CS 332: Elements of the Theory of Computation, Fall 2022
Course Overview
This course is an introduction to the theory of computation. This is the branch of computer science that aims to understand which problems can be solved using computational devices and how efficiently those problems can be solved. To be able to make precise statements and rigorous arguments, computational devices are modeled using abstract mathematical "models of computation." The learning objectives of the course are to:
- Foremost, understand how to rigorously reason about computation through the use of abstract, formal models.
- Learn the definitions of several specific models of computation including finite automata, context-free grammars, and Turing machines, learn tools for analyzing their power and limitations, and understand how they are used in other areas of computer science.
- Learn how fundamental philosophical questions about the nature of computation (Are there problems which cannot be solved by computers? Can every problem for which we can quickly verify a solution also be solved efficiently?) can be formalized as precise mathematical problems.
- Gain experience with creative mathematical problem solving and develop the ability to write correct, clear, and concise mathematical proofs.
Instructor: |
|
Mark Bun, mbun [at] bu [dot] edu |
Instr. Office Hours: |
|
Mon 5-6:15 (MCS 114) |
|
|
Wed 3:30-4:30 (MCS 114) |
|
|
|
Teaching Fellow: |
|
Satchit Sivakumar, satchit [at] bu [dot] edu |
TF Office Hours: |
|
Tue 5-6 (MCS 103) |
|
|
Thu 5-6 (MCS 103) |
|
|
|
Class Times: |
|
Tue, Thu 2:00-3:15 PM (CAS 326) |
Discussion Sections: |
|
Wed 11:15-12:05 AM (MCS B33) |
|
|
Wed 12:20-1:10 PM (MCS B33) |
Important Links
Course Website: https://cs-people.bu.edu/mbun/courses/332_F22. The website contains the course syllabus, schedule with assigned readings, homework assignments, and other course materials.
Piazza: https://piazza.com/bu/fall2022/cs332. All class announcements will be made through Piazza, so please set your notifications appropriately. Please post questions about the course material to Piazza instead of emailing the course staff directly. It is likely that other students will have the same questions as you and may be able to provide answers in a more timely fashion. Active participation on Piazza may add extra points to your participation grade.
Gradescope: https://gradescope.com. Sign up for a student account on Gradescope using your BU email address. The entry code for the course is XV2EDY. Homework assignments are to be submitted to Gradescope in PDF format.
Catalog Description
The basic concepts of the theory of computation are studied. Topics include models of computation, polynomial time, Church's thesis; universal algorithms, undecidability and intractability; time and space complexity, nondeterminism, probabilistic computation and reductions of computational problems.
Prerequisites
CS 131 (Combinatoric Structures) and CS 330 (Introduction to Algorithms). If you have not completed the prerequisites for the course, please schedule a meeting with me before registering.
Course Outline
- Automata and Formal Language Theory. Deterministic finite automata, nondeterministic finite automata, regular expressions. Non-regular languages. Context-free grammars.
- Computability Theory. Turing Machines and the Church-Turing thesis. Decidability, halting problem. Reductions.
- Complexity Theory. Time complexity, space complexity, hierarchy theorems. Complexity classes P, NP, PSPACE and the P vs. NP question. Polynomial time reductions and NP-completeness.
(Perpetually Tentative) Schedule
Date |
Topics |
Reading/Reference |
Handouts/Assignments |
Tue 9/6 |
Welcome, introduction |
Sipser 0, Lec01, Lec01-ann |
Collaboration and Honesty Policy, Math & Algorithms Review, HW 0 out, L1 polls |
Thu 9/8 |
Sets, strings, and languages |
Sipser 0, Lec02, Lec02-ann |
HW 0 due, HW 1 out, L2 polls |
Tue 9/13 |
Finite automata |
Sipser 1.1-1.2, Lec03, Lec03-ann |
Automata Tutor, L3 polls |
Thu 9/15 |
DFA-NFA equivalence |
Sipser 1.2, Lec04, Lec04-ann |
HW 1 due, HW 2 out, L4 polls |
Tue 9/20 |
Closure properties, regular expressions |
Sipser 1.2-1.3, Lec05, Lec05-ann |
L5 polls |
Thu 9/22 |
Regular expressions vs. FAs, distinguishable sets |
Sipser 1.3, Myhill-Nerode, Lec06, Lec06-ann |
HW 2 due, HW 3 out, L6 polls |
Tue 9/27 |
Non-regular languages |
Myhill-Nerode, Lec07, Lec07-ann |
L7 polls |
Thu 9/29 |
Turing machines |
Sipser 3.1, 3.3, Lec08, Lec08-ann |
TM simulator, A real TM, HW 3 due, L8 polls |
Tue 10/4 |
Test 1 Review |
Lec09, Lec09-ann |
|
Thu 10/6 |
Test 1 |
|
HW 4 out |
Tue 10/11 |
NO CLASS — Indigenous Peoples' Day (Monday schedule of classes) |
Sipser 3.2 |
|
Thu 10/13 |
TM examples |
Sipser 3.1, 3.2, Lec10, Lec10-ann |
HW 4 due, HW 5 out, universal_dfa.py, L10 polls |
Tue 10/18 |
TM variants, closure properties, nondeterminism |
Sipser 3.2, Lec11, Lec11-ann |
L11 polls |
Thu 10/20 |
More nondeterminism, Church-Turing Thesis, decidable languages |
Sipser 3.2, 4.1, Lec12, Lec12-ann |
HW 5 due, HW 6 out, L12 polls |
Tue 10/25 |
Decidability, countable sets |
Sipser 4.2, Lec13, Lec13-ann |
L13 polls |
Thu 10/27 |
More countability, diagonalization, undecidability |
Sipser 4.2, Lec14, Lec14-ann |
HW 6 due, HW 7 out, L14 polls |
Tue 11/1 |
More undecidability, reductions |
Sipser 4.2, 5.1, Lec15, Lec15-ann |
L15 polls |
Thu 11/3 |
More reductions |
Sipser 5.1, Lec16, Lec16-ann |
HW 7 due, L16 polls |
Tue 11/8 |
Test 2 Review |
Lec17, Lec17-ann |
|
Thu 11/10 |
Test 2 |
|
|
Tue 11/15 |
Mapping Reductions |
Sipser 5.2, Lec18, Lec18-ann |
HW 8 out, L18 polls |
Thu 11/17 |
Time complexity, space complexity, complexity class P |
Sipser 7.1-7.2, 8.0, Lec19, Lec19-ann |
L19 polls |
Tue 11/22 |
Hierarchy Theorems, more on P |
Sipser 7.2, 9.1, Lec20, Lec20-ann |
L20 polls |
Thu 11/24 |
NO CLASS — Happy Thanksgiving! |
|
|
Tue 11/29 |
NP |
Sipser 7.3-7.4, Lec21, Lec21-ann |
HW 9 out, L21 polls |
Thu 12/1 |
More on NP |
Sipser 7.3-7.4, Lec22, Lec22-ann |
L22 polls |
Tue 12/6 |
NP-completeness |
Sipser 7.4-7.5, Lec23, Lec23-ann |
L23 polls |
Thu 12/8 |
Course Wrap-Up and Final Review |
Lec24, Lec24-ann |
HW 9 due |
Fri 12/16 |
Test 3, 3-5PM |
|
|
Texts and References
Required Textbook
Michael Sipser, Introduction to the Theory of Computation, 3rd Edition. ISBN-13: 978-1133187790.
See
here for a list of errata.
Reading the textbook before class and reviewing it after class are important for solidifying your understanding of the course material. However, I do not want the exhorbitant price of the book to pose a barrier to your learning. Using an older edition of the text is fine (though beware that section numbers may be different). If the cost of the textbook still presents a burden for you, let me know and I can loan you a copy or recommend another solution.
Other Resources
Proof Techniques:
Richard Hammack, Book of Proof. Available online here.
Automata and Computability Theory:
John MacCormick, What Can Be Computed?: A Practical Guide to the Theory of Computation.
Dexter Kozen, Automata and Computability.
Complexity Theory:
Sanjeev Arora and Boaz Barak, Computational Complexity: A Modern Approach.
Cristopher Moore and Stephan Mertens, The Nature of Computation.
Evaluation
Your grade in the course will be determined by homework assignments, three in-class tests, and class participation.
The following letter grades are guaranteed if you earn the corresponding percentages: A ≥90%, A- ≥85%, B+ ≥80%, B ≥75%, B- ≥70%, C+ ≥65%, C ≥60%. However, to correct for the possibility of assignments and exams being more difficult than anticipated, letter grades may be (significantly) increased above these guarantees.
Homework (54%)
There will be weekly homework assignments to be submitted on Gradescope most Thursdays at 11:59PM. No late homework will be accepted without prior arrangement. To accomodate extenuating circumstances, your lowest homework grade will be dropped.
You are allowed, and indeed encouraged, to collaborate with other students on solving most of the homework problems. However, you must write the solutions independently in your own words. Details of the collaboration policy may be found here: Collaboration and Honesty Policy.
Some homework assignments will include clearly marked "individual review" problems. These problems are meant to reinforce concepts from previous assignments that you've already received feedback on. These problems are to be completed individually; no collaboration is allowed.
Some homework assignments may also include optional "bonus" problems. Solving these problems will not directly contribute to your homework grade but may improve the letter grade you receive in the course if the final percentage we calculate is on the borderline between two letter grades. Solving bonus problems is also a good way to impress your instructor if you are seeking a recommendation letter, research opportunities, or a grading position.
You may want to use LaTeX to typeset your homework solutions. LaTeX is the standard document preparation system used in the mathematical sciences. Using LaTeX makes it easier for you to revise and edit your solutions and for us to read them, so you will never lose points for illegibility.
My preferred LaTeX editors are TexShop for Mac and TexStudio for Windows. If you would like to give LaTeX a try on the web without installing anything on your computer, Overleaf is a good option.
Not so short intro to LaTeX. A LaTeX tutorial.
Homework template files: tex, cls, jpg, pdf.
Test 1: 10%, Test 2: 10%, Final: 14%
The two 70-minute in-class tests are scheduled for Thursday, Oct.6 and Thursday, Nov. 10. Each midterm will cover roughly one-third of the course content. A comprehensive in-class final will be held during the normal two-hour exam slot. Please wait until the official University final exam schedule is finalized before making your end-of-semester travel plans.
You may bring one double-sided 8.5" x 11" sheet of notes to each midterm test and two such sheets to the final. Note sheets may be either handwritten or typeset. You may not use any other aids during the exam, including but not limited to books, lecture notes, calculators, phones, or laptops.
Class Participation (12%)
Your active participation in class and in discussion sections is an essential part of your learning. Your participation grade will be determined by responses to in-class polls (adminstered through Google Forms), post-lecture Gradescope check-ins, completed discussion worksheets, and other brief activities such as Homework 0. It will also be possible to increase your participation score by thoughtfully asking and answering questions in lectures, in discussions, on Piazza, or during office hours.
Course Policies
Academic Conduct
All Boston University students are expected to maintain high standards of academic honesty and integrity. It is your responsibility to be familiar with the Academic Conduct Code, which describes the ethical standards to which BU students are expected to adhere and students’ rights and responsibilities as members of BU’s learning community. All instances of cheating, plagiarism, and other forms of academic misconduct will be addressed in accordance with this policy. Penalties for academic misconduct can range from failing an assignment or course to suspension or expulsion from the university.
https://www.bu.edu/academics/policies/academic-conduct-code/
http://www.bu.edu/cas/current-students/phd-mfa-students/academic-policies-and-conduct-code/
Regrade Policy
If you find a mistake in the grading, Gradescope has a feature built in for requesting regrades. We will accept regrade requests for up to one week after each homework assignment or test is returned. Before submitting a regrade request, please make sure you have read and understood the distributed solutions. Regrade requests must point out
specific factual errors in how the grader interpreted your solution. To ensure grading consistency, we cannot accommodate requests based on disagreements about how much a given mistake should correspond to a point value.
Attendance Policy
Students are expected to attend each class session unless they have a valid reason for being absent. If you must miss class due to illness or another reason, please notify the instructor as soon as possible, ideally before the absence.
https://www.bu.edu/academics/policies/attendance/
Absence Due to Religious Observance
If you must miss class due to religious observance, you will not be penalized for that absence and you will receive a reasonable opportunity to make up any work or examinations that you may miss. Please notify the instructor of absences for religious observance as soon as possible, ideally before the absence.
https://www.bu.edu/academics/policies/absence-for-religious-reasons/
Bereavement
In the event of the death of an immediate family member, you should notify your advisor, who will help you coordinate your leave. You will be automatically granted five weekdays of leave, and if necessary, you advisor will help you to petition the Dean for additional leave time. You may also request a leave of absence due to bereavement. Please contact your advisor, who will help you with the process.
https://www.bu.edu/academics/policies/student-bereavement/
Disability Services
Students with documented disabilities, including learning disabilities, may be entitled to accommodations intended to ensure that they have integrated and equal access to the academic, social, cultural, and recreational programs the university offers. Accommodations may include, but are not limited to, additional time on tests, staggered homework assignments, note-taking assistance. If you believe you should receive accommodations, please contact the Office of Disability Services to discuss your situation. This office can give you a letter that you can share with instructors of your classes outlining the accommodations you should receive. The letter will not contain any information about the reason for the accommodations.
If you already have a letter of accommodation, you are encouraged to share it with your instructor as soon as possible.
Disability & Access Services
25 Buick Street, Suite 300
617-353-3658
access@bu.edu
http://www.bu.edu/disability/
Grade Grievances
If you feel that you have received an arbitrary grade in a course, you should attempt to meet with the grader before filing a formal appeal. If the student and the instructor are unable to arrive at a mutually agreeable solution, the student may file a formal appeal with the chair. This process must begin within six weeks of the grade posting. To understand how an “arbitrary grade” is defined, please explore the following link.
https://www.bu.edu/academics/policies/policy-on-grade-grievances-for-undergraduate-students-in-boston-university-courses/
Incomplete Grades
An incomplete grade (I) is used only when the student has conferred with the instructor prior to the submission of grades and offered acceptable reasons for the incomplete work. If you wish to take an incomplete in this class, please contact the instructor as soon as possible but certainly before the submission of final grades. To receive an incomplete, you and your instructor must both sign an “Incomplete Grade Report” specifying the terms under which you will complete the class.
https://www.bu.edu/academics/policies/incomplete-coursework/
Student Health Services
Offers an array of health services to students, including wellness education and mental health services (behavioral medicine).
http://www.bu.edu/shs/
http://www.bu.edu/shs/wellness/
http://www.bu.edu/shs/behavioral/index.shtml
Medical Leave of Absence
If you must take a leave of absence for medical reasons and are seeking to re-enroll, documentation must be provided to Student Health Services so that you may re-enroll. To take a medical leave, please talk with SHS and your advisor, so that they may assist you in taking the best course of action for a successful return.
http://www.bu.edu/usc/leaveandwithdrawal/arranging/
http://www.bu.edu/academics/policies/withdrawal-leave-of-absence-and-reinstatement/
ISSO
The International Students & Scholars Office is committed to helping international students integrate into the Boston University community, as well as answering and questions and facilitating any inquiries about documentation and visas.
https://www.bu.edu/isso/