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Exercise 1: Normalized Cross-Correlation

Part 1: Prove that r(M,S) = r(M,aS + b).

We are provided that

r(M,S) : =
1

n

n∑
i=1

(si − µS)(mi − µM )

σSσM
,

where si ∈ S and mi ∈ M are respective brightness values of the ith pixel, µM and σM are the
mean and the standard deviation of all pixels in the template M , and µS and σS are the mean
and the standard deviation of all the pixels in the sub-image of the scene.

By the laws of probability, for a random variable X, we have

E[aX + b] = aE[X] + b,

and

V[aX + b] = E[(aX + b)2]− (E[aX + b])2

= E[a2X2 + 2abX + b2]− (aE[X] + b)2

= a2E[X2] + 2abE[X] + b2 −
[
a2(E[X])2 + 2abE[X] + b2

]
= a2

(
E[X2]− (E[X])2

)
= a2V[X],

meaning that the standard deviation of aX + b, σaX+b, is

σaX+b =
√
V[aX + b] =

√
a2V[X] = a · σX .

Consequently, we have

r(M,aS + b) =
1

n

n∑
i=1

((a · si + b)− (a · µS + b)) (mi − µM )

σaS+bσM

=
1

n

n∑
i=1

a · (si − µS)(mi − µM )

a · σSσM

=
1

n

n∑
i=1

(si − µS)(mi − µM )

σSσM

= r(M,S).

This concludes the proof.
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Part 2: Explain why the linear invariance property of the normalized
correlation coefficient, shown in part (a), could be useful for image
analysis.

Because changing the brightness values of the pixels in any sub-image of the overall scene does
not affect the NCC value, we can, in practical situations, increase or decrease the brightness of
our images of interest at will.

Part 3: Explain why the property that the NCC value is between −1
and +1, inclusively, could be useful for image analysis.

As hinted in the name itself (Normalized Cross-Correlation), the fact that NCC values are
between −1 and +1 makes it easy for us to tell whether the sub-image and our template are
positively or negatively correlated, whether they are correlated at all, to what extent are they
correlated, etc. — regardless of the brightness values of the pixels in the sub-images, as indicated
in Part 2 above.

Part 4: Explain why the fact that E[r] = 0 could be useful for image
analysis.

Again, by the formula

V[r] = E[r2]− (E[r])2,

the fact that E[r] = 0 means that

V[r] = E[r2].

This makes the computation of r’s variance, and thus standard deviation, easy, which again
enables us to easily tell how much our template correlates with a given sub-image.

Exercise 2: Circularity

Part 1. Compute compactness for each shape

(1) Compactness of “Square”

compactness =
perimeter2

area
=

(3 + 3 + 3 + 3)2

3× 3
=

144

9
= 16.

(2) Compactness of “Rectangle”

compactness =
perimeter2

area
=

(2 + 4 + 2 + 4)2

2× 4
=

144

8
= 18.
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(3) Compactness of “Diamond”

compactness =
perimeter2

area
=

(5 + 5 + 5 + 5)2

1 + 3 + 5 + 3 + 1
=

400

13
≈ 30.77.

(4) Compactness of “Stick”

compactness =
perimeter2

area
=

(1 + 10 + 1 + 10)2

1× 10
=

484

10
= 48.4.

Part 2. Compute the second-moment measure for each shape

From class notes, we know that

Emin :=
(a+ c)−

√
(a− c)2 + b2

2
and Emax :=

(a+ c) +
√

(a− c)2 + b2

2
,

where

a :=
∑
x

∑
y

(x− x̄)2 ·Bxy

c :=
∑
x

∑
y

(y − ȳ)2 ·Bxy

b := 2
∑
x

∑
y

(x− x̄)(y − ȳ) ·Bxy.

For simplicity, I assume that, for each pixel of each given shape, Bxy = 1. I also assume that we
start counting at 1, not 0.

(1) Second-moment Measure for “Square”

For “square,” we can compute that

a =

3∑
x=1

3∑
y=1

(x− 2)2 = 3

3∑
x=1

(x− 2)2 = 6

c =

3∑
x=1

3∑
y=1

(y − 2)2 = 3

3∑
y=1

(y − 2)2 = 6

b = 2

3∑
x=1

3∑
y=1

(x− 2)(y − 2) = 2

3∑
x=1

(x− 2)

3∑
y=1

(y − 2) = 0,

consequently,

Emin =
(6 + 6)−

√
(6− 6)2 + 02

2
= 6

Emax =
(6 + 6) +

√
(6− 6)2 + 02

2
= 6,

and so

second-moment measure =
Emin

Emax
=

6

6
= 1.
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(2) Second-moment Measure for “Rectangle”

For “rectangle,” we can compute that

a =

2∑
x=1

4∑
y=1

(x− 1.5)2 = 4

2∑
x=1

(x− 1.5)2 = 2

c =

2∑
x=1

4∑
y=1

(y − 2.5)2 = 2

4∑
y=1

(y − 2.5)2 = 10

b = 2

2∑
x=1

4∑
y=1

(x− 1.5)(y − 2.5) = 2

2∑
x=1

(x− 1.5)

4∑
y=1

(y − 2.5) = 0,

consequently,

Emin =
(2 + 10)−

√
(2− 10)2 + 02

2
= 2

Emax =
(2 + 10) +

√
(2− 10)2 + 02

2
= 10,

and so

second-moment measure =
Emin

Emax
=

2

10
= 0.2.

(3) Second-moment Measure for “Diamond”

For “diamond,” we think of it as a 5 × 5 square modulo the four “corners.” Each pixel in the
four corners has Bx,y = 0, whereas each pixel in the diamond has Bx,y = 1.

a =

5∑
x=1

5∑
y=1

(x− 3)2 ·Bxy

= (1− 3)2B1,3 + (2− 3)2B2,2 + (2− 3)2B2,3 + (2− 3)2B2,4

+ (4− 3)2B4,2 + (4− 3)2B4,3 + (4− 3)2B4,4 + (5− 3)2B5,3

= 4 + 1 + 1 + 1 + 1 + 1 + 1 + 4 = 14

c =

5∑
x=1

5∑
y=1

(y − 3)2 ·Bxy = 14 (by symmetry)

b = 2

5∑
x=1

5∑
y=1

(x− 3)(y − 3) ·Bxy

= 2[(2− 3)(2− 3) + (2− 3)(4− 3) + (4− 3)(2− 3) + (4− 3)(4− 3)] = 0,

consequently,

Emin =
(14 + 14)−

√
(14− 14)2 + 02

2
= 14

Emax =
(14 + 14) +

√
(14− 14)2 + 02

2
= 14,
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and so

second-moment measure =
Emin

Emax
=

14

14
= 1.

(4) Second-moment Measure for “Stick”

For “rectangle,” we can compute that

a =

10∑
y=1

(0.5− 0.5)2 = 0

c =

1∑
x=1

10∑
y=1

(y − 5.5)2 =

10∑
y=1

(y − 2.5)2 = 82.5

b = 2

1∑
x=1

10∑
y=1

(x− 0.5)(y − 5.5) =

10∑
y=1

(y − 5.5) = 0,

consequently,

Emin =
(0 + 82.5)−

√
(0− 82.5)2 + 02

2
= 0

Emax =
(0 + 82.5) +

√
(0− 82.5)2 + 02

2
= 82.5,

and so

second-moment measure =
Emin

Emax
=

0

82.5
= 0.

Part 3. Compute µ/σ for each shape

For this part, we assume the coordinate for each centroid is (0, 0).

(1) µ/σ for “Square”

µ =
4
√

2 + 4

8
=

√
2 + 1

2
≈ 1.207

σ =

√
4(
√

2)2 + 4

8
− µ2 =

√
3− 2

√
2

4
≈ 0.2071,

consequently,

µ

σ
≈ 1.207

0.2071
≈ 5.8281.
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(2) µ/σ for “Rectangle”

µ =
4
√

2.5 + 4
√

0.5

8
=

√
10 +

√
2

4
≈ 1.1441

σ =

√
4× 2.5 + 4× 0.5

8
− µ2 =

√
3−
√

5

2
≈ 0.4370,

consequently,

µ

σ
≈ 1.1441

0.4370
≈ 2.6181.

(3) µ/σ for “Diamond”

µ =
4
√

2 + 4× 2

8
=

2 +
√

2

2
≈ 1.7071

σ =

√
4× 2 + 4× 4

8
− µ2 =

√
6− 4

√
2

2
=

2−
√

2

2
≈ 0.2929,

consequently,

µ

σ
≈ 1.7071

0.2929
≈ 5.8283.

(4) µ/σ for “Stick”

µ =
2× (4.5 + 3.5 + 2.5 + 1.5 + 0.5)

10
=

25

10
= 2.5

σ =

√
2× (4.52 + 3.52 + 2.52 + 1.52 + 0.52)

10
− µ2 =

√
2 ≈ 1.4142,

consequently,

µ

σ
≈ 2.5

1.4142
≈ 1.7678.

Exercise 3: Least Squares Method

First, let’s impose coordinate values onto the red squares. Here’s the list of all such coordinate
values, each of which corresponds to a red square in the figure from left to right: (0, 5), (1, 3),
(2, 8), (3, 6), (4, 1), (5, 7), (6, 4), (7, 9), (8, 3), (9, 6).

Then, noting that we’ll use L2-distance, and denoting the sum of distance as d(x, y) where
(x, y) is the coordinate of the unknown “optimized” pixel in the figure, we have

d(x, y) =
√

(0− x)2 + (5− y)2 +
√

(1− x)2 + (3− y)2 +
√

(2− x)2 + (8− y)2

+
√

(3− x)2 + (6− y)2 +
√

(4− x)2 + (1− y)2 +
√

(5− x)2 + (7− y)2

+
√

(6− x)2 + (4− y)2 +
√

(7− x)2 + (9− y)2 +
√

(8− x)2 + (3− y)2

+
√

(9− x)2 + (6− y)2.
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We want to minimize d(x, y), so we take the partial derivatives of d(x, y) with respect to x and
y, respectively, like so:

∂

∂x
d(x, y) = − x√

(0− x)2 + (5− y)2
− 1− x√

(1− x)2 + (3− y)2
− 2− x√

(2− x)2 + (8− y)2

− 3− x√
(3− x)2 + (6− y)2

− 4− x√
(4− x)2 + (1− y)2

− 5− x√
(5− x)2 + (7− y)2

− 6− x√
(6− x)2 + (4− y)2

− 7− x√
(7− x)2 + (9− y)2

− 8− x√
(8− x)2 + (3− y)2

− 9− x√
(9− x)2 + (6− y)2

= 0

∂

∂y
d(x, y) = − 5− y√

(0− x)2 + (5− y)2
− 3− y√

(1− x)2 + (3− y)2
− 8− y√

(2− x)2 + (8− y)2

− 6− y√
(3− x)2 + (6− y)2

− 1− y√
(4− x)2 + (1− y)2

− 7− y√
(5− x)2 + (7− y)2

− 4− y√
(6− x)2 + (4− y)2

− 9− y√
(7− x)2 + (9− y)2

− 3− y√
(8− x)2 + (3− y)2

− 6− y√
(9− x)2 + (6− y)2

= 0

I do not recall how to minimize the sum of square roots. But since this is a convex expression, I
think it reasonable to say that the rest of the task can be accomplished via convex optimization.
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