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Abstract
Bloom Filiters (BFs) are typically employed to alleviate unnecessary disk accesses to faciliate point lookup in LSM trees. They
are particularly beneficial when there is a significant performance difference between probing a Bloom filter (hashing and
accessing memory) and accessing data (on secondary storage). However, this gap is decreasing as SSDs and NVMs have
increasingly lower latency, to the point that the cost of accessing data can be comparable to that of hashing and filter probing,
especially for large key sizes that results in high hashing cost. In addition, BFs are beneficial for empty queries while they are
a burden for positive queries (i.e., on an existing key). Also, with larger datasets, the total memory consumed by also increases
making it less feasible to keep in memory all BFs. Coupling this, with the increasing price of memory and the need to reduce
the memory-to-data ratio in many practical deployments, we are seeing an increased memory pressure. In this setting, fewer
BF blocks are cached, thus causing additional storage accesses, since they have to be fetched in memory to answer a query.

In this PhD work, we introduce SHaMBa (Shared Hash Modular Bloom Filter), a new LSM-based key-value engine that
addresses both (a) the increasing hashing overhead and (b) the suboptimal performance when BFs do not fit in memory.
First, SHaMBa decouples the hashing cost from the data size by sharing a single hash digest across different levels. Second,
SHaMBa applies a workload-aware BF skipping policy based on Modular Bloom Filter (i.e., a set of mini-BFs that replace a
single large BF) to avoid accessing BFs when they are not useful. Our evaluation shows that SHaMBa reduces the CPU cost
for BF probing, and substantially outperforms the state of the art under memory pressure, having the same average number
of I/Os - using only one-third of the memory consumption of the state of the art.
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1. Introduction

LSM-based Key-Value Stores. Log-Structured Merge-
trees (LSM-trees) [1] are widely adopted as one of the
core data structures in modern NoSQL storage engines
including LevelDB [2], RocksDB [3], and WiredTiger [4].
This is because LSM-trees offer high write throughput by
employing out-of-place ingestion and also achieve good
space utilization via an immutable file structure. In LSM-
trees, incoming entries (inserts, updates, and deletes)
are buffered within main memory. Once the write buffer
becomes full, the contained entries are sorted and flushed
to disk as a sorted run. The disk-resident sorted runs are
organized into a number of levels of increasing sizes.
In practice, a sorted run may consist of one or more
immutable Sorted-String Tables (or SST files). To bound
the number of files that a point lookup needs to probe,
runs of similar sizes in the same level are sort-merged and
pushed to the next (deeper) level when the accumulated
bytes of similarly sized runs reach a predefined capacity.
To avoid unnecessary accesses for point lookups, LSM-
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trees typically construct a Bloom Filter (BF) for every
file that probabilistically allows to skip a file if it does
not contain the target key. In addition, every file is also
associated with an index block (aka fence pointers) that
maintains the min-max range and the offset for each data
block (or disk page), which ensures that at most one data
block (or disk page) is retrieved when probing a file.
Problem 1: The Benefit of BFs Shrinks When Faster
Storage is Used. Contrary to common perception, how-
ever, BFs are not always beneficial. The rationale behind
the ubiquitous use of BFs in LSM-trees is that there is
a considerable cost difference between accessing a BF
(in memory) and accessing data (on disk). As the gap in
access latency between BFs and data narrows, the advan-
tages of using BFs weaken. If the data is already cached in
main memory, BFs are detrimental. Further, as new stor-
age devices like SSDs and non-volatile memories (NVMs)
emerge, the latency gap between memory and storage
narrows. experiments show that MurmurHash64 calcula-
tion (used in production system [3]) is ∼1.47× more ex-
pensive than accessing a memory page, thereby, making
the use of a BF detrimental. The LSM hashing overhead
is further exacerbated as multiple BFs are queried per
lookup (at least one per level), and repeated hash calcu-
lations turn querying over fast storage (or cached data)
into a CPU-intensive operation.
Problem 2: Read Performance in LSM-trees De-
grades With Limited Memory. The memory allocated
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to an LSM-based system can be divided into several com-
ponents: (i) the block cache for caching BF blocks, index
blocks, and data blocks, (ii) the memory buffer for storing
incoming data, (iii) temporary memory to compact data,
and (iv) temporary memory to support ongoing range
queries. While computing, memory, and storage prices
decrease and allow us to facilitate more data, in the last
few years, the price drop in memory has been slower
than what has been for computing and storage, making
it hard to maintain the same memory-to-data ratio. For
example, since 2010, the price of SSDs has decreased by
a factor of sixty, whereas the price of memory has only
decreased by a factor of ten [5]. As a result, BFs may not
always be in memory when competing for the resource
with index blocks and data blocks, and which there is a
cache miss for BFs, a significant number of I/Os may be
spent on fetching them.
SHaMBa: Less Hashing on Modular Bloom Filters.
We propose Shared Hashing and skipping-based Modular
Bloom Filters - two techniques that reduce the BF over-
head in LSM trees and we integrate them into our system,
SHaMBa. Specifically, we first propose a shared hashing
technique [6] that shares a single hash digest across all
levels in an LSM tree in order to alleviate the unneces-
sary cost of re-hashing for every level. Shared hashing
decouples the aggregated hashing cost from data size;
regardless of the number of LSM tree levels (which de-
pends on the data size, the size ratio, and the memory
buffer size), hashing cost is constant. We then identify
that not all BFs are equally important, and based on this
observation, we propose a skipping mechanism [7] based
on Modular Bloom Filter (MBF) that allows us to load part
of the filter to alleviate the memory pressure. Our eval-
uation shows that hash sharing can lead to 20% higher
lookup performance in a state-of-the-art PCIe SSD and
the skipping mechanism in MBF can achieve the same
read throughput with only one-third of the memory con-
sumed by state-of-the-art.
Contributions. Our contributions are as follows:

• We identify that BFs dominate the LSM query latency
for fast storage and high hashing cost, and we decouple
the amount of hashing from the data size (height of
an LSM tree) by shared hashing across different levels.

• We propose a skipping mechanism based on Modular
Bloom Filter (MBF) that reduces the memory footprint
without sacrificing performance.

• We integrate Shared Hashing and Modular Bloom Fil-
ters in the state-of-the-art LSM-engine RocksDB, and
we show through extensive experimentation with re-
alistic workloads that our proposed techniques reduce
the hashing cost, and outperform the state of the art
under memory pressure.

2. Shared Hashing
Classical BFs rely on 𝑘 independent hash functions to
generate 𝑘 indexes, which results in high CPU overhead.
Practical implementation uses a single hash digest and
generates 𝑘 − 1 indexes by bit rotation. Such an opti-
mization reduces the CPU cost by a factor of 𝑘, we now
apply hash sharing across multiple LSM levels.
Hash Sharing Across Levels. The key observation is
that for a specific query, the same hash digest calculation
is repeated across levels. The BFs are different across
levels (they have indexed different elements). However,
calculating the hash digest is repeated for every queried
level until finding the matching key or the tree is entirely
searched. Thus, to mitigate this overhead, we share the
hash digest calculation across levels by re-engineering
the BF implementation and allowing the BFs residing in
different levels to work in concert during the course of a
single query (Fig. 1). As a result, the hashing cost stays
constant regardless of the number of levels.
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Figure 1: Hash sharing across BFs of different levels.

Evaluation. We build an in-house LSM-tree prototype,
which uses RocksDB’s fast local Bloom Filter and Mur-
murHash64. We bulk load our LSM tree with 22GB of
key-value pairs (entry size is fixed as 2KB), and report
the latency of empty point queries. The experiments are
running with a state-of-the-art PCIe SSD that offers 10𝜇s
latency for 4KB page access. As shown in Figure 2a, the
hashing cost increases for both approaches as the key
size grows, however, shared hashing has a performance
gain of up to 23% (blue line). The time breakdown shows
where this benefit is coming from. The time spent in BFs
(both hashing and probing) is drastically reduced for the
hash sharing approach, while the cost for accessing data,
as well as the other costs (e.g., binary search in fence
pointers), virtually remains the same. In addition, larger
key sizes have higher hashing cost, hence, hash sharing
is more beneficial for them. Besides, when the query
workload becomes skewed, we further observe the gain
steeply increases for 1KB keys to more than 60% in Fig-
ure 2b. This is because the skewed workload has fewer
data accesses due to fewer false positives, and as a result,
hashing becomes a bottleneck for skewed point queries.
More experiments can be found in our full paper [6].
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Figure 2: Hash sharing reduces hashing overhead. The reduc-
tion is more pronounced for larger keys and skew workload.

k

0 0 1 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 1 0 0 0 1

(a) A standard Bloom filter.
k

0 0 1 0 0 0 0 1 0 0
module #1

0 0 0 0 0 1 0 0 1 0
module #2

0 0 1 0 0 0 0 1 0 0
module #3

(b) A modular Bloom filter with three modules of equal size.

Figure 3: Modular Bloom filters split the physical representa-
tion of a BF into multiple independent modules.

3. A Skipping Mechanism for MBF
In this section, we discuss how we achieve lower memory
footprint with our skipping mechanism [7] for MBFs,
and we show that, under memory pressure, our skipping
algorithm achieves the same read throughput with only
one-third of the memory used by the state of the art.
Modular Bloom Filters (MBFs). We first present Mod-
ular Bloom filters (MBFs) that divide a normal Bloom
Filter into multiple modules. This division allows us to
design workload-aware access methods by leveraging the
tradeoff between the filter memory and the associated ac-
curacy. Dividing a Bloom filter into smaller chunks is not
a new technique, which can be also found in ElasticBF [8].
A Modular Bloom filter (MBF) uses 𝑚 bits to index 𝑛 ele-
ments in each of 𝐷 modules. Each module uses 𝑚𝑑 bits
such that

∑︀𝐷
𝑑=1 𝑚𝑑 = 𝑚. Essentially, an MBF is a collec-

tion of 𝐷 Bloom filters, and every membership test has to
go through all modules before it concludes with a positive
result if all modules have to be used. On the other hand,
a negative response at any module terminates the query
without the need to further continue probing the remain-
ing modules. Figure 3 compares a Modular Bloom filter,
which is composed of three modules, with a standard
BF. By design, a point lookup can use all or any of the
available modules without re-indexing. Thus, MBF can
maintain only the selected modules in fast memory, lead-
ing to smaller memory consumption at the expense of a
higher false positive rate (without needing to recalculate
the filter).
A Skipping Mechanism. To fully exploit the multiple

QueryMBF (key 𝑘, 𝑆𝑆𝑇𝑙,𝑖)
for 𝑑 = 1, 𝑑 ≤number of modules, 𝑑++ do

//calc module’s utility
𝑢𝑙,𝑖,𝑑 = 𝛽𝑙,𝑖 · (1− 𝛼𝑙,𝑖) · (·𝑓𝑑

𝑠𝑚 − 𝑓𝑑−1
𝑠𝑚 )

if 𝑠𝑘𝑖𝑝𝑑==true & 𝑢𝑙,𝑖,𝑑 < threshold𝑑 then
// skipping module, assumes that it returns

positive
return true;

else
// probe the module like a mini BF
// this part might cause an I/O if the module is

not cached
result = QueryModule(𝑘, module𝑙,𝑖,𝑑)

end
if result==false then

return false;
end

end
return result;

end
Algorithm 1: Querying an MBF uses the utility
of each module (along with threshold𝑑) to decide
whether accessing a module is beneficial.

modules of MBFs, we quantify the utility of each module
and design a new module skipping mechanism. We define
the utility as follows.

𝑢𝑙,𝑖,𝑑 = 𝛽𝑙,𝑖 · (1− 𝛼𝑙,𝑖) ·
(︁
𝑓𝑑−1
𝑠𝑚 − 𝑓𝑑

𝑠𝑚

)︁
(1)

where 𝛽𝑙,𝑖 (𝛼,𝑖) represents the access frequency point
lookup (the ratio of true positive point queries, respec-
tively) of the 𝑖𝑡ℎ file 𝑆𝑆𝑇𝑙,𝑖 at level 𝑙 and 𝑓𝑑

𝑠𝑚 is the false
positive rate when using the first 𝑑 modules. Next, we
propose to skip probing modules if the expected number
of I/Os is over a certain threshold (threshold𝑑). Algo-
rithm 1 shows how to query an MBF and how to skip
modules using their utility. The core idea of the algo-
rithm is that if a module is expected to lead to an I/O
anyway (combining the frequency of the accesses, and
the frequency of queries being non-empty on the specific
SST file), the system will prefer to go directly to the data
since the I/O is inevitable (if we refer to the last module).
As the utility of modules in different orders is not compa-
rable, we allow the algorithm to use a different threshold
per module slot. Moreover, it is also possible to skip only
a subset of the modules since their utility decreases as
more modules are accessed. As shown in Algorithm 1,
the decision to skip is made per module 𝑠𝑘𝑖𝑝𝑑.
Evaluation. We integrate our skipping algorithm
and MBF into RocksDB with two equal-size modules
(with thresholds, respectively, threshold1 = 0.02 and
threshold2 = 0.01) to showcase the benefit of our skip-
ping mechanism. We stress-test our approach with differ-
ent workloads: 1) vary the point query patterns to follow
the (a)uniform, (b) normal, or (c) Zipfian distribution; 2)
vary the proportion of existing point lookups (𝛼). We
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Figure 4: Our skipping algorithm reduces the lookup latency
of RocksDB under memory pressure.

report the average latency per lookup, as shown in Fig-
ure 4. The experimental results show that our skipping
algorithm effectively reduces the lookup latency when
there is memory pressure, and the benefits persist for
both empty (𝛼 = 0.0) and non-empty queries (𝛼 = 1.0).
More results can be found in our full paper [7].

4. Research Plan
State-of-the-art LSM trees employ a static memory al-
location paradigm across levels and across files, which
leads to all files having BFs with the same bits-per-key
(BPK). Notably, Monkey [9] proposed to allocate more
BPK to shallower (smaller) levels which proves to lead
to minimal read cost assuming that the workload is uni-
form. Our main goal moving forward is to use detailed
information on the access patterns of the workload to
decide the exact BPK at the file and the module level.
[Short-Term] Dynamic BPK Allocation. We are work-
ing towards a dynamic BPK allocation strategy for all
the BFs in LSM trees, which allows different files to have
different BPK. The decision of the BPK per file is im-
plemented at compaction time. Unlike prior work that
assumes a predefined static workload [9], we will collect
statistics of read access patterns (empty and non-empty
queries per level) which will allow us to build an accurate
cost function at runtime and find out the best local BPK
allocation strategy during compaction, thus generaliz-
ing prior approaches. Our earlier work [10] has shown
that the average compaction latency is mostly affected
by moving data, with the creation of BFs at compaction
time being a low-overhead process. In other words, we
can implement a better BPK re-allocation without any
visible increase in compaction latency.
[Long-Term] Holistic Memory Tuning. We are target-

ing a set of holistic memory tuning algorithms that can
navigate the entire designing space of MBF under lim-
ited memory. If we allow each module to have different
BPK and each file to have different number of modules, a
richer designing continuum is constructed for MBF. We
explain why the new designing space of MBF can benefit
point queries from the following two perspectives: (a)
By allowing each module to have a different BPK with-
out changing the total BPK assigned per file, files with
more empty point lookups can have more BPK for their
in-memory modules while fewer BPK are assigned for
the in-memory modules of other files. In this way, more
empty point lookups can be blocked by the first module
with a higher BPK due to a lower false positive rate. (b)
However, note that the above design requires compaction
to allocate BPK per module or per file. If we allow files
to have three or more modules, we have more flexibility
to decide how many modules are needed to access on-
the-fly, without needing to re-construct the entire MBF.
However, this design sacrifices the read performance of
existing point queries since multiple BF queries are re-
quired when using several modules in MBF. Our goal is
to create a workload-aware solution that can leverage
the above trade-off and navigate the designing space of
MBF to achieve minimum point query cost for LSM trees.

5. Conclusion
In this PhD work, we propose SHaMBa, a novel LSM-
based key-value engine that addresses two key challenges.
First, the fact that as we move to faster storage devices,
hashing for BFs in LSM-Trees becomes the main bottle-
neck, and, second, the fact that the benefit from using
BFs diminishes when the system is under memory pres-
sure. Our evaluation shows that SHaMBa can reduce
the fraction of time spent on hashing during lookups,
and it can also exploit the available memory to offer bet-
ter performance than the state of the art under memory
pressure. The long-term goal of this PhD work is to intro-
duce hardware/workload-aware BF management policy
to facilitate point queries in write-optimized LSM trees.
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