sz 0
0 0 0 1

. 3D Translation:


1 0 0 h
0 1 0 k
0 0 1 m
0 0 0 1

.

3D Rotation: Rx(α)=


1 0 0 0
0 cosα sinα 0
0 −sinα cosα 0
0 0 0 1

, Ry(α)=


cosα 0 −sinα 0

0 1 0 0
sinα 0 cosα 0

0 0 0 1

, Rz(α)=


cosα sinα 0 0
−sinα cosα 0 0

0 0 1 0
0 0 0 1

 .

Perspective Projection:


1 0 0 0
0 1 0 0
0 0 0 0
0 0 −1/d 1

 .
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7. Composition of matrices. C = AB first apply B and then apply A.

L14&L15

1. Subspace. A subspace is any set H in Rn that has three properties:

i. The zero vector is in H.

ii. For each u and v that are in H, the sum u+v is also in H.

iii. For each u in H and each scalar c, cu is also in H.

2. Column space. The column space of a matrix A is the set Col(A) of all linear combinations of the columns of
A. If A =

[
a1 a2 ... an

]
, then Col(A) is the same as Span{a1,a2, ...,an}

3. The column space of an m×n matrix is a subspace of Rm.

4. Null space. The null space of a matrix A is the set Nul(A) of all solutions of the homogeneous equation Ax = 0.

5. The null space of an m×n matrix is a subspace of Rn.

6. Basis for subspace. Let V be a vector space and β = {u1,u2, ...,un} be a subset of V . Then β is a basis for
V if and only if each v ∈ V can be uniquely expressed as a linear combination of vectors in β , that is can be
expressed in the form: v = a1u1 +a2u2 + ...+anun for unique scalars a1,a2, ...,an. i.e A basis for a subspace H
of Rn is a linearly independent set in H that spans H.

7. Basis for null space. Constructing a basis for the null space of A is equivalent to finding a parametric description
of the solution of the equation Ax = 0.

8. Basis for column space. The pivot columns of a matrix A form a basis for the column space of A.

9. A basis provides a coordinate system for H. If we are given a basis for H, then each vector in H can be written
in only one way as a linear combination of the basis vectors.

10. Suppose the set β = {b1,b2, ...,bp} is a basis for the subspace H. For each x ∈ H, the coordinates of x relative
to the basis β are the weights c1, ...,cp such that x = c1b1 + c2b2 + ...+ cpbp

11. [x]β =


c1
c2
...

cp

 ∈ Rp is called the coordinate vector of x (relative to β ) or the β -coordinate vector of x.

12. The dimension of a nonzero subspace H, denoted by dim(H), is the number of vectors in any basis for H.

13. The dimension of the zero subspace {0} is defined to be zero.

14. The vector space Mm×n(F) has dimension mn.

15. Find dimension of Nul(A) is equivalent to find the number of free variables in Ax = 0.

16. The rank of a matrix, denoted by rank(A), is the dimension of the column space of A: i.e number of pivot
columns in A.

17. The Rank Theorem: If a matrix A has n columns, then rank(A)+dim(Nul(A)) = n.

18. (Extension to IMT)

xi. The columns of A form a basis for Rn.

xii. Col(A) = Rn.

xiii. dim(Col(A)) = n

xiv. rank(A) = n
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xv. Nul(A) = {0}
xvi. dim(Nul(A)) = 0

19. Let W be a subspace of a finite-dimensional vector space V . Then W is finite-dimensional and dim(W ) ≤
dim(V ). Moreover, if dim(W ) = dim(V ), then V =W .

L16&L17

1. Eigenvector. An eigenvector of an n×n matrix A is a nonzero vector x such that Ax = λx for some scalar λ .

2. Eigenvalue. A scalar λ is called an eigenvalue of A if there is a nontrivial solution x of Ax = λx.

3. Such an x is called an eigenvector corresponding to λ .

4. λ is an eigenvalue of an n×n matrix A if and only if the equation (A−λ I)x = 0 has a nontrivial solution.

5. Eigenspace. Note that the set of all solution of the equation (A−λ I)x = 0 is the null space of the matrix A−λ I.
So the set of all eigenvectors corresponding to a particular λ is a subspace of Rn, and is called the eigenspace
of A corresponding to λ . Computing the corresponding eigenspace can be done by constructing a basis for
Nul(A−λ I).

6. Theorem. The eigenvalues of a triangular matrix are the entries on its main diagonal.

7. 0 is an eigenvalue of A if and only if A is not invertible.

8. Find the eigenvalues of A is equivalent to find all scalars λ such that (A−λ I)x = 0 has a nontrivial solution,
and it is equivalent to finding all λ such that A−λ I is not invertible, that is when det(A−λ I) = 0.

9. Let A be an n×n matrix, then A is invertible if and only if

xvii. The number 0 is not an eigenvalue of A.

xviii. The determinant of A is not zero.

10. Properties. Determinants.

i. det(AB) = (detA)(detB)

ii. detAT = detA

iii. If A is triangular, then detA is the product of the entries on the main diagonal of A.

11. Characteristic equation. det(A−λ I) = 0.

12. λ is an eigenvalue of an n×n matrix A if and only if λ satisfies the characteristic equation.

13. Characteristic polynomial. For any n×n matrix A, det(A−λ I) is a polynomial of degree n, called the char-
acteristic polynomial of A.

14. Similarity. If A and B are n× n matices, then A is similar to B if there is an invertible matrix P such that
P−1AP = B, or equivalently, A = PBP−1.

15. If A is similar to B, then B is similar to A.

16. Similarity transformation. Changing A into B is called similarity transformation.

17. If n× n matrices A and B are similar, then they have the same characteristic polynomial, and hence the same
eigenvalues (with the same multiplicities).

18. Theorem. The largest eigenvalue of a Markov Chain is 1.
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19. Determinant. Click for MIT Notes Link

det
[

a b
c d

]
= ad−bc

det

a b c
d e f
g h i

= a ·det
[

e f
h i

]
−b ·det

[
d f
g i

]
+ c ·det

[
d e
g h

]
= a(ei− f h)−b(di− f g)+ c(dh− eg)

= aei+b f g+ cdh− ceg−bdi−a f h

i. det In = 1.
ii. If you exchange two rows of a matrix, you reverse the sign of its determinant from positive to negative or

from negative to positive.
Extension: Let A be an n×n matrix, and let U be any echelon form obtained from A by row replacements
and row interchanges. Let r be the number of row interchanges, then the determinant of A is (−1)r times
the product of the diagonal entries in U.

detA =

{
(−1)r ·product of povots in U if A is invertible
0 if A is not invertible

iii. If we multiply one row of a matrix by t, the determinant is multiplied by t.

det
[

ta tb
c d

]
= t ·det

[
a b
c d

]
iv. The determinant behaves like a linear function on the rows of the matrix:

det
[

a1 +a2 b1 +b2
c d

]
= det

[
a1 b1
c d

]
+det

[
a2 b2
c d

]

v. Property i gives
[

1 0
0 1

]
= 1, and property ii gives

[
0 1
1 0

]
=−1

L18&L19

1. Given a square matrix A, the factorization of A is of the form A = PDP−1, where D is a diagonal matrix. Note
that A and D are similar. This factorization allows:

i. represent A in a form that exposes the properties of A.
ii. represent Ak in an easy to use form

iii. compute Ak efficiently with large values of k.

2. Powers of diagonal matrix. If D =

[
a 0
0 b

]
, then Dk =

[
ak 0
0 bk

]
3. For k ≥ 1, Ak = PDkP−1, provided that A is diagonalizable.

4. Diagonalizable matrix. A square matrix A is diagonalizable if A is similar to a diagonal matrix. That is, if
there exists some invertible matrix P such that A = PDP−1 and D is a diagonal matrix.

5. Theorem. The Diagonalization Theorem. An n× n matrix A is diagonalizable if and only if A has n linearly
independent eigenvectors.

In fact, A = PDP−1 with D a diagonal matrix if and only if the columns of P are n linearly independent eigen-
vectors of A. In this case, the diagonal entries of D are eigenvalues of A that correspond, respectively, to the
eigenvectors in P.

In other word, A is diagonalizable if and only there are enough eigenvectors to form a basis of Rn.

We call such a basis an eigenvector basis or an eigenbasis of Rn.
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6. Diagonalize an n×n matrix.

step i. Find the eigenvalues of A.

step ii. Find n linealry independent eigenvectors of A.

step iii. Construct P from the vectors.

step iv. Construct D from the corresponding eigenvalues.

7. Theorem. An n×n matrix with n distinct eigenvalues is diagonalizable.

8. Random Walk. Let G be a graph. A random walk models the movement of an object on G.

9. Random walk with absorbing boundaries: the walker remains fixed at the location.

10. Random walk with reflecting boundaries: the walker bounces back one unit when an endpoint is reached.

11. Please consult https://www.cs.bu.edu/fac/crovella/cs132-book/L19PageRank.html for examples on random walk
on directed and undirected graph: transition matrix, steady-state probability vector (undirected), computing
PageRank, etc.

L20&L21

1. Properties of inner product.

i. Inner product is symmetric. Let u, v and w be vectors in Rn, and let c be a scalar. Then uT v = vT u
ii. Inner product is linear in each term.

(u+v)T w = uT w+vT w

(cu)T v = c(uT v) = uT (cv)

iii. Inner product of a vector with itself is never negative. That is, uT u≥ 0, and uT u = 0 if and only if u = 0.

2. Norm of a vector. The norm of v is the non-negative scalar ‖v‖=
√

vT v =
√

∑
n
i=1 v2

i

3. For any scalar c, ‖cv‖= |c|‖v‖.

4. Cauchy-schwarz Inequality. |uT v| ≤ ‖u‖ · ‖v‖

5. Triangle Inequality. ‖u+v‖ ≤ ‖u‖+‖v‖.

6. Normalize a vector. Normalized vector u for v is a unit vector and is defined as u =
v
‖v‖

.

7. Distance. For u,v ∈ Rn, the distance between the two vectors, written as dist(u,v), is the length of the vector
u−v. That is, dist(u,v) = ‖u−v‖=

√
(v1−u1)2 +(v2−u2)2 + ...+(vn−un)2

8. Orthogonal vectors. Two vectors u and v in Rn are orthogonal to each other if uT v = 0

9. Angle between vectors. uT v = ‖u‖‖v‖cosθ

10. Orthogonal Set. A set of vectors {u1, ...,up} in Rn is an orthogonal set if each pair of distinct vectors from the
set is orthogonal. i.e. ui

T uj = 0 whenever i 6= j

11. Theorem. If S = {u1, ...,up} is an orthogonal set of nonzero vectors in Rn, then S is linearly independent. (proof
in lecture notes)

12. Orthogonal basis. An orthogonal basis for a subspace W of Rn is a basis for W that is also an orthogonal set.

13. Let {u1, ...,up} be an orthogonal basis for a subspace W of Rn. For each y ∈W , the weights of the linear

combination y = c1u1 + c2u2 + ...+ cpup are given by c j =
yT uj
ujT uj

for j = 1, ..., p.
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14. Orthogonal projection. projLy = ŷ = yT u
uT u u is the orthogonal projection of y onto u (or onto subspace L).

z = y−αu is called the component of y orthogonal to u.

15. Let {u1, ...,up} be an orthogonal basis for a subspace W of Rn. We can decomposite y= c1u1+c2u2+ ...+cpup
into a sum of orthogonal projections onto one-dimensional subspaces. That is,

y =
yT u1
u1T u1

u1 +
yT u2
u2T u2

u2 + ...+
yT up

upT up
up

16. Orthonormal Set. A set of vectors {u1, ...,up} in Rn is an orthonormal set if it is an orthogonal set of unit
vectors.

17. Theorem. An m×n matrix U has orthonormal columns if and only if UTU = I.

18. Theorem. Let U be an m×n matrix with orthonormal columns, and let x,y ∈ Rn. Then

i. ‖Ux‖= ‖x‖
ii. (Ux)T (Uy) = xT y

iii. (Ux)T (Uy) = 0 if and only if xT y = 0

L22&L23

1. General lease-squares problem. To find an x that minimize ‖Ax−b‖ (or ‖Ax−b‖2)

2. Least square solution. If A is m×n and b is in Rm, a least squares solution of Ax = b is an x̂ in Rn such that
‖Ax̂−b‖ ≤ ‖Ax−b‖ for all x ∈ Rn. Or equivalently, x̂ = argmin

x
‖Ax−b‖.

3. Geometrically, it is to find the closest point in Col(A) to b.

4. Solve the General Least Square Problem.

• The Orthogonal Decomposition Theorem. Let W ⊆ Rn. Then ∀y ∈ Rn, ∃ŷ ∈W , and z orthogonal to
every vector in W , such that y = ŷ+ z. That is, ŷ = projW (y), and z = y− ŷ.

• The Best Approximation Theorem. Let W ⊆ Rn and y ∈ Rn. Let ŷ = projW (y). Then ŷ is the closest
point in W to y. That is, ‖y− ŷ‖ is minimal, and ‖y− ŷ‖ ≤ ‖y−v‖ ∀v ∈W . (proof in lecture notes)

• Finding x̂ = argmin
x
‖Ax−b‖ is equivalent to finding the projection of b onto Col(A), i.e, b̂ = projCol(A)b,

and solve Ax̂ = b̂

5. Theorem. The set of least squares solutions of Ax = b is equal to the (nonempty) set of solutions of the normal
equations AT Ax = AT b.

Recap (general steps) and proof:

• Goal: find x̂ to minimize ‖Ax−b‖.
• Orthogonal Decomposition. b = x̂+ z, where x̂ ∈ Col(A) and z = b = b̂ is orthogonal to Col(A).

• Best Approximation. b̂ = projCol(A)(b) is the closest point in Col(A) of b.

• Solve. (Assume such x̂ exists.) To find x̂ such that Ax̂ = b̂.

Ax̂ = b̂

Ax̂−b = b̂−b

AT Ax̂−AT b = AT (b̂−b)

AT Ax̂−AT b = 0 Since b̂−b is orthogonal to Col(A)

AT Ax̂ = AT b

x̂ = (AT A)−1AT b Solve for x̂
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6. When Ax̂ = b̂ has multiple solutions, the columns of A are linearly independent.

7. Theorem. Let A be an m×n matrix. The following statements are equivalent:

i. The equation Ax = b has a unique least squares solution for each b ∈ Rm.

ii. The columns of A are linearly independent.

iii. The matrix AT A is invertible.

When these statements are true, the least squares solution x̂ is given by x̂ = (AT A)−1AT b.

Since Ax̂ = b̂, we have b̂ = A(AT A)−1AT b

8. Linear Models.

i. The independent variables are collected into a matrix X , called design matrix.

ii. The dependent variables are collected into an observation vector y.

iii. The parameters of the model are collected into a parameter vector β .

Goal: Find the linear parameters β for some y to model the data X , and minimize ‖Xβ −y‖.

9. A least squares problem for linear model: Xβ = y, where

X =


1 x1
1 x2
...

...
1 xn

 , β =

[
β0
β1

]
, y =


y1
y2
...

yn
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