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ABSTRACT
Key-value stores are at the core of several modern NoSQL-based
data systems, and thus, a comprehensive benchmark tool is of para-
mount importance in evaluating their performance under different
workloads. Prior research reveals that real-world workloads have a
diverse range of characteristics, such as the fraction of point queries
that target non-existing keys, point and range deletes, as well as,
different distributions for queries and updates, all of which have
very different performance implications. State-of-the-art key-value
workload generators, such as YCSB and db_bench, fail to gener-
ate workloads that emulate these practical workloads, limiting the
dimensions on which we can benchmark the systems’ performance.

In this paper, we present KVBench, a novel synthetic workload
generator that fills the gap between classical key-value workload
generators and more complex real-life workloads. KVBench sup-
ports a wide range of operations, including point queries, range
queries, inserts, updates, deletes, range deletes, and among these
options, inserts, queries, and updates can be customized by differ-
ent distributions. Compared to state-of-the-art key-value workload
generators, KVBench offers a richer array of knobs, including the
proportion of empty point queries, customized distributions for
updates and queries, and range deletes with specific selectivity, con-
stituting a significantly flexible framework that can better emulate
real-world workloads.
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1 INTRODUCTION
Key-Value Stores are Everywhere. Key-value-based NoSQL data
systems are widely used across the industry, such as RocksDB [14],
LevelDB [15], FASTER [7], MongoDB [21], SplinterDB [9], Cassan-
dra [2], HBase [3], Redis [23], Oracle NoSQL [22], Scalaris [32],
and OrientDB [25]. Even in relational databases, key-value stores
can still be used as the underlying storage engines (e.g., RocksDB
in TiDB [16] and Pebble in CockroachDB [8]) or as key-value in-
dexes to improve database performance. However, with the rapid
growth of new key-value stores, it becomes harder for practitioners
to pick the most appropriate one for their applications. To ensure
an apples-to-apples comparison across existing key-value stores,
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Table 1: Comparison of KVBench with other benchmarks

benchmark
YCSB db_bench KVBench

op
er
at
io
n

insert ✓ ✓ ✓

update ✓ ✓ ✓

non-empty point query ✓ ✓ ✓

empty point query × ✓ ✓

range query ✓ ✓ ✓

non-empty point delete × ✓ ✓

empty point delete × ✓ ✓

range delete × ✓ ✓

di
st
ri
bu

ti
on uniform ✓ × ✓

normal × ✓ ✓

beta × × ✓

Zipfian ✓ × ✓

a comprehensive benchmark tool is essential to investigate the
performance implications of different workloads.
State-of-the-ArtWorkloadGenerators Support LimitedWork-
load Characteristics. The most commonly used benchmark tool
for NoSQL systems is YCSB [10], which can generate workloads
with inserts, updates, point queries, and range queries with a speci-
fied distribution. However, YCSB does not support the whole range
of basic operations in key-value stores such as empty point queries
and deletes. While db_bench [13] in RocksDB, another existing
workload generator, supports the above basic operations, it does
not allow deletes to be mixed with query/update workloads in
an interleaved manner. Besides, db_bench is designed and imple-
mented specifically for testing RocksDB performance, which is also
not applicable to other key-value stores. Below, we discuss three
main challenges state-of-the-art workload generators face when
emulating real-life workloads.
Challenge 1: Empty point queries are not well supported.
Point queries can be classified into empty point queries that target
keys that do not exist in or are deleted from the database and non-
empty point queries that target keys with at least one occurrence in
the database [27, 31]. A comprehensive workload generator should
distinguish these two operations because they have different perfor-
mance implications [12, 18]. Non-empty point queries must access
the target data to obtain the associated value, while empty point
queries can terminate much earlier due to metadata (e.g., Bloom
Filters and Zonemaps) [26, 28]. For example, consider a scenario
with two e-commerce platforms, where one (platform A) has a pop-
ular commodity, while the other (platform B) does not. Without
knowing which platform has the popular commodity in advance,
the workload in platform B may contain a significant number of
empty point queries.

https://doi.org/10.1145/3662165.3662765
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Challenge 2: Inserts, Updates, and Point Queries may have
Different Distributions. Existing workload generators produce
inserts, updates, and queries on keys that follow the same distribu-
tion, which does not necessarily reflect real-life workloads. Further,
as empty point queries are not well-supported, prior approaches
cannot generate different distributions for empty vs. non-empty
point queries. Consider a social media application where users post
and search certain popular keywords or hashtags but may not fre-
quently search for non-existing hashtags. In this case, updates and
non-empty point queries should follow a skewed distribution (e.g.,
Zipfian), while empty point queries follow a uniform distribution.
Challenge 3: Deletes may be Interleaved with Updates and
Queries. Invalidating an entry is a common operation in key-value
stores. In most cases, a delete is issued to an existing key in the
database [29, 30, 35]. For example, in a social media platform, due to
privacy or other regulation issues, posts can be frequently deleted,
which could happen together with other new posts or searches. In
fact, 6% of all operations processed by ZippyDB, a RocksDB use
case at Meta, are deletes [6]. In addition, each accessed KV-pair gets
1 delete operation on average. However, state-of-the-art workload
generators that support deletes, either do not support deletes on
existing keys (YCSB [10]) or do not generate deletes interleaved
with point queries and updates (db_bench [13]).
KVBench: A Distribution-Aware Key-Value Benchmark. In this
paper, we present KVBench, a scalable and distribution-aware work-
load generator implemented in C++. KVBench can generate a diverse
spectrum of key-value workloads that are common in real life but
not supported by state-of-the-art benchmarks. Similarly to the exist-
ing benchmarks, KVBench supports variable key size, variable value
size, and variable fractions of operations like inserts, updates, point
queries, and range queries. In addition, KVBench can distinguish
between empty point queries and non-empty point queries, and it
exposes the proportion of empty queries as a knob. KVBench can
also generate workloads with point and range deletes interleaved
with other operations, such as inserts, updates, and queries. We
design KVBench to support different key distributions per operation
type. For example, in the same workload, updates may follow a
Zipfian distribution, whereas the point queries may be generated
uniformly. KVBench supports uniform, normal, beta, and Zipfian
distributions with configurable parameters. Together, these features
make KVBench a flexible workload generator with a high degree
of freedom, which, in turn, enables the users to generate vastly
diverse key-value workloads that closely relate to real-world use
cases. Table 1 summarizes KVBench’s new features for benchmark-
ing key-value stores compared to YCSB [10] and db_bench [13].
Contributions. In summary, our contributions are as follows.

(1) We implement two query generators that respectively support
empty and non-empty point queries with the same key size.
Empty point queries can be mixed with non-empty ones within
the same workload. Other ingestion, deletion, and scan opera-
tions may also be interleaved manner with the point queries.

(2) We separate the generation of empty and non-empty point
queries and updates into three independent generators. This
way, the keys queried and the keys updated can follow a dif-
ferent distribution. The distribution of the operations (uniform,
normal, beta, Zipfian) is specified by the users.

(3) We keep track of the existing entries when generating the work-
load, which allows us to interleave deletes with other operations,
ensuring that all keys to be deleted exist in the database.

(4) We put everything together to build KVBench1. We present a
methodology for generating workloads that are not supported
by existing benchmarks like YCSB and db_bench, and we present
a new set of benchmark workloads inspired by real-life applica-
tions. Although KVBench’s goal is not to replace existing bench-
marks, it can mimic several of their workloads while offering
more knobs to generate new workloads.

2 RELATEDWORK
In this section, we review prior work on workload generators and
benchmarking tools for NoSQL systems.
YCSB. The Yahoo! Cloud Serving Benchmark (YCSB) suite [10] is
a popular framework for benchmarking cloud-native NoSQL sys-
tems. It consists of a workload generator and a database interface
which interact with each other via parallel client threads. These
parts can be decoupled and extended to be tested on any workload
generator and any database layer using the YCSB API. YCSB im-
plements three types of workload: CoreWorkload, RestWorkload,
TimeSeriesWorkload, among which CoreWorkload is designed
for database benchmarking, RestWorkload is for RESTFUL opera-
tions in web services, and TimeSeriesWorkload is a specialized
workload for time series data. There also exists a C++ version YCSB,
YCSB-C [17], that only implements CoreWorkloadmodule in YCSB.
We focus on the CoreWorkload for database benchmarking in this
paper. In CoreWorkload, YCSB can create workloads with point
queries, inserts, updates, and scans where point queries and updates
can follow a specified distribution (including uniform, exponential,
sequential, Zipfian, latest, and hotspot). However, CoreWorkload
does not support delete and empty point queries, and it forces
updates and queries to follow the same distribution.
RocksDB’s db_bench. The db_bench benchmarking tool is in-
tegrated with the RocksDB codebase and comes as an add-on for
testing RocksDB performance [13]. It supports insert, update, point
query, range scan, point delete, and range delete operations. It
also supports a mixed workload between point queries and updates
with customized distribution (e.g., power distribution). Unlike YCSB,
db_bench supports empty point queries and range deletes, and fur-
ther allows the users to specify the number of keys to be deleted
in range deletes. However, the implementation for empty point
queries is done by increasing the key size for point queries by 1.
This prevents db_bench from generating an interleaved workload
with both empty and non-empty point queries. db_bench also forces
the distribution to be the same for both updates and point queries,
which limits the scope of real-world workloads that db_bench can
emulate. Further, while db_bench supports point and range deletes,
these operations cannot be mixed with other operations, such as
point queries and updates, in an interleaved workload.
ForestDB-Benchmark. The ForestDB-benchmark [11] is devel-
oped for comparing ForestDB [1] with other key-value stores, such
as LevelDB [15], RocksDB [14], and WiredTiger [34]. The associ-
ated API wrapper supports classical key-value operations, such as

1The codebase of KVBench is available at https://github.com/BU-DiSC/kv-bench.

https://github.com/BU-DiSC/kv-bench
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inserts, point queries, and range queries, as well as, specific dis-
tribution (uniform, normal, and Zipfian) for the point operations.
For each point operation (read or write), the associated key is ran-
domly generated. A unique feature of the ForestDB-benchmark is
that it groups the same type of operation (reads or writes) into
a batch (where the batch size can follow a specified distribution)
and tries to reduce duplicate operations within a batch by keeping
track of all the operations within a batch. In other words, queries
on the same key within a batch can only occur with low prob-
ability and inserts are almost always on unique keys. However,
the ForestDB-benchmark does not explicitly support updates and
empty point queries. It also has the same limitations as YCSB, i.e.,
it forces the reads and writes to follow the same distribution and
does not support point or range deletes.
TPC and Other Benchmarks for Relational Systems. TPC [5,
33] is another popular benchmark for relational databases. It con-
tains predefined schemas for a set of tables and a set of built-in
queries with complex join operations. There are also some other
similar benchmarks or datasets (e.g., LinkBench [4] and JOB [19])
that are widely used to benchmark relational databases. While we
can use these existing benchmarks for relational databases that use
NoSQL systems (such as MyRocks [20]) as the underlying storage
engines, they do not accurately reflect the performance of NoSQL
systems due to additional query processing overhead, particularly,
when transforming classical SQL queries into key-value operations
during the execution of SQL queries. For the same reason, bench-
marking tools designed for dataframes like FuzzyData [24] cannot
be used here either to benchmark NoSQL systems.

3 THE KVBENCH BENCHMARK SUITE
KVBench is implemented in C++, and it is a scalable and distribution-
aware key-value workload generator that supports a diverse array
of new workload characteristics that are not supported by the state-
of-the-art. First, it differentiates empty and non-empty PQs and
allows the users to specify the fraction of empty queries when gener-
ating workloads. Second, it allows different operations (e.g., inserts,
updates, and queries) in the same workload to follow different dis-
tributions. Further, it can generate workloads with point and range
deletes interleaved with other key-value operations. Users can sim-
ply pass arguments to the command line as input to KVBench, and
KVBench will output a workload file with the input specification.
In this section, we introduce the functionality of KVBench in detail
and discuss some of its advanced features.

3.1 Basic Key-Value Operations
We now discuss all the basic key-value operations and their imple-
mentation in KVBench. All basic operations can be specified via the
command line, as summarized in Table 2.
Insert. This operation is used to write a new key-value pair to the
database. During the workload generation, we maintain a hash set
(𝐻𝑆) to track all existing keys in the database and ensure that every
key to be inserted does not exist in the current database. Specifically,
whenever we randomly generate a key 𝑘 to be inserted, we check if
𝑘 ∈ 𝐻𝑆 . If this check returns true, we ignore 𝑘 and generate a new
key. If not, then we insert the key into the hash set𝐻𝑆 , generate the

Table 2: Basic key-value operations in KVBench.

args description min, max; default

-I number of inserts [0, UINT64_MAX]; 0
-U number of updates [0, UINT64_MAX]; 0
-D number of point deletes [0, UINT64_MAX]; 0
-R number of range deletes [0, UINT64_MAX]; 0
-y range delete selectivity (0.0, 1.0]; 0
-Q number of point queries [0, UINT64_MAX]; 0
-S number of range queries [0, UINT64_MAX]; 0
-Y range query selectivity (0.0, 1.0]; 0
-Z fraction of empty point queries [0.0, 1.0]; 0

value for 𝑘 , and write the key-value pair to the output. The number
of inserts is specified by -I in the command line.
Update. This operation is used to overwrite the value of an existing
key-value pair in the database, which means that the key to be up-
dated must exist in the database. To realize an update, we maintain
a vector (denoted by 𝑉 ) that stores the same set of elements of 𝐻𝑆
(a hash set does not have 𝑂 (1) complexity of random access, so we
use a vector here). We then randomly pick one key from the vector
𝑉 , generate a value for the key, and write the pair to the output.
The number of updates is specified by -U in the command line.
Point Query (PQ). Point queries (PQs) look for a key in the data-
base and returns the corresponding value if the key exists. Note
that, in practice, a target key may or may not exist in the database.
To differentiate between empty and non-empty PQs, we use the
information stored in a hash set 𝐻𝑆 and a vector 𝑉 . To generate an
empty PQ, we first randomly generate a key 𝑘 , and then we check
if 𝑘 ∈ 𝐻𝑆 . If it does, we re-generate a key at random; otherwise, we
add a point query on 𝑘 to the output. To generate a non-empty PQ,
we simply pick a key at random from the vector𝑉 . KVBench allows
the users to specify the exact proportion of empty and non-empty
PQs, and thereby, emulate a new class of real-life workloads. Users
can use the two command line arguments, -Q and -Z, which specify
the total number of PQs in a workload and the fraction of empty
PQs, respectively. By definition, a valid value for -Z should be a
floating point number in [0, 1].
Range Query (RQ). Range queries return all entries with keys that
fall within a specified range (i.e., a start key and an end key). The
size of the result set depends on the selectivity of the range query.
The selectivity of a range query (denoted by𝑌 ) refers to the fraction
between the expected cardinality of the result-set returned and the
number of unique and existing key-value pairs in the database. In
practice, the performance of a data store can vary widely with the
selectivity of range queries, and often, query latency varies, non-
linearly with the selectivity of the query. Thus, it is important for
a workload generator to be able to generate range queries with a
specific selectivity, as opposed to supporting queries with random
selectivity only. To achieve this, we sort the vector 𝑉 , randomly
pick an index in [0, ⌊∥𝑉 ∥ · (1−𝑌 )⌋] as the start key, and obtain the
index of the end key by right-shifting the start index by 𝑌 · ∥𝑉 ∥.
In the command line, users can set the number of range queries
using -S and selectivity using -Y. By definition, a valid value for
-Y should be a floating point number in (0, 1].
Point Delete. This operation is used to remove or invalidate an
existing entry in the database. We implement this by randomly
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picking an index in the vector 𝑉 and deleting it from both 𝑉 and
the hash set𝐻𝑆 . This ensures future operations on existing keys (i.e.,
updates and non-empty PQs) cannot be triggered for the deleted key
before it is inserted again. The number of point deletes is specified
by -D in the command line.
RangeDelete.A range delete removes or invalidates all entries that
fall within a given range. Similarly to range queries, KVBench can
specify the selectivity of a range delete (denoted by 𝑦). However, to
ensure correctness, after a range delete is generated, we remove all
the entries within the range from both 𝑉 and 𝐻𝑆 . In the command
line, -R and -y are used to specify the number of range deletes and
the associated selectivity, respectively. The selectivity of a range
delete (-y) is a floating point number in (0, 1].

3.2 Distributions for Skewed Workloads
Key-value workloads, in practice, often exhibit skewed access pat-
terns [6]. While state-of-the-art key-value workload generators
commonly support various parameterized distributions, they are
unable to generate workloads where different operations follow
different distributions. This is a significant limitation of all state-
of-the-art workload generators, and as a result, they are unable
to emulate a large set of real-world workloads. KVBench allows
the users to specify the distributions individually for every point
operation, including insert, update, and point query, as shown in
Figure 1(A). For example, KVBench can generate an interleaved
workload where updates follow a uniform distribution, but PQs
(point queries) follow some skewed distribution (say, Zipfian). In
this section, we discuss all supported distributions in KVBench and
explain how they are integrated with basic key-value operations.

3.2.1 Distributions Supported. We summarize the distributions
supported in KVBench along with their input parameters in Table 3.
Below, we discuss the implementation of each distribution.
Uniform. For uniform distribution, the key for an operation is cho-
senwithin a specific domain, using uniform_int_distribution()
in C++. For updates and non-empty PQs, the key is chosen from a
randomly generated index in vector 𝑉 .
Normal. A normal distribution is parameterized by a mean 𝜇 and
a standard deviation 𝜎 . In KVBench, we use the mean percentile to
indicate the index position of the mean value and a scaled standard
deviation. For example, when the mean percentile and the standard
deviation for updates are specified as 𝑝𝑈 and 𝜎𝑈 , respectively, the
index of the key to be updated in sorted 𝑉 (noted by 𝑖𝑘𝑒𝑦) should
follow N(𝜇, 𝜎2) where 𝜇 = 𝑝𝑈 · ∥𝑉 ∥ and 𝜎 = 𝜎𝑈 · ∥𝑉 ∥.
Beta. The Beta distribution is a continuous probability distribution
defined on the interval [0, 1] and parameterized by two positive
parameters 𝛼 and 𝛽 . Similar to the normal distribution, we use
𝐵𝑒𝑡𝑎(𝛼, 𝛽) to generate a random index 𝑖𝑘𝑒𝑦 within [0, ∥𝑉 ∥ − 1]
and choose the key 𝑉 [𝑖𝑘𝑒𝑦] as the operation object. In the imple-
mentation, we use two gamma distributions to simulate a beta
distribution. Specifically, we use two additional random variables
𝑎, 𝑏 where 𝑎 ∼ Γ(𝛼, 1), 𝑏 ∼ Γ(𝛽, 1), and then we obtain the index of
the selected key by

⌊
𝑎 · ∥𝑉 ∥
𝑎+𝑏

⌋
, where 𝑎

𝑎+𝑏 ∼ 𝐵𝑒𝑡𝑎(𝛼, 𝛽).
Zipfian. A Zipfian distribution is a skewed distribution that is
typically characterized by the parameter 𝛼𝑍 . Unlike normal and
beta distributions, a Zipfian distribution does not specify what

the selected probability is for a given key in a finite key space.
Instead, the Zipfian distribution specifies the relationship between
the frequency ranking of a key and its probability of being selected.
Thus, to emulate a Zipfian distribution, we need to shuffle the
entries in the vector 𝑉 to generate a new vector 𝑉 ′, which is only
used within the Zipfian-based generator. After shuffling, we then
apply the Zipfian distribution to randomly select an index in vector
𝑉 ′ where the probability the 𝑖𝑡ℎ element (starting from 0) in 𝑉 ′ is
chosen is 1/(𝑖+1)𝛼𝑍∑∥𝑉 ∥

𝑗=1 1/𝑗𝛼𝑍
.

3.2.2 Key-Value Operations that Support Distributions. As shown
in Table 3, KVBench supports inserts, updates, and empty and non-
empty PQs to have any of the above distributions.
Inserts. As KVBench distinguishes unique inserts from updates,
when generating (unique) inserts with a specific distribution, we
set the key prefix to follow the specified distribution, while the
remaining part of the key is generated randomly. Inserting unique
keys with a specific distribution is part of several real-life work-
loads. While YCSB does not support this feature, db_bench allows
the prefix of inserted keys to follow a parameterized two-term-
exponential distribution. This knob helps db_bench achieve a more
accurate simulation of real-life workloads (e.g., ZippyDB, an inter-
nal workload at Meta) [6]. To implement this, we can enumerate
all possible prefixes and construct a vector 𝑉𝑝𝑟𝑒 to store them, for
a given prefix length. For integer keys, KVBench uses the first 10
bits as the prefix while for string keys, the first two characters are
used. As such, we have ∥𝑉𝑝𝑟𝑒 ∥ = 210 = 1024 for integer keys and
∥𝑉𝑝𝑟𝑒 ∥ = 622 = 3844 for string keys (the number of valid characters
is 62 in KVBench). We can then emulate a distribution within vector
𝑉 to obtain a prefix and randomly produce the padding characters
or bits when generating a key to be inserted.
Updates and Non-Empty Point Queries. A skewed distribution
for updates or non-empty PQs indicates that a small set of keys in
vector 𝑉 are more frequently updated or queried than the others.
As we maintain the vector 𝑉 that stores all the existing keys in
the database, to emulate a specific distribution for updates and
non-empty PQs, we simply need to repeatedly pick an index within
[0, ∥𝑉 ∥ − 1] according to the user-specified distribution.
Empty Point Queries. It is impossible (especially, for string keys)
to enumerate all keys that are not in the vector 𝑉 and construct
another key space to generate empty PQs. Thus, for practical pur-
poses, we construct a key set𝐻𝑆𝑧𝑒𝑟𝑜 (hash set) and𝑉𝑧𝑒𝑟𝑜 (vector) in
advance, specifically for empty PQs (i.e., before generating inserts).
The size of the hash set 𝐻𝑆𝑧𝑒𝑟𝑜 can be customized by a command
line argument --UZ, which specifies the fraction between the unique
empty PQs and the total number of empty PQs. Specifically, we
have ∥𝑉𝑧𝑒𝑟𝑜 ∥ = UZ · Z · Q where Z is the proportion of empty queries
in all the PQs, and Q is the specified number of PQs. After we have
a finite and small key space in vector 𝑉𝑧𝑒𝑟𝑜 , we can use the same
method as before to produce skewed empty PQs.

3.3 Mixed Workloads
Practical workloads often interleave different types of operations.
A typical implementation of this in state-of-the-art is to generate
a random key-value operation uniformly among a set of prede-
fined key-value operations. For example, db_bench randomly picks
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Table 3: Distribution specification in KVBench. The operation type X can be any from {U, Z, E, I} where U, Z, E represent updates,
empty point queries, non-empty point queries, respectively, and I denotes the distribution of prefix of inserted keys.

args description range of values; default

--[X]D distribution type of the operation type X {0: uniform, 1:normal, 2:beta, 3:zipfian}; 0
--[X]D_NMP mean percentile of the normal distribution of X [0,1]; 0.5
--[X]D_NDEV standard deviation of the normal distribution of X (0,DOUBLE_MAX]; 1.0

--[X]D_BALPHA; --[X]D_BBETA 𝛼 and 𝛽 , respectively, of the beta distribution of X (0,1]; 1.0
--[X]D_ZALPHA 𝛼 of the Zipfian distribution of X [0,DOUBLE_MAX]; 1.0
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Figure 1: (A) A KVBenchmixed workload with 100𝐾 uniform
updates, 100𝐾 non-empty PQs with normal distribution
(𝑝𝑈 = 0.2, 𝜎𝑈 = 3.0), 100𝐾 empty PQs with Zipfian distri-
bution (𝛼𝑍 = 1.1), and 100𝐾 unique inserts. (B) Different
RQ_THRESHOLD with the same range query selectivity
has very different performance.

an operation type from point queries, range queries, and writes
(db_bench generalizes inserts and updates to writes) according to
the specified proportion of each type of operation. KVBench, on the
other hand, offers a richer set of knobs to control how to merge
different types of operations into one workload.
Threshold-based Interleaved Workloads. KVBench uses five
threshold parameters to determine the fraction of inserts before any
other type of operation, as shown in Table 4. For example, when we
set -I1000000, PQ_THRESHOLD = 0.3 and U_THRESHOLD = 0.5,
PQs can only be generated after the first 300𝐾 inserts and updates
can only be generated after the first 500𝐾 inserts. We highlight
that these thresholds can have a significant performance impact.
For instance, we generate a mixed workload with 4𝑀 inserts and
1𝐾 range queries with different RQ_THRESHOLD (the fraction of
inserts before the first range query). When the range queries have
the same selectivity, range queries after more data is ingested have
to read more data from disk. As such, higher RQ_THRESHOLD
leads to higher query latency, as shown in Figure 1(B).
Deletes/Inserts in Interleaved Workloads. Generating an inter-
leaved workload with deletes/inserts is not trivial. When inserts and
deletes are interleaved with other operations, the key generators
have to be updated accordingly since the entries in vector𝑉 are not
fixed. Updating the key generators adds up non-negligible overhead
because we need to ensure that the vector 𝑉 is sorted whenever a
new key is inserted or an existing key is deleted (𝑉 has to be sorted
to support range queries and range deletes). Although 𝑉 does not
need to be sorted for Zipfian distribution, deleting or adding a (new)
key leads to recalculating the probability of generating each key,
which increases the maintenance overhead. Despite this, KVBench
efficiently generates workload with interleaved deletes, inserts, and
other operations that follow a uniform distribution.
Preloading: A Special Case of Mixed Workload. KVBench pro-
vides the feature that the workload can be populated based on an

existing insert-only workload. KVBench reads all the inserts in the
input workload file to construct the hash set 𝐻𝑆 and the vector 𝑉 .
The remaining execution is the same as the original workload.

Table 4: The macro thresholds for interleaved workloads.
macros description

U_THRESHOLD fraction of inserts before updates
PD_THRESHOLD fraction of inserts before point deletes
RD_THRESHOLD fraction of inserts before range deletes
PQ_THRESHOLD fraction of inserts before point queries
RQ_THRESHOLD fraction of inserts before range queries

3.4 Emulating YCSB Workloads
KVBench is a generic key-value benchmarking suite that can emu-
late many workloads in YCSB. Take workload YCSB-A as an exam-
ple. By default, workload A in YCSB populates a database where the
preloaded number of key-value pairs is specified by recordcount,
and it benchmarks the performance when executing a workload
consisting of 50% reads and 50% updates (the total number of op-
erations is specified by operationcount). In KVBench, we can use
-I to produce the dataset used to populate the database, and then
we respectively specify -Q and -U for reads and writes by preload-
ing the insert-only workload (since CoreWorkload in YCSB only
supports non-empty queries, we should also set -Z to 0 to ensure
that all PQs are restricted to non-empty queries).

4 BENCHMARKWORKLOADS
KVBench can produce synthetic workloads that resemble real-life ap-
plication workloads. This empowers NoSQL users to verify the per-
formance of their system against various use cases. In this section,
we introduce a new set of benchmark workloads and their usage in
real-world applications that can be generated using KVBench.
KVBench-I: Empty Point Query-Orientedwith Preloading. This
workload consists of 100% PQs issued to an existing database, pop-
ulated by an insert-only workload. The proportion of empty PQs is
80%. Empty PQs follow a beta distribution and the non-empty PQs
follow a uniform distribution. To produce this workload, we first
generate an insert-only workload, and then we use the preloading
feature to generate a point-query-only workload by specifying the
number of PQs, and the fraction and distribution of empty PQs.

Example: Customer inquiries for products follow this pattern
when popular products are not in inventory. YouTube or Spotify
searches without proper pattern matching, searching for books in
a library catalog available for checkout, and searching for available
doctor’s appointments all fall under this category.
KVBench-II: Insert, Delete, Query, Update Interleaved. This
workload consists of interleaving inserts (50%), deletes (10%), empty
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Table 5: Benchmark workloads supported by KVBench (PQ stands for point queries)
workload type workload composition (%) distribution of operations
KVBench-I: Empty PQ-heavy (preloading) 20% non-empty PQ, 80% empty PQ ZD = beta, ED = uniform
KVBench-II: Interleaved inserts, deletes, PQs, updates 50% insert, 10% delete, 15% empty PQ, 25% update ID = ED = UD = uniform
KVBench-III: Multi-distribution update and PQ (preloading) 50% updates, 25% non-empty PQ, 25% empty PQ UD = Zipfian, ED = ZD = uniform
KVBench-IV: Update and range delete-heavy (preloading) 50% updates, 50% range delete UD = Zipfian
KVBench-V: Insert-heavy with skewed prefixes 95% insert, 5% non-empty PQ ID = Zipfian, ZD = uniform

PQs (15%), and updates (25%). Inserts, empty PQs, and updates
follow a uniform distribution, i.e., all keys are equally likely to be
inserted, searched, updated, and deleted.

Example: Social media users frequently create, update, and delete
their posts or search for posts. Online shoppers regularly add and
remove products from their carts, search for specific products, etc.
KVBench-III:Multi-distributionUpdates andPQswithPreload-
ing. This workload consists of 50% updates, 25% empty PQs, and
25% non-empty PQs. Updates and non-empty PQs follow a Zipfian
distribution, while empty PQs are uniformly distributed. Similar to
the query-only workload, this workload is executed in an existing
database. As such, we also use the preloading feature to generate
this workload by specifying the distribution of updates and PQs.

Example: On social media platforms, users frequently update and
search for existing posts on popular keywords and seldom search for
non-existing keywords/posts/people. In scientific databases, there
are frequent updates to citation counts and searches for popular
landmark research papers while the search for absent papers occurs
with low uniform probability.
KVBench-IV: Update and Range Delete Heavy with Preloading.
This workload consists of 50% updates and 50% range deletes, the
inserts are preloaded from the existing workload file. The updates
follow Zipfian/beta distribution.

Example: In superstores or e-commerce platforms, products older
than a certain timestamp are regularly deleted from current inven-
tory when they are sold out. The price of items with low demand
(stock greater than a certain value and older than a certain times-
tamp) is regularly updated and put to clearance.
KVBench-V: Insert-Heavy with Skewed Prefixes. This workload
consists of 95% inserts and 5% uniform non-empty PQs. The prefixes
of inserted keys follow a Zipfian distribution.

Example: Sensor data generated by IoT devices and energy con-
sumption levels by households and businesses in a smart grid
ecosystem can both be modeled using Zipfian distribution. Specifi-
cally, when the data collected by IoT uses timestamps as a prefix of
key, we may have much more data collected from daytime instead
of midnight since human activities and energy consumption are
more active during daytime. As such, the prefix of inserted keys
may follow a skewed distribution.
Uncovering New Performance Patterns. The key reason for de-
veloping KVBench is to shed light on previously uncovered system
behavior. Using the developed workloads, we highlight two exam-
ples of new performance patterns observed with KVBench. Here,
we experiment with RocksDB (v8.9.1), we use a PCIe P4510 SSD
with direct I/O enabled, and we use 16MB for the block cache. We
preload our database with 10M entries.

Figure 2(A) shows the query latency as we vary the fraction of
empty PQs, 𝑍 , on a uniform and a Zipfian distribution. First, we see

that as 𝑍 increases, the overall query latency drops precipitously
because accesses to the raw data can be skipped via auxiliary struc-
tures like Bloom filters and Zonemaps, while non-empty queries
always access at least one data page. Second, we observe that a
Zipfian distribution leads to consistently faster queries because
skewed queries lead to a higher cache hit rate.

Figure 2(B) shows that different interleavings of the same work-
load may lead to dramatically different system behavior. Here,
we generate two workloads with 0.9𝑀 updates, 0.1𝑀 deletes, and
4𝑀 non-empty PQs. The “Sequential” workload executes updates,
deletes, and PQs serially, while the “Interleaved” one mixes the
operations. Despite having identical workload compositions, the
two executions lead to very different behavior. Specifically, since
RocksDB is write-optimized, the sequential workload has 1.6×
higher throughput than the interleaved one, as long as it executes
updates and deletes, while the two workloads perform very simi-
larly for queries. We also highlight that, although the throughput of
two workloads becomes similar as more queries are executed, a “Se-
quential” workload still has a marginal benefit over a “Interleaved”
workload even after all operations are completed.
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Figure 2: (A) The average latency per query decreases as
there are more empty PQs for different distributions. (B)
The throughput differs substantially between interleaved
and sequential workloads even if they have the same work-
load composition.

5 CONCLUSION
In this paper, we present KVBench, a scalable and distribution-aware
key-value workload generator for NoSQL systems. KVBench can
better emulate real-life workloads by offering more knobs for new
workload characteristics that are not supported by the state-of-the-
art. Specifically, KVBench differentiates between empty and non-
empty point queries, allows the distribution to vary across different
basic key-value operation types, and further supports deletes in an
interleaved workload. Future optimizations in NoSQL systems can
benefit from KVBench when examining the performance impact of
these new workload characteristics.
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